Spaces:
Running
on
Zero
Running
on
Zero
likunchang
commited on
Commit
·
7e078c9
1
Parent(s):
100feec
init
Browse files- .gitignore +11 -0
- app.py +530 -0
- data/__init__.py +2 -0
- data/data_utils.py +177 -0
- data/transforms.py +287 -0
- inferencer.py +315 -0
- modeling/__init__.py +4 -0
- modeling/autoencoder.py +361 -0
- modeling/bagel/__init__.py +18 -0
- modeling/bagel/bagel.py +1026 -0
- modeling/bagel/modeling_utils.py +144 -0
- modeling/bagel/qwen2_navit.py +1157 -0
- modeling/bagel/siglip_navit.py +402 -0
- modeling/qwen2/__init__.py +68 -0
- modeling/qwen2/configuration_qwen2.py +179 -0
- modeling/qwen2/modeling_qwen2.py +929 -0
- modeling/qwen2/tokenization_qwen2.py +328 -0
- modeling/qwen2/tokenization_qwen2_fast.py +123 -0
- modeling/siglip/__init__.py +98 -0
- modeling/siglip/configuration_siglip.py +287 -0
- modeling/siglip/convert_siglip_to_hf.py +401 -0
- modeling/siglip/image_processing_siglip.py +230 -0
- modeling/siglip/modeling_siglip.py +1557 -0
- modeling/siglip/processing_siglip.py +131 -0
- modeling/siglip/tokenization_siglip.py +364 -0
- requirements.txt +17 -0
- test_images/meme.jpg +0 -0
- test_images/octupusy.jpg +0 -0
- test_images/women.jpg +0 -0
.gitignore
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
wandb
|
| 2 |
+
__pycache__
|
| 3 |
+
.vscode
|
| 4 |
+
notebooks
|
| 5 |
+
results
|
| 6 |
+
*.ipynb_checkpoints
|
| 7 |
+
eval_results
|
| 8 |
+
tests
|
| 9 |
+
.DS_Store
|
| 10 |
+
gradio.sh
|
| 11 |
+
debug*
|
app.py
ADDED
|
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import random
|
| 7 |
+
import subprocess
|
| 8 |
+
subprocess.run(
|
| 9 |
+
"pip install flash-attn --no-build-isolation",
|
| 10 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 11 |
+
shell=True,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
|
| 15 |
+
from PIL import Image
|
| 16 |
+
|
| 17 |
+
from data.data_utils import add_special_tokens, pil_img2rgb
|
| 18 |
+
from data.transforms import ImageTransform
|
| 19 |
+
from inferencer import InterleaveInferencer
|
| 20 |
+
from modeling.autoencoder import load_ae
|
| 21 |
+
from modeling.bagel import (
|
| 22 |
+
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
|
| 23 |
+
SiglipVisionConfig, SiglipVisionModel
|
| 24 |
+
)
|
| 25 |
+
from modeling.qwen2 import Qwen2Tokenizer
|
| 26 |
+
|
| 27 |
+
from huggingface_hub import snapshot_download
|
| 28 |
+
|
| 29 |
+
model_path = "/model"
|
| 30 |
+
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
|
| 31 |
+
cache_dir = model_path + "/cache"
|
| 32 |
+
|
| 33 |
+
snapshot_download(cache_dir=cache_dir,
|
| 34 |
+
local_dir=model_path,
|
| 35 |
+
repo_id=repo_id,
|
| 36 |
+
local_dir_use_symlinks=False,
|
| 37 |
+
resume_download=True,
|
| 38 |
+
allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Model Initialization
|
| 42 |
+
|
| 43 |
+
llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
|
| 44 |
+
llm_config.qk_norm = True
|
| 45 |
+
llm_config.tie_word_embeddings = False
|
| 46 |
+
llm_config.layer_module = "Qwen2MoTDecoderLayer"
|
| 47 |
+
|
| 48 |
+
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
|
| 49 |
+
vit_config.rope = False
|
| 50 |
+
vit_config.num_hidden_layers -= 1
|
| 51 |
+
|
| 52 |
+
vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
|
| 53 |
+
|
| 54 |
+
config = BagelConfig(
|
| 55 |
+
visual_gen=True,
|
| 56 |
+
visual_und=True,
|
| 57 |
+
llm_config=llm_config,
|
| 58 |
+
vit_config=vit_config,
|
| 59 |
+
vae_config=vae_config,
|
| 60 |
+
vit_max_num_patch_per_side=70,
|
| 61 |
+
connector_act='gelu_pytorch_tanh',
|
| 62 |
+
latent_patch_size=2,
|
| 63 |
+
max_latent_size=64,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
with init_empty_weights():
|
| 67 |
+
language_model = Qwen2ForCausalLM(llm_config)
|
| 68 |
+
vit_model = SiglipVisionModel(vit_config)
|
| 69 |
+
model = Bagel(language_model, vit_model, config)
|
| 70 |
+
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
|
| 71 |
+
|
| 72 |
+
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
|
| 73 |
+
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
|
| 74 |
+
|
| 75 |
+
vae_transform = ImageTransform(1024, 512, 16)
|
| 76 |
+
vit_transform = ImageTransform(980, 224, 14)
|
| 77 |
+
|
| 78 |
+
# Model Loading and Multi GPU Infernece Preparing
|
| 79 |
+
device_map = infer_auto_device_map(
|
| 80 |
+
model,
|
| 81 |
+
max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
|
| 82 |
+
no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
same_device_modules = [
|
| 86 |
+
'language_model.model.embed_tokens',
|
| 87 |
+
'time_embedder',
|
| 88 |
+
'latent_pos_embed',
|
| 89 |
+
'vae2llm',
|
| 90 |
+
'llm2vae',
|
| 91 |
+
'connector',
|
| 92 |
+
'vit_pos_embed'
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
if torch.cuda.device_count() == 1:
|
| 96 |
+
first_device = device_map.get(same_device_modules[0], "cuda:0")
|
| 97 |
+
for k in same_device_modules:
|
| 98 |
+
if k in device_map:
|
| 99 |
+
device_map[k] = first_device
|
| 100 |
+
else:
|
| 101 |
+
device_map[k] = "cuda:0"
|
| 102 |
+
else:
|
| 103 |
+
first_device = device_map.get(same_device_modules[0])
|
| 104 |
+
for k in same_device_modules:
|
| 105 |
+
if k in device_map:
|
| 106 |
+
device_map[k] = first_device
|
| 107 |
+
|
| 108 |
+
model = load_checkpoint_and_dispatch(
|
| 109 |
+
model,
|
| 110 |
+
checkpoint=os.path.join(model_path, "ema.safetensors"),
|
| 111 |
+
device_map=device_map,
|
| 112 |
+
offload_buffers=True,
|
| 113 |
+
offload_folder="offload",
|
| 114 |
+
dtype=torch.bfloat16,
|
| 115 |
+
force_hooks=True,
|
| 116 |
+
).eval()
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# Inferencer Preparing
|
| 120 |
+
inferencer = InterleaveInferencer(
|
| 121 |
+
model=model,
|
| 122 |
+
vae_model=vae_model,
|
| 123 |
+
tokenizer=tokenizer,
|
| 124 |
+
vae_transform=vae_transform,
|
| 125 |
+
vit_transform=vit_transform,
|
| 126 |
+
new_token_ids=new_token_ids,
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
def set_seed(seed):
|
| 130 |
+
"""Set random seeds for reproducibility"""
|
| 131 |
+
if seed > 0:
|
| 132 |
+
random.seed(seed)
|
| 133 |
+
np.random.seed(seed)
|
| 134 |
+
torch.manual_seed(seed)
|
| 135 |
+
if torch.cuda.is_available():
|
| 136 |
+
torch.cuda.manual_seed(seed)
|
| 137 |
+
torch.cuda.manual_seed_all(seed)
|
| 138 |
+
torch.backends.cudnn.deterministic = True
|
| 139 |
+
torch.backends.cudnn.benchmark = False
|
| 140 |
+
return seed
|
| 141 |
+
|
| 142 |
+
# Text to Image function with thinking option and hyperparameters
|
| 143 |
+
@spaces.GPU(duration=90)
|
| 144 |
+
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
|
| 145 |
+
timestep_shift=3.0, num_timesteps=50,
|
| 146 |
+
cfg_renorm_min=1.0, cfg_renorm_type="global",
|
| 147 |
+
max_think_token_n=1024, do_sample=False, text_temperature=0.3,
|
| 148 |
+
seed=0, image_ratio="1:1"):
|
| 149 |
+
# Set seed for reproducibility
|
| 150 |
+
set_seed(seed)
|
| 151 |
+
|
| 152 |
+
if image_ratio == "1:1":
|
| 153 |
+
image_shapes = (1024, 1024)
|
| 154 |
+
elif image_ratio == "4:3":
|
| 155 |
+
image_shapes = (768, 1024)
|
| 156 |
+
elif image_ratio == "3:4":
|
| 157 |
+
image_shapes = (1024, 768)
|
| 158 |
+
elif image_ratio == "16:9":
|
| 159 |
+
image_shapes = (576, 1024)
|
| 160 |
+
elif image_ratio == "9:16":
|
| 161 |
+
image_shapes = (1024, 576)
|
| 162 |
+
|
| 163 |
+
# Set hyperparameters
|
| 164 |
+
inference_hyper = dict(
|
| 165 |
+
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
| 166 |
+
do_sample=do_sample if show_thinking else False,
|
| 167 |
+
text_temperature=text_temperature if show_thinking else 0.3,
|
| 168 |
+
cfg_text_scale=cfg_text_scale,
|
| 169 |
+
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
| 170 |
+
timestep_shift=timestep_shift,
|
| 171 |
+
num_timesteps=num_timesteps,
|
| 172 |
+
cfg_renorm_min=cfg_renorm_min,
|
| 173 |
+
cfg_renorm_type=cfg_renorm_type,
|
| 174 |
+
image_shapes=image_shapes,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Call inferencer with or without think parameter based on user choice
|
| 178 |
+
result = inferencer(text=prompt, think=show_thinking, **inference_hyper)
|
| 179 |
+
return result["image"], result.get("text", None)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# Image Understanding function with thinking option and hyperparameters
|
| 183 |
+
@spaces.GPU(duration=90)
|
| 184 |
+
def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
|
| 185 |
+
do_sample=False, text_temperature=0.3, max_new_tokens=512):
|
| 186 |
+
if image is None:
|
| 187 |
+
return "Please upload an image."
|
| 188 |
+
|
| 189 |
+
if isinstance(image, np.ndarray):
|
| 190 |
+
image = Image.fromarray(image)
|
| 191 |
+
|
| 192 |
+
image = pil_img2rgb(image)
|
| 193 |
+
|
| 194 |
+
# Set hyperparameters
|
| 195 |
+
inference_hyper = dict(
|
| 196 |
+
do_sample=do_sample,
|
| 197 |
+
text_temperature=text_temperature,
|
| 198 |
+
max_think_token_n=max_new_tokens, # Set max_length
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# Use show_thinking parameter to control thinking process
|
| 202 |
+
result = inferencer(image=image, text=prompt, think=show_thinking,
|
| 203 |
+
understanding_output=True, **inference_hyper)
|
| 204 |
+
return result["text"]
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# Image Editing function with thinking option and hyperparameters
|
| 208 |
+
@spaces.GPU(duration=90)
|
| 209 |
+
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
|
| 210 |
+
cfg_img_scale=2.0, cfg_interval=0.0,
|
| 211 |
+
timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
|
| 212 |
+
cfg_renorm_type="text_channel", max_think_token_n=1024,
|
| 213 |
+
do_sample=False, text_temperature=0.3, seed=0):
|
| 214 |
+
# Set seed for reproducibility
|
| 215 |
+
set_seed(seed)
|
| 216 |
+
|
| 217 |
+
if image is None:
|
| 218 |
+
return "Please upload an image.", ""
|
| 219 |
+
|
| 220 |
+
if isinstance(image, np.ndarray):
|
| 221 |
+
image = Image.fromarray(image)
|
| 222 |
+
|
| 223 |
+
image = pil_img2rgb(image)
|
| 224 |
+
|
| 225 |
+
# Set hyperparameters
|
| 226 |
+
inference_hyper = dict(
|
| 227 |
+
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
| 228 |
+
do_sample=do_sample if show_thinking else False,
|
| 229 |
+
text_temperature=text_temperature if show_thinking else 0.3,
|
| 230 |
+
cfg_text_scale=cfg_text_scale,
|
| 231 |
+
cfg_img_scale=cfg_img_scale,
|
| 232 |
+
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
| 233 |
+
timestep_shift=timestep_shift,
|
| 234 |
+
num_timesteps=num_timesteps,
|
| 235 |
+
cfg_renorm_min=cfg_renorm_min,
|
| 236 |
+
cfg_renorm_type=cfg_renorm_type,
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
# Include thinking parameter based on user choice
|
| 240 |
+
result = inferencer(image=image, text=prompt, think=show_thinking, **inference_hyper)
|
| 241 |
+
return result["image"], result.get("text", "")
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
# Helper function to load example images
|
| 245 |
+
def load_example_image(image_path):
|
| 246 |
+
try:
|
| 247 |
+
return Image.open(image_path)
|
| 248 |
+
except Exception as e:
|
| 249 |
+
print(f"Error loading example image: {e}")
|
| 250 |
+
return None
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
# Gradio UI
|
| 254 |
+
with gr.Blocks() as demo:
|
| 255 |
+
gr.Markdown("""
|
| 256 |
+
<div>
|
| 257 |
+
<img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
|
| 258 |
+
</div>
|
| 259 |
+
""")
|
| 260 |
+
|
| 261 |
+
with gr.Tab("📝 Text to Image"):
|
| 262 |
+
txt_input = gr.Textbox(
|
| 263 |
+
label="Prompt",
|
| 264 |
+
value="A female cosplayer portraying an ethereal fairy or elf, wearing a flowing dress made of delicate fabrics in soft, mystical colors like emerald green and silver. She has pointed ears, a gentle, enchanting expression, and her outfit is adorned with sparkling jewels and intricate patterns. The background is a magical forest with glowing plants, mystical creatures, and a serene atmosphere."
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
with gr.Row():
|
| 268 |
+
show_thinking = gr.Checkbox(label="Thinking", value=False)
|
| 269 |
+
|
| 270 |
+
# Add hyperparameter controls in an accordion
|
| 271 |
+
with gr.Accordion("Inference Hyperparameters", open=False):
|
| 272 |
+
# 参数一排两个布局
|
| 273 |
+
with gr.Group():
|
| 274 |
+
with gr.Row():
|
| 275 |
+
seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1,
|
| 276 |
+
label="Seed", info="0 for random seed, positive for reproducible results")
|
| 277 |
+
image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"],
|
| 278 |
+
value="1:1", label="Image Ratio",
|
| 279 |
+
info="The longer size is fixed to 1024")
|
| 280 |
+
|
| 281 |
+
with gr.Row():
|
| 282 |
+
cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
|
| 283 |
+
label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0)")
|
| 284 |
+
cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1,
|
| 285 |
+
label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
|
| 286 |
+
|
| 287 |
+
with gr.Row():
|
| 288 |
+
cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
|
| 289 |
+
value="global", label="CFG Renorm Type",
|
| 290 |
+
info="If the genrated image is blurry, use 'global'")
|
| 291 |
+
cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
| 292 |
+
label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
|
| 293 |
+
|
| 294 |
+
with gr.Row():
|
| 295 |
+
num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
|
| 296 |
+
label="Timesteps", info="Total denoising steps")
|
| 297 |
+
timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, interactive=True,
|
| 298 |
+
label="Timestep Shift", info="Higher values for layout, lower for details")
|
| 299 |
+
|
| 300 |
+
# Thinking parameters in a single row
|
| 301 |
+
thinking_params = gr.Group(visible=False)
|
| 302 |
+
with thinking_params:
|
| 303 |
+
with gr.Row():
|
| 304 |
+
do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
| 305 |
+
max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
|
| 306 |
+
label="Max Think Tokens", info="Maximum number of tokens for thinking")
|
| 307 |
+
text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
|
| 308 |
+
label="Temperature", info="Controls randomness in text generation")
|
| 309 |
+
|
| 310 |
+
thinking_output = gr.Textbox(label="Thinking Process", visible=False)
|
| 311 |
+
img_output = gr.Image(label="Generated Image")
|
| 312 |
+
gen_btn = gr.Button("Generate", variant="primary")
|
| 313 |
+
|
| 314 |
+
# Dynamically show/hide thinking process box and parameters
|
| 315 |
+
def update_thinking_visibility(show):
|
| 316 |
+
return gr.update(visible=show), gr.update(visible=show)
|
| 317 |
+
|
| 318 |
+
show_thinking.change(
|
| 319 |
+
fn=update_thinking_visibility,
|
| 320 |
+
inputs=[show_thinking],
|
| 321 |
+
outputs=[thinking_output, thinking_params]
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
# Process function based on thinking option and hyperparameters
|
| 325 |
+
def process_text_to_image(prompt, show_thinking, cfg_text_scale,
|
| 326 |
+
cfg_interval, timestep_shift,
|
| 327 |
+
num_timesteps, cfg_renorm_min, cfg_renorm_type,
|
| 328 |
+
max_think_token_n, do_sample, text_temperature, seed, image_ratio):
|
| 329 |
+
image, thinking = text_to_image(
|
| 330 |
+
prompt, show_thinking, cfg_text_scale, cfg_interval,
|
| 331 |
+
timestep_shift, num_timesteps,
|
| 332 |
+
cfg_renorm_min, cfg_renorm_type,
|
| 333 |
+
max_think_token_n, do_sample, text_temperature, seed, image_ratio
|
| 334 |
+
)
|
| 335 |
+
return image, thinking if thinking else ""
|
| 336 |
+
|
| 337 |
+
gr.on(
|
| 338 |
+
triggers=[gen_btn.click, txt_input.submit],
|
| 339 |
+
fn=process_text_to_image,
|
| 340 |
+
inputs=[
|
| 341 |
+
txt_input, show_thinking, cfg_text_scale,
|
| 342 |
+
cfg_interval, timestep_shift,
|
| 343 |
+
num_timesteps, cfg_renorm_min, cfg_renorm_type,
|
| 344 |
+
max_think_token_n, do_sample, text_temperature, seed, image_ratio
|
| 345 |
+
],
|
| 346 |
+
outputs=[img_output, thinking_output]
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
with gr.Tab("🖌️ Image Edit"):
|
| 350 |
+
with gr.Row():
|
| 351 |
+
with gr.Column(scale=1):
|
| 352 |
+
edit_image_input = gr.Image(label="Input Image", value=load_example_image('test_images/women.jpg'))
|
| 353 |
+
edit_prompt = gr.Textbox(
|
| 354 |
+
label="Prompt",
|
| 355 |
+
value="She boards a modern subway, quietly reading a folded newspaper, wearing the same clothes."
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
with gr.Column(scale=1):
|
| 359 |
+
edit_image_output = gr.Image(label="Result")
|
| 360 |
+
edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
|
| 361 |
+
|
| 362 |
+
with gr.Row():
|
| 363 |
+
edit_show_thinking = gr.Checkbox(label="Thinking", value=False)
|
| 364 |
+
|
| 365 |
+
# Add hyperparameter controls in an accordion
|
| 366 |
+
with gr.Accordion("Inference Hyperparameters", open=False):
|
| 367 |
+
with gr.Group():
|
| 368 |
+
with gr.Row():
|
| 369 |
+
edit_seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, interactive=True,
|
| 370 |
+
label="Seed", info="0 for random seed, positive for reproducible results")
|
| 371 |
+
edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
|
| 372 |
+
label="CFG Text Scale", info="Controls how strongly the model follows the text prompt")
|
| 373 |
+
|
| 374 |
+
with gr.Row():
|
| 375 |
+
edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, interactive=True,
|
| 376 |
+
label="CFG Image Scale", info="Controls how much the model preserves input image details")
|
| 377 |
+
edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
| 378 |
+
label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
|
| 379 |
+
|
| 380 |
+
with gr.Row():
|
| 381 |
+
edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
|
| 382 |
+
value="text_channel", label="CFG Renorm Type",
|
| 383 |
+
info="If the genrated image is blurry, use 'global")
|
| 384 |
+
edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
| 385 |
+
label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
|
| 386 |
+
|
| 387 |
+
with gr.Row():
|
| 388 |
+
edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
|
| 389 |
+
label="Timesteps", info="Total denoising steps")
|
| 390 |
+
edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, interactive=True,
|
| 391 |
+
label="Timestep Shift", info="Higher values for layout, lower for details")
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
# Thinking parameters in a single row
|
| 395 |
+
edit_thinking_params = gr.Group(visible=False)
|
| 396 |
+
with edit_thinking_params:
|
| 397 |
+
with gr.Row():
|
| 398 |
+
edit_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
| 399 |
+
edit_max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
|
| 400 |
+
label="Max Think Tokens", info="Maximum number of tokens for thinking")
|
| 401 |
+
edit_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
|
| 402 |
+
label="Temperature", info="Controls randomness in text generation")
|
| 403 |
+
|
| 404 |
+
edit_btn = gr.Button("Submit", variant="primary")
|
| 405 |
+
|
| 406 |
+
# Dynamically show/hide thinking process box for editing
|
| 407 |
+
def update_edit_thinking_visibility(show):
|
| 408 |
+
return gr.update(visible=show), gr.update(visible=show)
|
| 409 |
+
|
| 410 |
+
edit_show_thinking.change(
|
| 411 |
+
fn=update_edit_thinking_visibility,
|
| 412 |
+
inputs=[edit_show_thinking],
|
| 413 |
+
outputs=[edit_thinking_output, edit_thinking_params]
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
# Process editing with thinking option and hyperparameters
|
| 417 |
+
def process_edit_image(image, prompt, show_thinking, cfg_text_scale,
|
| 418 |
+
cfg_img_scale, cfg_interval,
|
| 419 |
+
timestep_shift, num_timesteps, cfg_renorm_min,
|
| 420 |
+
cfg_renorm_type, max_think_token_n, do_sample,
|
| 421 |
+
text_temperature, seed):
|
| 422 |
+
edited_image, thinking = edit_image(
|
| 423 |
+
image, prompt, show_thinking, cfg_text_scale, cfg_img_scale,
|
| 424 |
+
cfg_interval, timestep_shift,
|
| 425 |
+
num_timesteps, cfg_renorm_min, cfg_renorm_type,
|
| 426 |
+
max_think_token_n, do_sample, text_temperature, seed
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
return edited_image, thinking if thinking else ""
|
| 430 |
+
|
| 431 |
+
gr.on(
|
| 432 |
+
triggers=[edit_btn.click, edit_prompt.submit],
|
| 433 |
+
fn=process_edit_image,
|
| 434 |
+
inputs=[
|
| 435 |
+
edit_image_input, edit_prompt, edit_show_thinking,
|
| 436 |
+
edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval,
|
| 437 |
+
edit_timestep_shift, edit_num_timesteps,
|
| 438 |
+
edit_cfg_renorm_min, edit_cfg_renorm_type,
|
| 439 |
+
edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed
|
| 440 |
+
],
|
| 441 |
+
outputs=[edit_image_output, edit_thinking_output]
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
with gr.Tab("🖼️ Image Understanding"):
|
| 445 |
+
with gr.Row():
|
| 446 |
+
with gr.Column(scale=1):
|
| 447 |
+
img_input = gr.Image(label="Input Image", value=load_example_image('test_images/meme.jpg'))
|
| 448 |
+
understand_prompt = gr.Textbox(
|
| 449 |
+
label="Prompt",
|
| 450 |
+
value="Can someone explain what's funny about this meme??"
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
with gr.Column(scale=1):
|
| 454 |
+
txt_output = gr.Textbox(label="Result", lines=20)
|
| 455 |
+
|
| 456 |
+
with gr.Row():
|
| 457 |
+
understand_show_thinking = gr.Checkbox(label="Thinking", value=False)
|
| 458 |
+
|
| 459 |
+
# Add hyperparameter controls in an accordion
|
| 460 |
+
with gr.Accordion("Inference Hyperparameters", open=False):
|
| 461 |
+
with gr.Row():
|
| 462 |
+
understand_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
| 463 |
+
understand_text_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, interactive=True,
|
| 464 |
+
label="Temperature", info="Controls randomness in text generation (0=deterministic, 1=creative)")
|
| 465 |
+
understand_max_new_tokens = gr.Slider(minimum=64, maximum=4096, value=512, step=64, interactive=True,
|
| 466 |
+
label="Max New Tokens", info="Maximum length of generated text, including potential thinking")
|
| 467 |
+
|
| 468 |
+
img_understand_btn = gr.Button("Submit", variant="primary")
|
| 469 |
+
|
| 470 |
+
# Process understanding with thinking option and hyperparameters
|
| 471 |
+
def process_understanding(image, prompt, show_thinking, do_sample,
|
| 472 |
+
text_temperature, max_new_tokens):
|
| 473 |
+
result = image_understanding(
|
| 474 |
+
image, prompt, show_thinking, do_sample,
|
| 475 |
+
text_temperature, max_new_tokens
|
| 476 |
+
)
|
| 477 |
+
return result
|
| 478 |
+
|
| 479 |
+
gr.on(
|
| 480 |
+
triggers=[img_understand_btn.click, understand_prompt.submit],
|
| 481 |
+
fn=process_understanding,
|
| 482 |
+
inputs=[
|
| 483 |
+
img_input, understand_prompt, understand_show_thinking,
|
| 484 |
+
understand_do_sample, understand_text_temperature, understand_max_new_tokens
|
| 485 |
+
],
|
| 486 |
+
outputs=txt_output
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
gr.Markdown("""
|
| 490 |
+
<div style="display: flex; justify-content: flex-start; flex-wrap: wrap; gap: 10px;">
|
| 491 |
+
<a href="https://bagel-ai.org/">
|
| 492 |
+
<img
|
| 493 |
+
src="https://img.shields.io/badge/BAGEL-Website-0A66C2?logo=safari&logoColor=white"
|
| 494 |
+
alt="BAGEL Website"
|
| 495 |
+
/>
|
| 496 |
+
</a>
|
| 497 |
+
<a href="https://arxiv.org/abs/2505.14683">
|
| 498 |
+
<img
|
| 499 |
+
src="https://img.shields.io/badge/BAGEL-Paper-red?logo=arxiv&logoColor=red"
|
| 500 |
+
alt="BAGEL Paper on arXiv"
|
| 501 |
+
/>
|
| 502 |
+
</a>
|
| 503 |
+
<a href="https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT">
|
| 504 |
+
<img
|
| 505 |
+
src="https://img.shields.io/badge/BAGEL-Hugging%20Face-orange?logo=huggingface&logoColor=yellow"
|
| 506 |
+
alt="BAGEL on Hugging Face"
|
| 507 |
+
/>
|
| 508 |
+
</a>
|
| 509 |
+
<a href="https://demo.bagel-ai.org/">
|
| 510 |
+
<img
|
| 511 |
+
src="https://img.shields.io/badge/BAGEL-Demo-blue?logo=googleplay&logoColor=blue"
|
| 512 |
+
alt="BAGEL Demo"
|
| 513 |
+
/>
|
| 514 |
+
</a>
|
| 515 |
+
<a href="https://discord.gg/Z836xxzy">
|
| 516 |
+
<img
|
| 517 |
+
src="https://img.shields.io/badge/BAGEL-Discord-5865F2?logo=discord&logoColor=purple"
|
| 518 |
+
alt="BAGEL Discord"
|
| 519 |
+
/>
|
| 520 |
+
</a>
|
| 521 |
+
<a href="mailto:[email protected]">
|
| 522 |
+
<img
|
| 523 |
+
src="https://img.shields.io/badge/BAGEL-Email-D14836?logo=gmail&logoColor=red"
|
| 524 |
+
alt="BAGEL Email"
|
| 525 |
+
/>
|
| 526 |
+
</a>
|
| 527 |
+
</div>
|
| 528 |
+
""")
|
| 529 |
+
|
| 530 |
+
demo.launch()
|
data/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
data/data_utils.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
import random
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from torch.nn.attention.flex_attention import or_masks, and_masks
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def create_sparse_mask(document_lens, split_lens, attn_modes, device):
|
| 14 |
+
def causal_mask(b, h, q_idx, kv_idx):
|
| 15 |
+
return q_idx >= kv_idx
|
| 16 |
+
|
| 17 |
+
def full_and_noise_mask(b, h, q_idx, kv_idx):
|
| 18 |
+
return (full_and_noise_seq_id[q_idx] == full_and_noise_seq_id[kv_idx]) & (full_and_noise_seq_id[q_idx] >= 0)
|
| 19 |
+
|
| 20 |
+
def remove_noise_mask(b, h, q_idx, kv_idx):
|
| 21 |
+
return (~((noise_seq_id[kv_idx] >= 0) & (noise_seq_id[q_idx] != noise_seq_id[kv_idx])))
|
| 22 |
+
|
| 23 |
+
def sample_mask(b, h, q_idx, kv_idx):
|
| 24 |
+
return document_id[q_idx] == document_id[kv_idx]
|
| 25 |
+
|
| 26 |
+
full_and_noise_tmp = []
|
| 27 |
+
noise_tmp = []
|
| 28 |
+
|
| 29 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 30 |
+
value = i if model in ['full', 'noise'] else -1
|
| 31 |
+
full_and_noise_tmp.extend([value] * length)
|
| 32 |
+
value_noise = i if model == 'noise' else -1
|
| 33 |
+
noise_tmp.extend([value_noise] * length)
|
| 34 |
+
|
| 35 |
+
full_and_noise_seq_id = torch.Tensor(full_and_noise_tmp).to(device)
|
| 36 |
+
noise_seq_id = torch.Tensor(noise_tmp).to(device)
|
| 37 |
+
|
| 38 |
+
document_id = torch.cat([torch.full((l,), i) for i, l in enumerate(document_lens, start=1)]).to(device)
|
| 39 |
+
|
| 40 |
+
return and_masks(or_masks(causal_mask, full_and_noise_mask), remove_noise_mask, sample_mask)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def patchify(image, patch_size):
|
| 44 |
+
p = patch_size
|
| 45 |
+
c, h, w = image.shape
|
| 46 |
+
assert h % p == 0 and w % p == 0
|
| 47 |
+
image = image.reshape(c, h // p, p, w // p, p)
|
| 48 |
+
image = torch.einsum("chpwq->hwpqc", image)
|
| 49 |
+
image = image.reshape(-1, p**2 * c)
|
| 50 |
+
return image
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def get_flattened_position_ids_extrapolate(img_h, img_w, patch_size, max_num_patches_per_side):
|
| 54 |
+
num_patches_h, num_patches_w = img_h // patch_size, img_w // patch_size
|
| 55 |
+
coords_h = torch.arange(0, num_patches_h)
|
| 56 |
+
coords_w = torch.arange(0, num_patches_w)
|
| 57 |
+
pos_ids = (coords_h[:, None] * max_num_patches_per_side + coords_w).flatten()
|
| 58 |
+
return pos_ids
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_flattened_position_ids_interpolate(img_h, img_w, patch_size, max_num_patches_per_side):
|
| 62 |
+
num_patches_h, num_patches_w = img_h // patch_size, img_w // patch_size
|
| 63 |
+
boundaries = torch.arange(1 / max_num_patches_per_side, 1.0, 1 / max_num_patches_per_side)
|
| 64 |
+
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / num_patches_h)
|
| 65 |
+
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / num_patches_w)
|
| 66 |
+
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
|
| 67 |
+
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
|
| 68 |
+
pos_ids = (bucket_coords_h[:, None] * max_num_patches_per_side + bucket_coords_w).flatten()
|
| 69 |
+
return pos_ids
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def prepare_attention_mask_per_sample(split_lens, attn_modes, device="cpu"):
|
| 73 |
+
"""
|
| 74 |
+
nested_split_lens: A list of N lists of ints. Each int indicates the length of a split within
|
| 75 |
+
a sample, where each sample contains multiple splits with different attn modes.
|
| 76 |
+
nested_attn_modes: whether to use full attn in each split.
|
| 77 |
+
"""
|
| 78 |
+
sample_len = sum(split_lens)
|
| 79 |
+
attention_mask = torch.zeros((sample_len, sample_len), dtype=torch.bool, device=device)
|
| 80 |
+
|
| 81 |
+
csum = 0
|
| 82 |
+
for s, attn_mode in zip(split_lens, attn_modes):
|
| 83 |
+
assert attn_mode in ['causal', 'full', 'noise']
|
| 84 |
+
if attn_mode == "causal":
|
| 85 |
+
attention_mask[csum:csum + s, csum:csum + s] = torch.ones((s, s), device=device).tril()
|
| 86 |
+
attention_mask[csum:csum + s, :csum] = 1
|
| 87 |
+
else:
|
| 88 |
+
attention_mask[csum:csum + s, csum:csum + s] = torch.ones((s, s))
|
| 89 |
+
attention_mask[csum:csum + s, :csum] = 1
|
| 90 |
+
csum += s
|
| 91 |
+
|
| 92 |
+
csum = 0
|
| 93 |
+
for s, attn_mode in zip(split_lens, attn_modes):
|
| 94 |
+
if attn_mode == "noise":
|
| 95 |
+
attention_mask[:, csum : csum + s] = torch.zeros((sample_len, s))
|
| 96 |
+
attention_mask[csum : csum + s, csum : csum + s] = torch.ones((s, s))
|
| 97 |
+
csum += s
|
| 98 |
+
|
| 99 |
+
attention_mask = torch.zeros_like(attention_mask, dtype=torch.float).masked_fill_(
|
| 100 |
+
~attention_mask, float("-inf")
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
return attention_mask
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def split_integer_exp_decay(S, ng_sample_decay=1.0):
|
| 107 |
+
if ng_sample_decay == 1.0:
|
| 108 |
+
N = random.randint(1, S)
|
| 109 |
+
else:
|
| 110 |
+
base = (1 - ng_sample_decay) / (1 - math.pow(ng_sample_decay, S))
|
| 111 |
+
p = [base * math.pow(ng_sample_decay, i) for i in range(S)]
|
| 112 |
+
N = random.choices(list(range(1, S + 1)), p, k=1)[0]
|
| 113 |
+
cumsum = [0] + sorted(random.sample(range(1, S), N - 1)) + [S]
|
| 114 |
+
result = [cumsum[i+1] - cumsum[i] for i in range(len(cumsum) - 1)]
|
| 115 |
+
return result, cumsum
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def pil_img2rgb(image):
|
| 119 |
+
if image.mode == "RGBA" or image.info.get("transparency", None) is not None:
|
| 120 |
+
image = image.convert("RGBA")
|
| 121 |
+
white = Image.new(mode="RGB", size=image.size, color=(255, 255, 255))
|
| 122 |
+
white.paste(image, mask=image.split()[3])
|
| 123 |
+
image = white
|
| 124 |
+
else:
|
| 125 |
+
image = image.convert("RGB")
|
| 126 |
+
|
| 127 |
+
return image
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def add_special_tokens(tokenizer):
|
| 131 |
+
all_special_tokens = []
|
| 132 |
+
for k, v in tokenizer.special_tokens_map.items():
|
| 133 |
+
if isinstance(v, str):
|
| 134 |
+
all_special_tokens.append(v)
|
| 135 |
+
elif isinstance(v, list):
|
| 136 |
+
all_special_tokens += v
|
| 137 |
+
|
| 138 |
+
new_tokens = []
|
| 139 |
+
|
| 140 |
+
if '<|im_start|>' not in all_special_tokens:
|
| 141 |
+
new_tokens.append('<|im_start|>')
|
| 142 |
+
|
| 143 |
+
if '<|im_end|>' not in all_special_tokens:
|
| 144 |
+
new_tokens.append('<|im_end|>')
|
| 145 |
+
|
| 146 |
+
if '<|vision_start|>' not in all_special_tokens:
|
| 147 |
+
new_tokens.append('<|vision_start|>')
|
| 148 |
+
|
| 149 |
+
if '<|vision_end|>' not in all_special_tokens:
|
| 150 |
+
new_tokens.append('<|vision_end|>')
|
| 151 |
+
|
| 152 |
+
num_new_tokens = tokenizer.add_tokens(new_tokens)
|
| 153 |
+
bos_token_id = tokenizer.convert_tokens_to_ids('<|im_start|>')
|
| 154 |
+
eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>')
|
| 155 |
+
start_of_image = tokenizer.convert_tokens_to_ids('<|vision_start|>')
|
| 156 |
+
end_of_image = tokenizer.convert_tokens_to_ids('<|vision_end|>')
|
| 157 |
+
|
| 158 |
+
new_token_ids = dict(
|
| 159 |
+
bos_token_id=bos_token_id,
|
| 160 |
+
eos_token_id=eos_token_id,
|
| 161 |
+
start_of_image=start_of_image,
|
| 162 |
+
end_of_image=end_of_image,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
return tokenizer, new_token_ids, num_new_tokens
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def len2weight(x, loss_reduction='square'):
|
| 169 |
+
if x == 0:
|
| 170 |
+
return x
|
| 171 |
+
if loss_reduction == 'token':
|
| 172 |
+
return 1
|
| 173 |
+
if loss_reduction == 'sample':
|
| 174 |
+
return 1 / x
|
| 175 |
+
if loss_reduction == 'square':
|
| 176 |
+
return 1 / (x ** 0.5)
|
| 177 |
+
raise NotImplementedError(loss_reduction)
|
data/transforms.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
import random
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
import cv2
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from torchvision.transforms import functional as F
|
| 12 |
+
from torchvision.transforms import InterpolationMode
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class MaxLongEdgeMinShortEdgeResize(torch.nn.Module):
|
| 16 |
+
"""Resize the input image so that its longest side and shortest side are within a specified range,
|
| 17 |
+
ensuring that both sides are divisible by a specified stride.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
max_size (int): Maximum size for the longest edge of the image.
|
| 21 |
+
min_size (int): Minimum size for the shortest edge of the image.
|
| 22 |
+
stride (int): Value by which the height and width of the image must be divisible.
|
| 23 |
+
max_pixels (int): Maximum pixels for the full image.
|
| 24 |
+
interpolation (InterpolationMode): Desired interpolation enum defined by
|
| 25 |
+
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
|
| 26 |
+
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
|
| 27 |
+
``InterpolationMode.BILINEAR``, and ``InterpolationMode.BICUBIC`` are supported.
|
| 28 |
+
The corresponding Pillow integer constants, e.g., ``PIL.Image.BILINEAR`` are also accepted.
|
| 29 |
+
antialias (bool, optional): Whether to apply antialiasing (default is True).
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
max_size: int,
|
| 35 |
+
min_size: int,
|
| 36 |
+
stride: int,
|
| 37 |
+
max_pixels: int,
|
| 38 |
+
interpolation=InterpolationMode.BICUBIC,
|
| 39 |
+
antialias=True
|
| 40 |
+
):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.max_size = max_size
|
| 43 |
+
self.min_size = min_size
|
| 44 |
+
self.stride = stride
|
| 45 |
+
self.max_pixels = max_pixels
|
| 46 |
+
self.interpolation = interpolation
|
| 47 |
+
self.antialias = antialias
|
| 48 |
+
|
| 49 |
+
def _make_divisible(self, value, stride):
|
| 50 |
+
"""Ensure the value is divisible by the stride."""
|
| 51 |
+
return max(stride, int(round(value / stride) * stride))
|
| 52 |
+
|
| 53 |
+
def _apply_scale(self, width, height, scale):
|
| 54 |
+
new_width = round(width * scale)
|
| 55 |
+
new_height = round(height * scale)
|
| 56 |
+
new_width = self._make_divisible(new_width, self.stride)
|
| 57 |
+
new_height = self._make_divisible(new_height, self.stride)
|
| 58 |
+
return new_width, new_height
|
| 59 |
+
|
| 60 |
+
def forward(self, img, img_num=1):
|
| 61 |
+
"""
|
| 62 |
+
Args:
|
| 63 |
+
img (PIL Image): Image to be resized.
|
| 64 |
+
img_num (int): Number of images, used to change max_tokens.
|
| 65 |
+
Returns:
|
| 66 |
+
PIL Image or Tensor: Rescaled image with divisible dimensions.
|
| 67 |
+
"""
|
| 68 |
+
if isinstance(img, torch.Tensor):
|
| 69 |
+
height, width = img.shape[-2:]
|
| 70 |
+
else:
|
| 71 |
+
width, height = img.size
|
| 72 |
+
|
| 73 |
+
scale = min(self.max_size / max(width, height), 1.0)
|
| 74 |
+
scale = max(scale, self.min_size / min(width, height))
|
| 75 |
+
new_width, new_height = self._apply_scale(width, height, scale)
|
| 76 |
+
|
| 77 |
+
# Ensure the number of pixels does not exceed max_pixels
|
| 78 |
+
if new_width * new_height > self.max_pixels / img_num:
|
| 79 |
+
scale = self.max_pixels / img_num / (new_width * new_height)
|
| 80 |
+
new_width, new_height = self._apply_scale(new_width, new_height, scale)
|
| 81 |
+
|
| 82 |
+
# Ensure longest edge does not exceed max_size
|
| 83 |
+
if max(new_width, new_height) > self.max_size:
|
| 84 |
+
scale = self.max_size / max(new_width, new_height)
|
| 85 |
+
new_width, new_height = self._apply_scale(new_width, new_height, scale)
|
| 86 |
+
|
| 87 |
+
return F.resize(img, (new_height, new_width), self.interpolation, antialias=self.antialias)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class ImageTransform:
|
| 91 |
+
def __init__(
|
| 92 |
+
self,
|
| 93 |
+
max_image_size,
|
| 94 |
+
min_image_size,
|
| 95 |
+
image_stride,
|
| 96 |
+
max_pixels=14*14*9*1024,
|
| 97 |
+
image_mean=[0.5, 0.5, 0.5],
|
| 98 |
+
image_std=[0.5, 0.5, 0.5]
|
| 99 |
+
):
|
| 100 |
+
self.stride = image_stride
|
| 101 |
+
|
| 102 |
+
self.resize_transform = MaxLongEdgeMinShortEdgeResize(
|
| 103 |
+
max_size=max_image_size,
|
| 104 |
+
min_size=min_image_size,
|
| 105 |
+
stride=image_stride,
|
| 106 |
+
max_pixels=max_pixels,
|
| 107 |
+
)
|
| 108 |
+
self.to_tensor_transform = transforms.ToTensor()
|
| 109 |
+
self.normalize_transform = transforms.Normalize(mean=image_mean, std=image_std, inplace=True)
|
| 110 |
+
|
| 111 |
+
def __call__(self, img, img_num=1):
|
| 112 |
+
img = self.resize_transform(img, img_num=img_num)
|
| 113 |
+
img = self.to_tensor_transform(img)
|
| 114 |
+
img = self.normalize_transform(img)
|
| 115 |
+
return img
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def decolorization(image):
|
| 119 |
+
gray_image = image.convert('L')
|
| 120 |
+
return Image.merge(image.mode, [gray_image] * 3) if image.mode in ('RGB', 'L') else gray_image
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def downscale(image, scale_factor):
|
| 124 |
+
new_width = int(round(image.width * scale_factor))
|
| 125 |
+
new_height = int(round(image.height * scale_factor))
|
| 126 |
+
new_width = max(1, new_width)
|
| 127 |
+
new_height = max(1, new_height)
|
| 128 |
+
return image.resize((new_width, new_height), resample=Image.BICUBIC)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def crop(image, crop_factors):
|
| 132 |
+
target_h, target_w = crop_factors
|
| 133 |
+
img_w, img_h = image.size
|
| 134 |
+
|
| 135 |
+
if target_h > img_h or target_w > img_w:
|
| 136 |
+
raise ValueError("Crop size exceeds image dimensions")
|
| 137 |
+
|
| 138 |
+
x = random.randint(0, img_w - target_w)
|
| 139 |
+
y = random.randint(0, img_h - target_h)
|
| 140 |
+
|
| 141 |
+
return image.crop((x, y, x + target_w, y + target_h)), [[x, y], [x + target_w, y + target_h]]
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def motion_blur_opencv(image, kernel_size=15, angle=0):
|
| 145 |
+
# 线性核
|
| 146 |
+
kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32)
|
| 147 |
+
kernel[kernel_size // 2, :] = np.ones(kernel_size, dtype=np.float32)
|
| 148 |
+
|
| 149 |
+
# 旋转核
|
| 150 |
+
center = (kernel_size / 2 - 0.5, kernel_size / 2 - 0.5)
|
| 151 |
+
M = cv2.getRotationMatrix2D(center, angle, 1)
|
| 152 |
+
rotated_kernel = cv2.warpAffine(kernel, M, (kernel_size, kernel_size))
|
| 153 |
+
|
| 154 |
+
# 归一化核
|
| 155 |
+
rotated_kernel /= rotated_kernel.sum() if rotated_kernel.sum() != 0 else 1
|
| 156 |
+
|
| 157 |
+
img = np.array(image)
|
| 158 |
+
if img.ndim == 2:
|
| 159 |
+
blurred = cv2.filter2D(img, -1, rotated_kernel, borderType=cv2.BORDER_REFLECT)
|
| 160 |
+
else:
|
| 161 |
+
# 对于彩色图像,各通道独立卷积
|
| 162 |
+
blurred = np.zeros_like(img)
|
| 163 |
+
for c in range(img.shape[2]):
|
| 164 |
+
blurred[..., c] = cv2.filter2D(img[..., c], -1, rotated_kernel, borderType=cv2.BORDER_REFLECT)
|
| 165 |
+
|
| 166 |
+
return Image.fromarray(blurred.astype(np.uint8))
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def shuffle_patch(image, num_splits, gap_size=2):
|
| 170 |
+
"""将图像分割为块(允许尺寸不整除),随机打乱后拼接,块间保留间隙"""
|
| 171 |
+
h_splits, w_splits = num_splits
|
| 172 |
+
img_w, img_h = image.size
|
| 173 |
+
|
| 174 |
+
base_patch_h = img_h // h_splits
|
| 175 |
+
patch_heights = [base_patch_h] * (h_splits - 1)
|
| 176 |
+
patch_heights.append(img_h - sum(patch_heights))
|
| 177 |
+
|
| 178 |
+
base_patch_w = img_w // w_splits
|
| 179 |
+
patch_widths = [base_patch_w] * (w_splits - 1)
|
| 180 |
+
patch_widths.append(img_w - sum(patch_widths))
|
| 181 |
+
|
| 182 |
+
patches = []
|
| 183 |
+
current_y = 0
|
| 184 |
+
for i in range(h_splits):
|
| 185 |
+
current_x = 0
|
| 186 |
+
patch_h = patch_heights[i]
|
| 187 |
+
for j in range(w_splits):
|
| 188 |
+
patch_w = patch_widths[j]
|
| 189 |
+
patch = image.crop((current_x, current_y, current_x + patch_w, current_y + patch_h))
|
| 190 |
+
patches.append(patch)
|
| 191 |
+
current_x += patch_w
|
| 192 |
+
current_y += patch_h
|
| 193 |
+
|
| 194 |
+
random.shuffle(patches)
|
| 195 |
+
|
| 196 |
+
total_width = sum(patch_widths) + (w_splits - 1) * gap_size
|
| 197 |
+
total_height = sum(patch_heights) + (h_splits - 1) * gap_size
|
| 198 |
+
new_image = Image.new(image.mode, (total_width, total_height), color=(255, 255, 255))
|
| 199 |
+
|
| 200 |
+
current_y = 0 # 当前行的起始 Y 坐标
|
| 201 |
+
patch_idx = 0 # 当前处理的块索引
|
| 202 |
+
for i in range(h_splits):
|
| 203 |
+
current_x = 0 # 当前列的起始 X 坐标
|
| 204 |
+
patch_h = patch_heights[i] # 当前行块的高度
|
| 205 |
+
for j in range(w_splits):
|
| 206 |
+
# 取出打乱后的块
|
| 207 |
+
patch = patches[patch_idx]
|
| 208 |
+
patch_w = patch_widths[j] # 当前列块的宽度
|
| 209 |
+
# 粘贴块(左上角坐标为 (current_x, current_y))
|
| 210 |
+
new_image.paste(patch, (current_x, current_y))
|
| 211 |
+
# 更新 X 坐标(下一个块的起始位置 = 当前块宽度 + 间隙)
|
| 212 |
+
current_x += patch_w + gap_size
|
| 213 |
+
patch_idx += 1
|
| 214 |
+
# 更新 Y 坐标(下一行的起始位置 = 当前行高度 + 间隙)
|
| 215 |
+
current_y += patch_h + gap_size
|
| 216 |
+
|
| 217 |
+
return new_image
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def inpainting(image, num_splits, blank_ratio=0.3, blank_color=(255, 255, 255)):
|
| 221 |
+
"""
|
| 222 |
+
图像分割后随机空白部分patch,用于inpainting任务
|
| 223 |
+
|
| 224 |
+
参数:
|
| 225 |
+
image: PIL.Image 输入图像(RGB模式)
|
| 226 |
+
h_splits: int 行分割数(垂直方向分割块数)
|
| 227 |
+
w_splits: int 列分割数(水平方向分割块数)
|
| 228 |
+
blank_ratio: float 空白patch的比例(0~1)
|
| 229 |
+
blank_color: tuple 空白区域的颜色(RGB,如白色(255,255,255))
|
| 230 |
+
|
| 231 |
+
返回:
|
| 232 |
+
PIL.Image 处理后拼接的图像
|
| 233 |
+
"""
|
| 234 |
+
h_splits, w_splits = num_splits
|
| 235 |
+
img_w, img_h = image.size
|
| 236 |
+
|
| 237 |
+
base_patch_h = img_h // h_splits
|
| 238 |
+
patch_heights = [base_patch_h] * (h_splits - 1)
|
| 239 |
+
patch_heights.append(img_h - sum(patch_heights))
|
| 240 |
+
|
| 241 |
+
base_patch_w = img_w // w_splits
|
| 242 |
+
patch_widths = [base_patch_w] * (w_splits - 1)
|
| 243 |
+
patch_widths.append(img_w - sum(patch_widths))
|
| 244 |
+
|
| 245 |
+
patches = []
|
| 246 |
+
current_y = 0
|
| 247 |
+
for i in range(h_splits):
|
| 248 |
+
current_x = 0
|
| 249 |
+
patch_h = patch_heights[i]
|
| 250 |
+
for j in range(w_splits):
|
| 251 |
+
patch_w = patch_widths[j]
|
| 252 |
+
patch = image.crop((current_x, current_y, current_x + patch_w, current_y + patch_h))
|
| 253 |
+
patches.append(patch)
|
| 254 |
+
current_x += patch_w
|
| 255 |
+
current_y += patch_h
|
| 256 |
+
|
| 257 |
+
total_patches = h_splits * w_splits
|
| 258 |
+
num_blank = int(total_patches * blank_ratio)
|
| 259 |
+
num_blank = max(0, min(num_blank, total_patches))
|
| 260 |
+
blank_indices = random.sample(range(total_patches), num_blank)
|
| 261 |
+
|
| 262 |
+
processed_patches = []
|
| 263 |
+
for idx, patch in enumerate(patches):
|
| 264 |
+
if idx in blank_indices:
|
| 265 |
+
blank_patch = Image.new("RGB", patch.size, color=blank_color)
|
| 266 |
+
processed_patches.append(blank_patch)
|
| 267 |
+
else:
|
| 268 |
+
processed_patches.append(patch)
|
| 269 |
+
|
| 270 |
+
# 创建结果图像(尺寸与原图一致)
|
| 271 |
+
result_image = Image.new("RGB", (img_w, img_h))
|
| 272 |
+
current_y = 0
|
| 273 |
+
patch_idx = 0
|
| 274 |
+
for i in range(h_splits):
|
| 275 |
+
current_x = 0
|
| 276 |
+
patch_h = patch_heights[i]
|
| 277 |
+
for j in range(w_splits):
|
| 278 |
+
# 取出处理后的patch
|
| 279 |
+
patch = processed_patches[patch_idx]
|
| 280 |
+
patch_w = patch_widths[j]
|
| 281 |
+
# 粘贴到原位置
|
| 282 |
+
result_image.paste(patch, (current_x, current_y))
|
| 283 |
+
current_x += patch_w
|
| 284 |
+
patch_idx += 1
|
| 285 |
+
current_y += patch_h
|
| 286 |
+
|
| 287 |
+
return result_image
|
inferencer.py
ADDED
|
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
from copy import deepcopy
|
| 5 |
+
from typing import List, Dict, Tuple, Optional, Union, Any
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn.attention.flex_attention import create_block_mask
|
| 13 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
|
| 16 |
+
from data.data_utils import pil_img2rgb
|
| 17 |
+
from modeling.bagel.qwen2_navit import NaiveCache
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
VLM_THINK_SYSTEM_PROMPT = '''You should first think about the reasoning process in the mind and then provide the user with the answer.
|
| 22 |
+
The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here'''
|
| 23 |
+
|
| 24 |
+
GEN_THINK_SYSTEM_PROMPT = '''You should first think about the planning process in the mind and then generate the image.
|
| 25 |
+
The planning process is enclosed within <think> </think> tags, i.e. <think> planning process here </think> image here'''
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class InterleaveInferencer:
|
| 29 |
+
def __init__(self, model, vae_model, tokenizer, vae_transform, vit_transform, new_token_ids):
|
| 30 |
+
self.model = model
|
| 31 |
+
self.vae_model = vae_model
|
| 32 |
+
self.tokenizer = tokenizer
|
| 33 |
+
self.vae_transform = vae_transform
|
| 34 |
+
self.vit_transform = vit_transform
|
| 35 |
+
self.new_token_ids = new_token_ids
|
| 36 |
+
|
| 37 |
+
def init_gen_context(self):
|
| 38 |
+
gen_context = {
|
| 39 |
+
'kv_lens': [0],
|
| 40 |
+
'ropes': [0],
|
| 41 |
+
'past_key_values': NaiveCache(self.model.config.llm_config.num_hidden_layers),
|
| 42 |
+
}
|
| 43 |
+
return gen_context
|
| 44 |
+
|
| 45 |
+
@torch.no_grad()
|
| 46 |
+
def update_context_text(self, text, gen_context):
|
| 47 |
+
# used for interleave data, currently only support 1 data inference,
|
| 48 |
+
|
| 49 |
+
past_key_values = gen_context['past_key_values']
|
| 50 |
+
kv_lens = gen_context['kv_lens']
|
| 51 |
+
ropes = gen_context['ropes']
|
| 52 |
+
generation_input, kv_lens, ropes = self.model.prepare_prompts(
|
| 53 |
+
curr_kvlens=kv_lens,
|
| 54 |
+
curr_rope=ropes,
|
| 55 |
+
prompts=[text],
|
| 56 |
+
tokenizer=self.tokenizer,
|
| 57 |
+
new_token_ids=self.new_token_ids,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
past_key_values = self.model.forward_cache_update_text(past_key_values, **generation_input)
|
| 61 |
+
gen_context['kv_lens'] = kv_lens
|
| 62 |
+
gen_context['ropes'] = ropes
|
| 63 |
+
gen_context['past_key_values'] = past_key_values
|
| 64 |
+
|
| 65 |
+
return gen_context
|
| 66 |
+
|
| 67 |
+
@torch.no_grad()
|
| 68 |
+
def update_context_image(self, image, gen_context, vae=True, vit=True):
|
| 69 |
+
# used for interleave data, currently only support 1 data inference,
|
| 70 |
+
|
| 71 |
+
assert vae or vit
|
| 72 |
+
past_key_values = gen_context['past_key_values']
|
| 73 |
+
kv_lens = gen_context['kv_lens']
|
| 74 |
+
ropes = gen_context['ropes']
|
| 75 |
+
|
| 76 |
+
if vae:
|
| 77 |
+
## update vae
|
| 78 |
+
generation_input, kv_lens, ropes = self.model.prepare_vae_images(
|
| 79 |
+
curr_kvlens=kv_lens,
|
| 80 |
+
curr_rope=ropes,
|
| 81 |
+
images=[image],
|
| 82 |
+
transforms=self.vae_transform,
|
| 83 |
+
new_token_ids=self.new_token_ids,
|
| 84 |
+
)
|
| 85 |
+
past_key_values = self.model.forward_cache_update_vae(self.vae_model, past_key_values, **generation_input)
|
| 86 |
+
|
| 87 |
+
if vit:
|
| 88 |
+
## update vit
|
| 89 |
+
generation_input, kv_lens, ropes = self.model.prepare_vit_images(
|
| 90 |
+
curr_kvlens=kv_lens,
|
| 91 |
+
curr_rope=ropes,
|
| 92 |
+
images=[image],
|
| 93 |
+
transforms=self.vit_transform,
|
| 94 |
+
new_token_ids=self.new_token_ids,
|
| 95 |
+
)
|
| 96 |
+
past_key_values = self.model.forward_cache_update_vit(past_key_values, **generation_input)
|
| 97 |
+
|
| 98 |
+
gen_context['kv_lens'] = kv_lens
|
| 99 |
+
gen_context['ropes'] = ropes
|
| 100 |
+
gen_context['past_key_values'] = past_key_values
|
| 101 |
+
|
| 102 |
+
return gen_context
|
| 103 |
+
|
| 104 |
+
@torch.no_grad()
|
| 105 |
+
def gen_image(
|
| 106 |
+
self,
|
| 107 |
+
image_shape,
|
| 108 |
+
gen_context,
|
| 109 |
+
cfg_text_scale=4.0,
|
| 110 |
+
cfg_img_scale=1.5,
|
| 111 |
+
|
| 112 |
+
cfg_text_precontext=None,
|
| 113 |
+
cfg_img_precontext=None,
|
| 114 |
+
cfg_interval=(0.4, 1.0),
|
| 115 |
+
cfg_renorm_min=0.0,
|
| 116 |
+
cfg_renorm_type="global",
|
| 117 |
+
|
| 118 |
+
num_timesteps=50,
|
| 119 |
+
timestep_shift=3.0
|
| 120 |
+
):
|
| 121 |
+
# print(cfg_renorm_type)
|
| 122 |
+
past_key_values = gen_context['past_key_values']
|
| 123 |
+
kv_lens = gen_context['kv_lens']
|
| 124 |
+
ropes = gen_context['ropes']
|
| 125 |
+
generation_input = self.model.prepare_vae_latent(
|
| 126 |
+
curr_kvlens=kv_lens,
|
| 127 |
+
curr_rope=ropes,
|
| 128 |
+
image_sizes=[image_shape],
|
| 129 |
+
new_token_ids=self.new_token_ids,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# text cfg
|
| 133 |
+
cfg_text_past_key_values = cfg_text_precontext['past_key_values']
|
| 134 |
+
kv_lens_cfg = cfg_text_precontext['kv_lens']
|
| 135 |
+
ropes_cfg = cfg_text_precontext['ropes']
|
| 136 |
+
generation_input_cfg_text = self.model.prepare_vae_latent_cfg(
|
| 137 |
+
curr_kvlens=kv_lens_cfg,
|
| 138 |
+
curr_rope=ropes_cfg,
|
| 139 |
+
image_sizes=[image_shape],
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# img cfg
|
| 143 |
+
cfg_img_past_key_values = cfg_img_precontext['past_key_values']
|
| 144 |
+
kv_lens_cfg = cfg_img_precontext['kv_lens']
|
| 145 |
+
ropes_cfg = cfg_img_precontext['ropes']
|
| 146 |
+
generation_input_cfg_img = self.model.prepare_vae_latent_cfg(
|
| 147 |
+
curr_kvlens=kv_lens_cfg,
|
| 148 |
+
curr_rope=ropes_cfg,
|
| 149 |
+
image_sizes=[image_shape],
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
unpacked_latent = self.model.generate_image(
|
| 153 |
+
past_key_values=past_key_values,
|
| 154 |
+
cfg_text_past_key_values=cfg_text_past_key_values,
|
| 155 |
+
cfg_img_past_key_values=cfg_img_past_key_values,
|
| 156 |
+
num_timesteps=num_timesteps,
|
| 157 |
+
cfg_text_scale=cfg_text_scale,
|
| 158 |
+
cfg_img_scale=cfg_img_scale,
|
| 159 |
+
cfg_interval=cfg_interval,
|
| 160 |
+
cfg_renorm_min=cfg_renorm_min,
|
| 161 |
+
cfg_renorm_type=cfg_renorm_type,
|
| 162 |
+
timestep_shift=timestep_shift,
|
| 163 |
+
**generation_input,
|
| 164 |
+
cfg_text_packed_position_ids=generation_input_cfg_text['cfg_packed_position_ids'],
|
| 165 |
+
cfg_text_packed_query_indexes=generation_input_cfg_text['cfg_packed_query_indexes'],
|
| 166 |
+
cfg_text_key_values_lens=generation_input_cfg_text['cfg_key_values_lens'],
|
| 167 |
+
cfg_text_packed_key_value_indexes=generation_input_cfg_text['cfg_packed_key_value_indexes'],
|
| 168 |
+
cfg_img_packed_position_ids=generation_input_cfg_img['cfg_packed_position_ids'],
|
| 169 |
+
cfg_img_packed_query_indexes=generation_input_cfg_img['cfg_packed_query_indexes'],
|
| 170 |
+
cfg_img_key_values_lens=generation_input_cfg_img['cfg_key_values_lens'],
|
| 171 |
+
cfg_img_packed_key_value_indexes=generation_input_cfg_img['cfg_packed_key_value_indexes'],
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
image = self.decode_image(unpacked_latent[0], image_shape)
|
| 175 |
+
return image
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def decode_image(self, latent, image_shape):
|
| 179 |
+
H, W = image_shape
|
| 180 |
+
h, w = H // self.model.latent_downsample, W // self.model.latent_downsample
|
| 181 |
+
|
| 182 |
+
latent = latent.reshape(1, h, w, self.model.latent_patch_size, self.model.latent_patch_size, self.model.latent_channel)
|
| 183 |
+
latent = torch.einsum("nhwpqc->nchpwq", latent)
|
| 184 |
+
latent = latent.reshape(1, self.model.latent_channel, h * self.model.latent_patch_size, w * self.model.latent_patch_size)
|
| 185 |
+
image = self.vae_model.decode(latent)
|
| 186 |
+
image = (image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255
|
| 187 |
+
image = Image.fromarray((image).to(torch.uint8).cpu().numpy())
|
| 188 |
+
|
| 189 |
+
return image
|
| 190 |
+
|
| 191 |
+
@torch.no_grad()
|
| 192 |
+
def gen_text(self, gen_context, max_length: int = 500, do_sample: bool = True, temperature: float = 1.0):
|
| 193 |
+
gen_context = deepcopy(gen_context)
|
| 194 |
+
past_key_values = gen_context['past_key_values']
|
| 195 |
+
kv_lens = gen_context['kv_lens']
|
| 196 |
+
ropes = gen_context['ropes']
|
| 197 |
+
|
| 198 |
+
generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids)
|
| 199 |
+
unpacked_latent = self.model.generate_text(
|
| 200 |
+
past_key_values=past_key_values,
|
| 201 |
+
max_length=max_length,
|
| 202 |
+
do_sample=do_sample,
|
| 203 |
+
temperature=temperature,
|
| 204 |
+
end_token_id=self.new_token_ids['eos_token_id'],
|
| 205 |
+
**generation_input,
|
| 206 |
+
)
|
| 207 |
+
output = self.tokenizer.decode(unpacked_latent[:,0])
|
| 208 |
+
output = output.split('<|im_end|>')[0].split('<|im_start|>')[1]
|
| 209 |
+
return output
|
| 210 |
+
|
| 211 |
+
@torch.no_grad()
|
| 212 |
+
def interleave_inference(
|
| 213 |
+
self,
|
| 214 |
+
input_lists: List[Union[str, Image.Image]],
|
| 215 |
+
think=False,
|
| 216 |
+
understanding_output=False,
|
| 217 |
+
|
| 218 |
+
max_think_token_n=1000,
|
| 219 |
+
do_sample=False,
|
| 220 |
+
text_temperature=0.3,
|
| 221 |
+
cfg_text_scale=3.0,
|
| 222 |
+
cfg_img_scale=1.5,
|
| 223 |
+
cfg_interval=[0.4, 1.0],
|
| 224 |
+
timestep_shift=3.0,
|
| 225 |
+
num_timesteps=50,
|
| 226 |
+
cfg_renorm_min=0.0,
|
| 227 |
+
cfg_renorm_type="global",
|
| 228 |
+
image_shapes=(1024, 1024),
|
| 229 |
+
) -> List[Union[str, Image.Image]]:
|
| 230 |
+
|
| 231 |
+
output_list = []
|
| 232 |
+
gen_context = self.init_gen_context()
|
| 233 |
+
cfg_text_context = deepcopy(gen_context)
|
| 234 |
+
cfg_img_context = deepcopy(gen_context)
|
| 235 |
+
|
| 236 |
+
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
|
| 237 |
+
if think:
|
| 238 |
+
if understanding_output:
|
| 239 |
+
system_prompt = VLM_THINK_SYSTEM_PROMPT
|
| 240 |
+
else:
|
| 241 |
+
system_prompt = GEN_THINK_SYSTEM_PROMPT
|
| 242 |
+
gen_context = self.update_context_text(system_prompt, gen_context)
|
| 243 |
+
cfg_img_context = self.update_context_text(system_prompt, cfg_img_context)
|
| 244 |
+
|
| 245 |
+
for input_term in input_lists:
|
| 246 |
+
if isinstance(input_term, str):
|
| 247 |
+
cfg_text_context = deepcopy(gen_context)
|
| 248 |
+
gen_context = self.update_context_text(input_term, gen_context)
|
| 249 |
+
cfg_img_context = self.update_context_text(input_term, cfg_img_context)
|
| 250 |
+
|
| 251 |
+
elif isinstance(input_term, Image.Image):
|
| 252 |
+
input_term = self.vae_transform.resize_transform(pil_img2rgb(input_term))
|
| 253 |
+
gen_context = self.update_context_image(input_term, gen_context, vae=not understanding_output)
|
| 254 |
+
|
| 255 |
+
image_shapes = input_term.size[::-1]
|
| 256 |
+
cfg_text_context = deepcopy(gen_context)
|
| 257 |
+
|
| 258 |
+
else:
|
| 259 |
+
raise ValueError(f"Unsupported input type: {type(input_term)}")
|
| 260 |
+
|
| 261 |
+
if understanding_output:
|
| 262 |
+
gen_text = self.gen_text(gen_context, do_sample=do_sample, temperature=text_temperature, max_length=max_think_token_n)
|
| 263 |
+
output_list.append(gen_text)
|
| 264 |
+
|
| 265 |
+
else:
|
| 266 |
+
if think:
|
| 267 |
+
gen_text = self.gen_text(gen_context, do_sample=do_sample, temperature=text_temperature, max_length=max_think_token_n)
|
| 268 |
+
gen_context = self.update_context_text(gen_text, gen_context)
|
| 269 |
+
output_list.append(gen_text)
|
| 270 |
+
|
| 271 |
+
img = self.gen_image(
|
| 272 |
+
image_shapes,
|
| 273 |
+
gen_context,
|
| 274 |
+
cfg_text_precontext=cfg_text_context,
|
| 275 |
+
cfg_img_precontext=cfg_img_context,
|
| 276 |
+
|
| 277 |
+
cfg_text_scale=cfg_text_scale,
|
| 278 |
+
cfg_img_scale=cfg_img_scale,
|
| 279 |
+
cfg_interval=cfg_interval,
|
| 280 |
+
timestep_shift=timestep_shift,
|
| 281 |
+
num_timesteps=num_timesteps,
|
| 282 |
+
cfg_renorm_min=cfg_renorm_min,
|
| 283 |
+
cfg_renorm_type=cfg_renorm_type,
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
output_list.append(img)
|
| 287 |
+
|
| 288 |
+
return output_list
|
| 289 |
+
|
| 290 |
+
def __call__(
|
| 291 |
+
self,
|
| 292 |
+
image: Optional[Image.Image] = None,
|
| 293 |
+
text: Optional[str] = None,
|
| 294 |
+
**kargs
|
| 295 |
+
) -> Dict[str, Any]:
|
| 296 |
+
output_dict = {'image': None, 'text': None}
|
| 297 |
+
|
| 298 |
+
if image is None and text is None:
|
| 299 |
+
print('Please provide at least one input: either an image or text.')
|
| 300 |
+
return output_dict
|
| 301 |
+
|
| 302 |
+
input_list = []
|
| 303 |
+
if image is not None:
|
| 304 |
+
input_list.append(image)
|
| 305 |
+
if text is not None:
|
| 306 |
+
input_list.append(text)
|
| 307 |
+
|
| 308 |
+
output_list = self.interleave_inference(input_list, **kargs)
|
| 309 |
+
|
| 310 |
+
for i in output_list:
|
| 311 |
+
if isinstance(i, Image.Image):
|
| 312 |
+
output_dict['image'] = i
|
| 313 |
+
elif isinstance(i, str):
|
| 314 |
+
output_dict['text'] = i
|
| 315 |
+
return output_dict
|
modeling/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
from . import bagel, qwen2, siglip, autoencoder
|
modeling/autoencoder.py
ADDED
|
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Black Forest Labs.
|
| 2 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
| 3 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 4 |
+
#
|
| 5 |
+
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
| 6 |
+
#
|
| 7 |
+
# Original file was released under Apache-2.0, with the full license text
|
| 8 |
+
# available at https://github.com/black-forest-labs/flux/blob/main/LICENSE.
|
| 9 |
+
#
|
| 10 |
+
# This modified file is released under the same license.
|
| 11 |
+
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
from einops import rearrange
|
| 16 |
+
from torch import Tensor, nn
|
| 17 |
+
from huggingface_hub import hf_hub_download
|
| 18 |
+
from safetensors.torch import load_file as load_sft
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@dataclass
|
| 22 |
+
class AutoEncoderParams:
|
| 23 |
+
resolution: int
|
| 24 |
+
in_channels: int
|
| 25 |
+
downsample: int
|
| 26 |
+
ch: int
|
| 27 |
+
out_ch: int
|
| 28 |
+
ch_mult: list[int]
|
| 29 |
+
num_res_blocks: int
|
| 30 |
+
z_channels: int
|
| 31 |
+
scale_factor: float
|
| 32 |
+
shift_factor: float
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def swish(x: Tensor) -> Tensor:
|
| 36 |
+
return x * torch.sigmoid(x)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class AttnBlock(nn.Module):
|
| 40 |
+
def __init__(self, in_channels: int):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.in_channels = in_channels
|
| 43 |
+
|
| 44 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 45 |
+
|
| 46 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
| 47 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
| 48 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
| 49 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
| 50 |
+
|
| 51 |
+
def attention(self, h_: Tensor) -> Tensor:
|
| 52 |
+
h_ = self.norm(h_)
|
| 53 |
+
q = self.q(h_)
|
| 54 |
+
k = self.k(h_)
|
| 55 |
+
v = self.v(h_)
|
| 56 |
+
|
| 57 |
+
b, c, h, w = q.shape
|
| 58 |
+
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
| 59 |
+
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
| 60 |
+
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
| 61 |
+
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
| 62 |
+
|
| 63 |
+
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
| 64 |
+
|
| 65 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 66 |
+
return x + self.proj_out(self.attention(x))
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class ResnetBlock(nn.Module):
|
| 70 |
+
def __init__(self, in_channels: int, out_channels: int):
|
| 71 |
+
super().__init__()
|
| 72 |
+
self.in_channels = in_channels
|
| 73 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 74 |
+
self.out_channels = out_channels
|
| 75 |
+
|
| 76 |
+
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 77 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 78 |
+
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
| 79 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 80 |
+
if self.in_channels != self.out_channels:
|
| 81 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 82 |
+
|
| 83 |
+
def forward(self, x):
|
| 84 |
+
h = x
|
| 85 |
+
h = self.norm1(h)
|
| 86 |
+
h = swish(h)
|
| 87 |
+
h = self.conv1(h)
|
| 88 |
+
|
| 89 |
+
h = self.norm2(h)
|
| 90 |
+
h = swish(h)
|
| 91 |
+
h = self.conv2(h)
|
| 92 |
+
|
| 93 |
+
if self.in_channels != self.out_channels:
|
| 94 |
+
x = self.nin_shortcut(x)
|
| 95 |
+
|
| 96 |
+
return x + h
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class Downsample(nn.Module):
|
| 100 |
+
def __init__(self, in_channels: int):
|
| 101 |
+
super().__init__()
|
| 102 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 103 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
| 104 |
+
|
| 105 |
+
def forward(self, x: Tensor):
|
| 106 |
+
pad = (0, 1, 0, 1)
|
| 107 |
+
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
| 108 |
+
x = self.conv(x)
|
| 109 |
+
return x
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class Upsample(nn.Module):
|
| 113 |
+
def __init__(self, in_channels: int):
|
| 114 |
+
super().__init__()
|
| 115 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
| 116 |
+
|
| 117 |
+
def forward(self, x: Tensor):
|
| 118 |
+
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 119 |
+
x = self.conv(x)
|
| 120 |
+
return x
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class Encoder(nn.Module):
|
| 124 |
+
def __init__(
|
| 125 |
+
self,
|
| 126 |
+
resolution: int,
|
| 127 |
+
in_channels: int,
|
| 128 |
+
ch: int,
|
| 129 |
+
ch_mult: list[int],
|
| 130 |
+
num_res_blocks: int,
|
| 131 |
+
z_channels: int,
|
| 132 |
+
):
|
| 133 |
+
super().__init__()
|
| 134 |
+
self.ch = ch
|
| 135 |
+
self.num_resolutions = len(ch_mult)
|
| 136 |
+
self.num_res_blocks = num_res_blocks
|
| 137 |
+
self.resolution = resolution
|
| 138 |
+
self.in_channels = in_channels
|
| 139 |
+
# downsampling
|
| 140 |
+
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
| 141 |
+
|
| 142 |
+
curr_res = resolution
|
| 143 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 144 |
+
self.in_ch_mult = in_ch_mult
|
| 145 |
+
self.down = nn.ModuleList()
|
| 146 |
+
block_in = self.ch
|
| 147 |
+
for i_level in range(self.num_resolutions):
|
| 148 |
+
block = nn.ModuleList()
|
| 149 |
+
attn = nn.ModuleList()
|
| 150 |
+
block_in = ch * in_ch_mult[i_level]
|
| 151 |
+
block_out = ch * ch_mult[i_level]
|
| 152 |
+
for _ in range(self.num_res_blocks):
|
| 153 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
| 154 |
+
block_in = block_out
|
| 155 |
+
down = nn.Module()
|
| 156 |
+
down.block = block
|
| 157 |
+
down.attn = attn
|
| 158 |
+
if i_level != self.num_resolutions - 1:
|
| 159 |
+
down.downsample = Downsample(block_in)
|
| 160 |
+
curr_res = curr_res // 2
|
| 161 |
+
self.down.append(down)
|
| 162 |
+
|
| 163 |
+
# middle
|
| 164 |
+
self.mid = nn.Module()
|
| 165 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
| 166 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 167 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
| 168 |
+
|
| 169 |
+
# end
|
| 170 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
| 171 |
+
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
| 172 |
+
|
| 173 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 174 |
+
# downsampling
|
| 175 |
+
hs = [self.conv_in(x)]
|
| 176 |
+
for i_level in range(self.num_resolutions):
|
| 177 |
+
for i_block in range(self.num_res_blocks):
|
| 178 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
| 179 |
+
if len(self.down[i_level].attn) > 0:
|
| 180 |
+
h = self.down[i_level].attn[i_block](h)
|
| 181 |
+
hs.append(h)
|
| 182 |
+
if i_level != self.num_resolutions - 1:
|
| 183 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 184 |
+
|
| 185 |
+
# middle
|
| 186 |
+
h = hs[-1]
|
| 187 |
+
h = self.mid.block_1(h)
|
| 188 |
+
h = self.mid.attn_1(h)
|
| 189 |
+
h = self.mid.block_2(h)
|
| 190 |
+
# end
|
| 191 |
+
h = self.norm_out(h)
|
| 192 |
+
h = swish(h)
|
| 193 |
+
h = self.conv_out(h)
|
| 194 |
+
return h
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class Decoder(nn.Module):
|
| 198 |
+
def __init__(
|
| 199 |
+
self,
|
| 200 |
+
ch: int,
|
| 201 |
+
out_ch: int,
|
| 202 |
+
ch_mult: list[int],
|
| 203 |
+
num_res_blocks: int,
|
| 204 |
+
in_channels: int,
|
| 205 |
+
resolution: int,
|
| 206 |
+
z_channels: int,
|
| 207 |
+
):
|
| 208 |
+
super().__init__()
|
| 209 |
+
self.ch = ch
|
| 210 |
+
self.num_resolutions = len(ch_mult)
|
| 211 |
+
self.num_res_blocks = num_res_blocks
|
| 212 |
+
self.resolution = resolution
|
| 213 |
+
self.in_channels = in_channels
|
| 214 |
+
self.ffactor = 2 ** (self.num_resolutions - 1)
|
| 215 |
+
|
| 216 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 217 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
| 218 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
| 219 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
| 220 |
+
|
| 221 |
+
# z to block_in
|
| 222 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
| 223 |
+
|
| 224 |
+
# middle
|
| 225 |
+
self.mid = nn.Module()
|
| 226 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
| 227 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 228 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
| 229 |
+
|
| 230 |
+
# upsampling
|
| 231 |
+
self.up = nn.ModuleList()
|
| 232 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 233 |
+
block = nn.ModuleList()
|
| 234 |
+
attn = nn.ModuleList()
|
| 235 |
+
block_out = ch * ch_mult[i_level]
|
| 236 |
+
for _ in range(self.num_res_blocks + 1):
|
| 237 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
| 238 |
+
block_in = block_out
|
| 239 |
+
up = nn.Module()
|
| 240 |
+
up.block = block
|
| 241 |
+
up.attn = attn
|
| 242 |
+
if i_level != 0:
|
| 243 |
+
up.upsample = Upsample(block_in)
|
| 244 |
+
curr_res = curr_res * 2
|
| 245 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 246 |
+
|
| 247 |
+
# end
|
| 248 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
| 249 |
+
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
| 250 |
+
|
| 251 |
+
def forward(self, z: Tensor) -> Tensor:
|
| 252 |
+
# z to block_in
|
| 253 |
+
h = self.conv_in(z)
|
| 254 |
+
|
| 255 |
+
# middle
|
| 256 |
+
h = self.mid.block_1(h)
|
| 257 |
+
h = self.mid.attn_1(h)
|
| 258 |
+
h = self.mid.block_2(h)
|
| 259 |
+
|
| 260 |
+
# upsampling
|
| 261 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 262 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 263 |
+
h = self.up[i_level].block[i_block](h)
|
| 264 |
+
if len(self.up[i_level].attn) > 0:
|
| 265 |
+
h = self.up[i_level].attn[i_block](h)
|
| 266 |
+
if i_level != 0:
|
| 267 |
+
h = self.up[i_level].upsample(h)
|
| 268 |
+
|
| 269 |
+
# end
|
| 270 |
+
h = self.norm_out(h)
|
| 271 |
+
h = swish(h)
|
| 272 |
+
h = self.conv_out(h)
|
| 273 |
+
return h
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
class DiagonalGaussian(nn.Module):
|
| 277 |
+
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
| 278 |
+
super().__init__()
|
| 279 |
+
self.sample = sample
|
| 280 |
+
self.chunk_dim = chunk_dim
|
| 281 |
+
|
| 282 |
+
def forward(self, z: Tensor) -> Tensor:
|
| 283 |
+
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
| 284 |
+
if self.sample:
|
| 285 |
+
std = torch.exp(0.5 * logvar)
|
| 286 |
+
return mean + std * torch.randn_like(mean)
|
| 287 |
+
else:
|
| 288 |
+
return mean
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
class AutoEncoder(nn.Module):
|
| 292 |
+
def __init__(self, params: AutoEncoderParams):
|
| 293 |
+
super().__init__()
|
| 294 |
+
self.encoder = Encoder(
|
| 295 |
+
resolution=params.resolution,
|
| 296 |
+
in_channels=params.in_channels,
|
| 297 |
+
ch=params.ch,
|
| 298 |
+
ch_mult=params.ch_mult,
|
| 299 |
+
num_res_blocks=params.num_res_blocks,
|
| 300 |
+
z_channels=params.z_channels,
|
| 301 |
+
)
|
| 302 |
+
self.decoder = Decoder(
|
| 303 |
+
resolution=params.resolution,
|
| 304 |
+
in_channels=params.in_channels,
|
| 305 |
+
ch=params.ch,
|
| 306 |
+
out_ch=params.out_ch,
|
| 307 |
+
ch_mult=params.ch_mult,
|
| 308 |
+
num_res_blocks=params.num_res_blocks,
|
| 309 |
+
z_channels=params.z_channels,
|
| 310 |
+
)
|
| 311 |
+
self.reg = DiagonalGaussian()
|
| 312 |
+
|
| 313 |
+
self.scale_factor = params.scale_factor
|
| 314 |
+
self.shift_factor = params.shift_factor
|
| 315 |
+
|
| 316 |
+
def encode(self, x: Tensor) -> Tensor:
|
| 317 |
+
z = self.reg(self.encoder(x))
|
| 318 |
+
z = self.scale_factor * (z - self.shift_factor)
|
| 319 |
+
return z
|
| 320 |
+
|
| 321 |
+
def decode(self, z: Tensor) -> Tensor:
|
| 322 |
+
z = z / self.scale_factor + self.shift_factor
|
| 323 |
+
return self.decoder(z)
|
| 324 |
+
|
| 325 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 326 |
+
return self.decode(self.encode(x))
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
| 330 |
+
if len(missing) > 0 and len(unexpected) > 0:
|
| 331 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
| 332 |
+
print("\n" + "-" * 79 + "\n")
|
| 333 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
| 334 |
+
elif len(missing) > 0:
|
| 335 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
| 336 |
+
elif len(unexpected) > 0:
|
| 337 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
def load_ae(local_path: str) -> AutoEncoder:
|
| 341 |
+
ae_params = AutoEncoderParams(
|
| 342 |
+
resolution=256,
|
| 343 |
+
in_channels=3,
|
| 344 |
+
downsample=8,
|
| 345 |
+
ch=128,
|
| 346 |
+
out_ch=3,
|
| 347 |
+
ch_mult=[1, 2, 4, 4],
|
| 348 |
+
num_res_blocks=2,
|
| 349 |
+
z_channels=16,
|
| 350 |
+
scale_factor=0.3611,
|
| 351 |
+
shift_factor=0.1159,
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Loading the autoencoder
|
| 355 |
+
ae = AutoEncoder(ae_params)
|
| 356 |
+
|
| 357 |
+
if local_path is not None:
|
| 358 |
+
sd = load_sft(local_path)
|
| 359 |
+
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
|
| 360 |
+
print_load_warning(missing, unexpected)
|
| 361 |
+
return ae, ae_params
|
modeling/bagel/__init__.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
from .bagel import BagelConfig, Bagel
|
| 6 |
+
from .qwen2_navit import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
| 7 |
+
from .siglip_navit import SiglipVisionConfig, SiglipVisionModel
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
__all__ = [
|
| 11 |
+
'BagelConfig',
|
| 12 |
+
'Bagel',
|
| 13 |
+
'Qwen2Config',
|
| 14 |
+
'Qwen2Model',
|
| 15 |
+
'Qwen2ForCausalLM',
|
| 16 |
+
'SiglipVisionConfig',
|
| 17 |
+
'SiglipVisionModel',
|
| 18 |
+
]
|
modeling/bagel/bagel.py
ADDED
|
@@ -0,0 +1,1026 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
import copy
|
| 5 |
+
from typing import List, Tuple, Optional
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn.attention.flex_attention import create_block_mask
|
| 13 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
|
| 16 |
+
from data.data_utils import (
|
| 17 |
+
create_sparse_mask,
|
| 18 |
+
get_flattened_position_ids_extrapolate,
|
| 19 |
+
get_flattened_position_ids_interpolate,
|
| 20 |
+
patchify,
|
| 21 |
+
)
|
| 22 |
+
from .qwen2_navit import NaiveCache
|
| 23 |
+
from .modeling_utils import MLPconnector, TimestepEmbedder, PositionEmbedding
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class BagelConfig(PretrainedConfig):
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
visual_gen=True,
|
| 30 |
+
visual_und=True,
|
| 31 |
+
llm_config=None,
|
| 32 |
+
vit_config=None,
|
| 33 |
+
vae_config=None,
|
| 34 |
+
latent_patch_size=2,
|
| 35 |
+
max_latent_size=32,
|
| 36 |
+
vit_max_num_patch_per_side=70,
|
| 37 |
+
connector_act="gelu_pytorch_tanh",
|
| 38 |
+
interpolate_pos=False,
|
| 39 |
+
timestep_shift=1.0,
|
| 40 |
+
**kwargs
|
| 41 |
+
):
|
| 42 |
+
super().__init__(**kwargs)
|
| 43 |
+
self.visual_gen = visual_gen
|
| 44 |
+
self.visual_und = visual_und
|
| 45 |
+
self.llm_config = llm_config
|
| 46 |
+
self.vit_config = vit_config
|
| 47 |
+
self.vae_config = vae_config
|
| 48 |
+
self.latent_patch_size = latent_patch_size
|
| 49 |
+
self.max_latent_size = max_latent_size
|
| 50 |
+
self.vit_max_num_patch_per_side = vit_max_num_patch_per_side
|
| 51 |
+
self.connector_act = connector_act
|
| 52 |
+
self.interpolate_pos = interpolate_pos
|
| 53 |
+
self.timestep_shift = timestep_shift
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class Bagel(PreTrainedModel):
|
| 57 |
+
config_class = BagelConfig
|
| 58 |
+
base_model_prefix = 'bagel'
|
| 59 |
+
|
| 60 |
+
def __init__(self, language_model, vit_model, config: BagelConfig):
|
| 61 |
+
super().__init__(config)
|
| 62 |
+
self.language_model = language_model
|
| 63 |
+
self.hidden_size = config.llm_config.hidden_size
|
| 64 |
+
self.use_moe = "Mo" in config.llm_config.layer_module
|
| 65 |
+
self.num_heads = config.llm_config.num_attention_heads
|
| 66 |
+
|
| 67 |
+
if config.visual_gen:
|
| 68 |
+
self.latent_patch_size = config.latent_patch_size
|
| 69 |
+
self.timestep_shift = config.timestep_shift
|
| 70 |
+
self.latent_downsample = config.vae_config.downsample * config.latent_patch_size
|
| 71 |
+
self.max_latent_size = config.max_latent_size
|
| 72 |
+
self.latent_channel = config.vae_config.z_channels
|
| 73 |
+
self.patch_latent_dim = self.latent_patch_size ** 2 * self.latent_channel
|
| 74 |
+
self.time_embedder = TimestepEmbedder(self.hidden_size)
|
| 75 |
+
self.vae2llm = nn.Linear(self.patch_latent_dim, self.hidden_size)
|
| 76 |
+
self.llm2vae = nn.Linear(self.hidden_size, self.patch_latent_dim)
|
| 77 |
+
self.latent_pos_embed = PositionEmbedding(self.max_latent_size, self.hidden_size)
|
| 78 |
+
|
| 79 |
+
if config.visual_und:
|
| 80 |
+
self.vit_model = vit_model
|
| 81 |
+
self.vit_patch_size = config.vit_config.patch_size
|
| 82 |
+
self.vit_max_num_patch_per_side = config.vit_max_num_patch_per_side
|
| 83 |
+
self.vit_hidden_size = config.vit_config.hidden_size
|
| 84 |
+
self.connector = MLPconnector(self.vit_hidden_size, self.hidden_size, config.connector_act)
|
| 85 |
+
self.vit_pos_embed = PositionEmbedding(self.vit_max_num_patch_per_side, self.hidden_size)
|
| 86 |
+
|
| 87 |
+
if config.interpolate_pos:
|
| 88 |
+
self.get_flattened_position_ids = get_flattened_position_ids_interpolate
|
| 89 |
+
else:
|
| 90 |
+
self.get_flattened_position_ids = get_flattened_position_ids_extrapolate
|
| 91 |
+
|
| 92 |
+
self.config = config
|
| 93 |
+
self._init_weights()
|
| 94 |
+
|
| 95 |
+
def _init_weights(self):
|
| 96 |
+
if self.config.visual_gen:
|
| 97 |
+
nn.init.constant_(self.llm2vae.weight, 0)
|
| 98 |
+
nn.init.constant_(self.llm2vae.bias, 0)
|
| 99 |
+
|
| 100 |
+
def forward(
|
| 101 |
+
self,
|
| 102 |
+
sequence_length: int,
|
| 103 |
+
packed_text_ids: torch.LongTensor,
|
| 104 |
+
packed_text_indexes: torch.LongTensor,
|
| 105 |
+
sample_lens: List[int],
|
| 106 |
+
packed_position_ids: torch.LongTensor,
|
| 107 |
+
nested_attention_masks: List[torch.Tensor] = None,
|
| 108 |
+
split_lens: List[int] = None,
|
| 109 |
+
attn_modes: List[str] = None,
|
| 110 |
+
# for visual understanding
|
| 111 |
+
ce_loss_indexes: Optional[torch.BoolTensor] = None,
|
| 112 |
+
packed_label_ids: Optional[torch.LongTensor] = None,
|
| 113 |
+
packed_vit_tokens: Optional[torch.Tensor] = None,
|
| 114 |
+
packed_vit_token_indexes: Optional[torch.LongTensor] = None,
|
| 115 |
+
packed_vit_position_ids: Optional[torch.LongTensor] = None,
|
| 116 |
+
vit_token_seqlens: Optional[torch.IntTensor] = None,
|
| 117 |
+
# for visual generation
|
| 118 |
+
padded_latent: Optional[torch.Tensor] = None,
|
| 119 |
+
patchified_vae_latent_shapes: Optional[List[Tuple[int, int]]] = None,
|
| 120 |
+
packed_latent_position_ids: Optional[torch.LongTensor] = None,
|
| 121 |
+
packed_vae_token_indexes: Optional[torch.LongTensor] = None,
|
| 122 |
+
packed_timesteps: Optional[torch.LongTensor] = None,
|
| 123 |
+
mse_loss_indexes: Optional[torch.BoolTensor] = None,
|
| 124 |
+
) -> torch.Tensor:
|
| 125 |
+
"""
|
| 126 |
+
Args:
|
| 127 |
+
sequence_length: length of sequence.
|
| 128 |
+
packed_text_ids: 1-D int tensor, packed text token ids.
|
| 129 |
+
packed_text_indexes: 1-D int tensor, packed text token indexes in sequence.
|
| 130 |
+
sample_lens: A list of N ints, length of each sample in packed_sequence.
|
| 131 |
+
nested_attention_masks: A list of N 2-D float tensor, where 0.0 means attention and
|
| 132 |
+
-inf means ignore.
|
| 133 |
+
packed_position_ids: packed 1-D positions, an image has only one global position shared
|
| 134 |
+
by all latent tokens.
|
| 135 |
+
|
| 136 |
+
packed_vit_tokens: packed patchified image tokens for vit model.
|
| 137 |
+
packed_vit_position_ids: 1-D int tensor, the position of each token for vit model.
|
| 138 |
+
packed_vit_token_indexes: 1-D int tensor, packed vit token indexes in sequence.
|
| 139 |
+
vit_token_seqlens: 1-D int tensor, the length of each image tokens for vit model.
|
| 140 |
+
packed_label_ids: 1-D int tensor, packed label token ids.
|
| 141 |
+
ce_loss_indexes: 1-D bool tensor, where to compute ce loss.
|
| 142 |
+
|
| 143 |
+
padded_latent: padded latent from VAE encoder.
|
| 144 |
+
patchified_vae_latent_shapes: A list of (h, w) tuples, patchfied latent shapes of each image.
|
| 145 |
+
packed_latent_position_ids: 1-D int tensor, the position of each token for latent.
|
| 146 |
+
packed_vae_token_indexes: 1-D int tensor, padded image token indexes in sequence.
|
| 147 |
+
packed_timesteps: 1-D float tensor, flow timesteps. 0 indicates use clean image.
|
| 148 |
+
mse_loss_indexes: 1-D bool tensor, where to compute mse loss.
|
| 149 |
+
"""
|
| 150 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
| 151 |
+
packed_sequence = packed_text_embedding.new_zeros(size=(sequence_length, self.hidden_size))
|
| 152 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
| 153 |
+
|
| 154 |
+
if nested_attention_masks is None:
|
| 155 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 156 |
+
seqlen = sum(sample_lens)
|
| 157 |
+
block_mask = create_block_mask(
|
| 158 |
+
sparse_mask, B=1, H=self.num_heads, Q_LEN=seqlen, KV_LEN=seqlen,
|
| 159 |
+
device=packed_text_embedding.device, BLOCK_SIZE=128, _compile=True
|
| 160 |
+
)
|
| 161 |
+
attention_mask = block_mask
|
| 162 |
+
else:
|
| 163 |
+
attention_mask = nested_attention_masks
|
| 164 |
+
|
| 165 |
+
if self.config.visual_und:
|
| 166 |
+
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
|
| 167 |
+
cu_seqlens = cu_seqlens.to(torch.int32)
|
| 168 |
+
max_seqlen = torch.max(vit_token_seqlens).item()
|
| 169 |
+
packed_vit_token_embed = self.vit_model(
|
| 170 |
+
packed_pixel_values=packed_vit_tokens,
|
| 171 |
+
packed_flattened_position_ids=packed_vit_position_ids,
|
| 172 |
+
cu_seqlens=cu_seqlens,
|
| 173 |
+
max_seqlen=max_seqlen,
|
| 174 |
+
)
|
| 175 |
+
packed_vit_token_embed = self.connector(packed_vit_token_embed)
|
| 176 |
+
vit_token_pos_emb = self.vit_pos_embed(packed_vit_position_ids)
|
| 177 |
+
packed_vit_token_embed = packed_vit_token_embed + vit_token_pos_emb
|
| 178 |
+
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
|
| 179 |
+
|
| 180 |
+
if self.config.visual_gen:
|
| 181 |
+
p = self.latent_patch_size
|
| 182 |
+
packed_latent = []
|
| 183 |
+
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
|
| 184 |
+
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
|
| 185 |
+
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
|
| 186 |
+
packed_latent.append(latent)
|
| 187 |
+
packed_latent_clean = torch.cat(packed_latent, dim=0)
|
| 188 |
+
|
| 189 |
+
noise = torch.randn_like(packed_latent_clean)
|
| 190 |
+
packed_timesteps = torch.sigmoid(packed_timesteps)
|
| 191 |
+
packed_timesteps = self.timestep_shift * packed_timesteps / (1 + (self.timestep_shift - 1) * packed_timesteps)
|
| 192 |
+
packed_latent = (1 - packed_timesteps[:, None]) * packed_latent_clean + packed_timesteps[:, None] * noise
|
| 193 |
+
packed_timestep_embeds = self.time_embedder(packed_timesteps)
|
| 194 |
+
latent_token_pos_emb = self.latent_pos_embed(packed_latent_position_ids)
|
| 195 |
+
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + latent_token_pos_emb
|
| 196 |
+
packed_sequence[packed_vae_token_indexes] = packed_latent
|
| 197 |
+
|
| 198 |
+
extra_inputs = {}
|
| 199 |
+
if self.use_moe:
|
| 200 |
+
packed_und_token_indexes = packed_text_indexes
|
| 201 |
+
if packed_vit_token_indexes is not None:
|
| 202 |
+
packed_und_token_indexes=torch.cat([packed_text_indexes, packed_vit_token_indexes], dim=0)
|
| 203 |
+
extra_inputs.update(
|
| 204 |
+
packed_und_token_indexes=packed_und_token_indexes,
|
| 205 |
+
packed_gen_token_indexes=packed_vae_token_indexes,
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
last_hidden_state = self.language_model(
|
| 209 |
+
packed_sequence=packed_sequence,
|
| 210 |
+
sample_lens=sample_lens,
|
| 211 |
+
attention_mask=attention_mask,
|
| 212 |
+
packed_position_ids=packed_position_ids,
|
| 213 |
+
**extra_inputs,
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
mse = None
|
| 217 |
+
if self.config.visual_gen:
|
| 218 |
+
packed_mse_preds = self.llm2vae(last_hidden_state[mse_loss_indexes])
|
| 219 |
+
target = noise - packed_latent_clean # NOTE: v_t=dx_t/dt=x_1-x_0, pointing from data to noise
|
| 220 |
+
has_mse = packed_timesteps > 0
|
| 221 |
+
mse = (packed_mse_preds - target[has_mse]) ** 2
|
| 222 |
+
|
| 223 |
+
ce = None
|
| 224 |
+
if ce_loss_indexes is not None:
|
| 225 |
+
packed_ce_preds = self.language_model.lm_head(last_hidden_state[ce_loss_indexes])
|
| 226 |
+
ce = F.cross_entropy(packed_ce_preds, packed_label_ids, reduction="none")
|
| 227 |
+
|
| 228 |
+
return dict(mse=mse, ce=ce)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def prepare_prompts(self, curr_kvlens, curr_rope, prompts, tokenizer, new_token_ids):
|
| 232 |
+
packed_text_ids = list()
|
| 233 |
+
packed_text_position_ids = list()
|
| 234 |
+
text_token_lens = list()
|
| 235 |
+
packed_text_indexes = list()
|
| 236 |
+
packed_key_value_indexes = list()
|
| 237 |
+
|
| 238 |
+
curr = 0
|
| 239 |
+
newlens, new_rope = list(), list()
|
| 240 |
+
for prompt, curr_kvlen, curr_position_id in zip(prompts, curr_kvlens, curr_rope):
|
| 241 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
| 242 |
+
curr += curr_kvlen
|
| 243 |
+
|
| 244 |
+
text_ids = tokenizer.encode(prompt)
|
| 245 |
+
text_ids = [new_token_ids['bos_token_id']] + text_ids + [new_token_ids['eos_token_id']]
|
| 246 |
+
text_token_lens.append(len(text_ids))
|
| 247 |
+
packed_text_ids.extend(text_ids)
|
| 248 |
+
packed_text_position_ids.extend(range(curr_position_id, curr_position_id + len(text_ids)))
|
| 249 |
+
packed_text_indexes.extend(range(curr, curr + len(text_ids)))
|
| 250 |
+
newlens.append(curr_kvlen + len(text_ids))
|
| 251 |
+
new_rope.append(curr_position_id + len(text_ids))
|
| 252 |
+
curr += len(text_ids)
|
| 253 |
+
|
| 254 |
+
generation_input = {
|
| 255 |
+
"text_token_lens": torch.tensor(text_token_lens, dtype=torch.int),
|
| 256 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
| 257 |
+
"packed_text_position_ids": torch.tensor(packed_text_position_ids, dtype=torch.long),
|
| 258 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
| 259 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
| 260 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
return generation_input, newlens, new_rope
|
| 264 |
+
|
| 265 |
+
@torch.no_grad
|
| 266 |
+
def forward_cache_update_text(
|
| 267 |
+
self,
|
| 268 |
+
past_key_values: NaiveCache,
|
| 269 |
+
packed_text_ids: torch.IntTensor,
|
| 270 |
+
packed_text_position_ids: torch.LongTensor,
|
| 271 |
+
text_token_lens: torch.LongTensor,
|
| 272 |
+
packed_text_indexes: torch.LongTensor,
|
| 273 |
+
packed_key_value_indexes: torch.LongTensor,
|
| 274 |
+
key_values_lens: torch.IntTensor,
|
| 275 |
+
):
|
| 276 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
| 277 |
+
|
| 278 |
+
extra_inputs = {}
|
| 279 |
+
if self.use_moe:
|
| 280 |
+
extra_inputs = {"mode": "und"}
|
| 281 |
+
|
| 282 |
+
output = self.language_model.forward_inference(
|
| 283 |
+
packed_query_sequence=packed_text_embedding,
|
| 284 |
+
query_lens=text_token_lens,
|
| 285 |
+
packed_query_position_ids=packed_text_position_ids,
|
| 286 |
+
packed_query_indexes=packed_text_indexes,
|
| 287 |
+
past_key_values=past_key_values,
|
| 288 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 289 |
+
key_values_lens=key_values_lens,
|
| 290 |
+
update_past_key_values=True,
|
| 291 |
+
is_causal=True,
|
| 292 |
+
**extra_inputs,
|
| 293 |
+
)
|
| 294 |
+
past_key_values = output.past_key_values
|
| 295 |
+
|
| 296 |
+
return past_key_values
|
| 297 |
+
|
| 298 |
+
def prepare_vit_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids):
|
| 299 |
+
packed_vit_token_indexes = list()
|
| 300 |
+
vit_token_seqlens, packed_vit_tokens, packed_vit_position_ids = list(), list(), list()
|
| 301 |
+
packed_text_ids, packed_text_indexes = list(), list()
|
| 302 |
+
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
|
| 303 |
+
packed_key_value_indexes = list()
|
| 304 |
+
|
| 305 |
+
_curr = curr = 0
|
| 306 |
+
newlens, new_rope = list(), list()
|
| 307 |
+
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
|
| 308 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
| 309 |
+
curr += curr_kvlen
|
| 310 |
+
|
| 311 |
+
packed_text_ids.append(new_token_ids['start_of_image'])
|
| 312 |
+
packed_text_indexes.append(_curr)
|
| 313 |
+
packed_indexes.append(curr)
|
| 314 |
+
curr += 1
|
| 315 |
+
_curr += 1
|
| 316 |
+
|
| 317 |
+
image_tensor = transforms(image)
|
| 318 |
+
vit_position_ids = self.get_flattened_position_ids(
|
| 319 |
+
image_tensor.size(1), image_tensor.size(2),
|
| 320 |
+
self.vit_patch_size,
|
| 321 |
+
max_num_patches_per_side=self.vit_max_num_patch_per_side
|
| 322 |
+
)
|
| 323 |
+
vit_tokens = patchify(image_tensor, self.vit_patch_size)
|
| 324 |
+
packed_vit_tokens.append(vit_tokens)
|
| 325 |
+
num_img_tokens = vit_tokens.shape[0]
|
| 326 |
+
packed_vit_position_ids.append(vit_position_ids)
|
| 327 |
+
vit_token_seqlens.append(num_img_tokens)
|
| 328 |
+
packed_vit_token_indexes.extend(range(_curr, _curr + num_img_tokens))
|
| 329 |
+
packed_indexes.extend(range(curr, curr + num_img_tokens))
|
| 330 |
+
curr += num_img_tokens
|
| 331 |
+
_curr += num_img_tokens
|
| 332 |
+
|
| 333 |
+
packed_text_ids.append(new_token_ids['end_of_image'])
|
| 334 |
+
packed_text_indexes.append(_curr)
|
| 335 |
+
packed_indexes.append(curr)
|
| 336 |
+
curr += 1
|
| 337 |
+
_curr += 1
|
| 338 |
+
|
| 339 |
+
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
|
| 340 |
+
packed_seqlens.append(num_img_tokens + 2)
|
| 341 |
+
newlens.append(curr_kvlen + num_img_tokens + 2)
|
| 342 |
+
new_rope.append(curr_position_id + 1)
|
| 343 |
+
|
| 344 |
+
generation_input = {
|
| 345 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
| 346 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
| 347 |
+
"vit_token_seqlens": torch.tensor(vit_token_seqlens, dtype=torch.int),
|
| 348 |
+
"packed_vit_tokens": torch.cat(packed_vit_tokens, dim=0),
|
| 349 |
+
"packed_vit_position_ids": torch.cat(packed_vit_position_ids, dim=0),
|
| 350 |
+
"packed_vit_token_indexes": torch.tensor(packed_vit_token_indexes, dtype=torch.long),
|
| 351 |
+
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
| 352 |
+
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
| 353 |
+
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
| 354 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
| 355 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
return generation_input, newlens, new_rope
|
| 359 |
+
|
| 360 |
+
@torch.no_grad
|
| 361 |
+
def forward_cache_update_vit(
|
| 362 |
+
self,
|
| 363 |
+
past_key_values: NaiveCache,
|
| 364 |
+
packed_text_ids: torch.LongTensor,
|
| 365 |
+
packed_text_indexes: torch.LongTensor,
|
| 366 |
+
packed_vit_tokens: torch.Tensor,
|
| 367 |
+
packed_vit_token_indexes: torch.LongTensor,
|
| 368 |
+
packed_vit_position_ids: torch.LongTensor,
|
| 369 |
+
vit_token_seqlens: torch.IntTensor,
|
| 370 |
+
packed_position_ids: torch.LongTensor,
|
| 371 |
+
packed_seqlens: torch.IntTensor,
|
| 372 |
+
packed_indexes: torch.LongTensor,
|
| 373 |
+
packed_key_value_indexes: torch.LongTensor,
|
| 374 |
+
key_values_lens: torch.IntTensor,
|
| 375 |
+
):
|
| 376 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
| 377 |
+
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
| 378 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
| 379 |
+
|
| 380 |
+
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
|
| 381 |
+
cu_seqlens = cu_seqlens.to(torch.int32)
|
| 382 |
+
max_seqlen = torch.max(vit_token_seqlens).item()
|
| 383 |
+
packed_vit_token_embed = self.vit_model(
|
| 384 |
+
packed_pixel_values=packed_vit_tokens,
|
| 385 |
+
packed_flattened_position_ids=packed_vit_position_ids,
|
| 386 |
+
cu_seqlens=cu_seqlens,
|
| 387 |
+
max_seqlen=max_seqlen,
|
| 388 |
+
)
|
| 389 |
+
packed_vit_token_embed = self.connector(packed_vit_token_embed)
|
| 390 |
+
pos_emb = self.vit_pos_embed(packed_vit_position_ids)
|
| 391 |
+
packed_vit_token_embed = packed_vit_token_embed + pos_emb
|
| 392 |
+
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
|
| 393 |
+
|
| 394 |
+
extra_inputs = {}
|
| 395 |
+
if self.use_moe:
|
| 396 |
+
extra_inputs = {"mode": "und"}
|
| 397 |
+
|
| 398 |
+
output = self.language_model.forward_inference(
|
| 399 |
+
packed_query_sequence=packed_sequence,
|
| 400 |
+
query_lens=packed_seqlens,
|
| 401 |
+
packed_query_position_ids=packed_position_ids,
|
| 402 |
+
packed_query_indexes=packed_indexes,
|
| 403 |
+
past_key_values=past_key_values,
|
| 404 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 405 |
+
key_values_lens=key_values_lens,
|
| 406 |
+
update_past_key_values=True,
|
| 407 |
+
is_causal=False,
|
| 408 |
+
**extra_inputs,
|
| 409 |
+
)
|
| 410 |
+
past_key_values = output.past_key_values
|
| 411 |
+
|
| 412 |
+
return past_key_values
|
| 413 |
+
|
| 414 |
+
def prepare_vae_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids, timestep=0):
|
| 415 |
+
patchified_vae_latent_shapes, packed_vae_position_ids = list(), list()
|
| 416 |
+
packed_vae_token_indexes = list()
|
| 417 |
+
packed_text_ids, packed_text_indexes = list(), list()
|
| 418 |
+
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
|
| 419 |
+
packed_key_value_indexes = list()
|
| 420 |
+
|
| 421 |
+
_curr = curr = 0
|
| 422 |
+
vae_image_tensors = list()
|
| 423 |
+
newlens, new_rope = list(), list()
|
| 424 |
+
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
|
| 425 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
| 426 |
+
curr += curr_kvlen
|
| 427 |
+
|
| 428 |
+
packed_text_ids.append(new_token_ids['start_of_image'])
|
| 429 |
+
packed_text_indexes.append(_curr)
|
| 430 |
+
packed_indexes.append(curr)
|
| 431 |
+
curr += 1
|
| 432 |
+
_curr += 1
|
| 433 |
+
|
| 434 |
+
image_tensor = transforms(image)
|
| 435 |
+
vae_image_tensors.append(image_tensor)
|
| 436 |
+
vae_posiiton_ids = self.get_flattened_position_ids(
|
| 437 |
+
image_tensor.size(1), image_tensor.size(2),
|
| 438 |
+
self.latent_downsample,
|
| 439 |
+
max_num_patches_per_side=self.max_latent_size
|
| 440 |
+
)
|
| 441 |
+
packed_vae_position_ids.append(vae_posiiton_ids)
|
| 442 |
+
H, W = image_tensor.shape[1:]
|
| 443 |
+
h = H // self.latent_downsample
|
| 444 |
+
w = W // self.latent_downsample
|
| 445 |
+
patchified_vae_latent_shapes.append((h, w))
|
| 446 |
+
|
| 447 |
+
num_img_tokens = w * h
|
| 448 |
+
packed_vae_token_indexes.extend(range(_curr, _curr + num_img_tokens))
|
| 449 |
+
packed_indexes.extend(range(curr, curr + num_img_tokens))
|
| 450 |
+
curr += num_img_tokens
|
| 451 |
+
_curr += num_img_tokens
|
| 452 |
+
|
| 453 |
+
packed_text_ids.append(new_token_ids['end_of_image'])
|
| 454 |
+
packed_text_indexes.append(_curr)
|
| 455 |
+
packed_indexes.append(curr)
|
| 456 |
+
curr += 1
|
| 457 |
+
_curr += 1
|
| 458 |
+
|
| 459 |
+
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
|
| 460 |
+
packed_seqlens.append(num_img_tokens + 2)
|
| 461 |
+
newlens.append(curr_kvlen + num_img_tokens + 2)
|
| 462 |
+
new_rope.append(curr_position_id + 1)
|
| 463 |
+
|
| 464 |
+
image_sizes = [item.shape for item in vae_image_tensors]
|
| 465 |
+
max_image_size = [max(item) for item in list(zip(*image_sizes))]
|
| 466 |
+
padded_images = torch.zeros(size=(len(vae_image_tensors), *max_image_size))
|
| 467 |
+
for i, image_tensor in enumerate(vae_image_tensors):
|
| 468 |
+
padded_images[i, :, :image_tensor.shape[1], :image_tensor.shape[2]] = image_tensor
|
| 469 |
+
|
| 470 |
+
generation_input = {
|
| 471 |
+
"padded_images": padded_images,
|
| 472 |
+
"patchified_vae_latent_shapes": patchified_vae_latent_shapes,
|
| 473 |
+
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
|
| 474 |
+
"packed_timesteps": torch.tensor([timestep]),
|
| 475 |
+
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
|
| 476 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
| 477 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
| 478 |
+
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
| 479 |
+
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
| 480 |
+
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
| 481 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
| 482 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
| 483 |
+
}
|
| 484 |
+
|
| 485 |
+
return generation_input, newlens, new_rope
|
| 486 |
+
|
| 487 |
+
@torch.no_grad
|
| 488 |
+
def forward_cache_update_vae(
|
| 489 |
+
self,
|
| 490 |
+
vae_model,
|
| 491 |
+
past_key_values: NaiveCache,
|
| 492 |
+
padded_images: torch.Tensor,
|
| 493 |
+
patchified_vae_latent_shapes: List,
|
| 494 |
+
packed_vae_position_ids: torch.LongTensor,
|
| 495 |
+
packed_timesteps: torch.Tensor,
|
| 496 |
+
packed_vae_token_indexes: torch.LongTensor,
|
| 497 |
+
packed_text_ids: torch.LongTensor,
|
| 498 |
+
packed_text_indexes: torch.LongTensor,
|
| 499 |
+
packed_position_ids: torch.LongTensor,
|
| 500 |
+
packed_seqlens: torch.IntTensor,
|
| 501 |
+
packed_indexes: torch.LongTensor,
|
| 502 |
+
key_values_lens: torch.IntTensor,
|
| 503 |
+
packed_key_value_indexes: torch.Tensor,
|
| 504 |
+
):
|
| 505 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
| 506 |
+
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
| 507 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
| 508 |
+
|
| 509 |
+
padded_latent = vae_model.encode(padded_images)
|
| 510 |
+
|
| 511 |
+
p = self.latent_patch_size
|
| 512 |
+
packed_latent = list()
|
| 513 |
+
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
|
| 514 |
+
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
|
| 515 |
+
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
|
| 516 |
+
packed_latent.append(latent)
|
| 517 |
+
packed_latent = torch.cat(packed_latent, dim=0)
|
| 518 |
+
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
|
| 519 |
+
packed_timestep_embeds = self.time_embedder(packed_timesteps)
|
| 520 |
+
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + packed_pos_embed
|
| 521 |
+
packed_sequence[packed_vae_token_indexes] = packed_latent
|
| 522 |
+
|
| 523 |
+
extra_inputs = {}
|
| 524 |
+
if self.use_moe:
|
| 525 |
+
extra_inputs = {
|
| 526 |
+
"mode": "gen",
|
| 527 |
+
"packed_vae_token_indexes": packed_vae_token_indexes,
|
| 528 |
+
"packed_text_indexes": packed_text_indexes
|
| 529 |
+
}
|
| 530 |
+
|
| 531 |
+
output = self.language_model.forward_inference(
|
| 532 |
+
packed_query_sequence=packed_sequence,
|
| 533 |
+
query_lens=packed_seqlens,
|
| 534 |
+
packed_query_position_ids=packed_position_ids,
|
| 535 |
+
packed_query_indexes=packed_indexes,
|
| 536 |
+
past_key_values=past_key_values,
|
| 537 |
+
key_values_lens=key_values_lens,
|
| 538 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 539 |
+
update_past_key_values=True,
|
| 540 |
+
is_causal=False,
|
| 541 |
+
**extra_inputs,
|
| 542 |
+
)
|
| 543 |
+
past_key_values = output.past_key_values
|
| 544 |
+
|
| 545 |
+
return past_key_values
|
| 546 |
+
|
| 547 |
+
def prepare_vae_latent(self, curr_kvlens, curr_rope, image_sizes, new_token_ids):
|
| 548 |
+
packed_text_ids, packed_text_indexes = list(), list()
|
| 549 |
+
packed_vae_position_ids, packed_vae_token_indexes, packed_init_noises = list(), list(), list()
|
| 550 |
+
packed_position_ids, packed_seqlens, packed_indexes = list(), list(), list()
|
| 551 |
+
packed_key_value_indexes = list()
|
| 552 |
+
|
| 553 |
+
query_curr = curr = 0
|
| 554 |
+
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
|
| 555 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
| 556 |
+
curr += curr_kvlen
|
| 557 |
+
|
| 558 |
+
packed_text_ids.append(new_token_ids['start_of_image'])
|
| 559 |
+
packed_text_indexes.append(query_curr)
|
| 560 |
+
packed_indexes.append(curr)
|
| 561 |
+
curr += 1
|
| 562 |
+
query_curr += 1
|
| 563 |
+
|
| 564 |
+
vae_posiiton_ids = self.get_flattened_position_ids(
|
| 565 |
+
H, W,
|
| 566 |
+
self.latent_downsample,
|
| 567 |
+
max_num_patches_per_side=self.max_latent_size
|
| 568 |
+
)
|
| 569 |
+
packed_vae_position_ids.append(vae_posiiton_ids)
|
| 570 |
+
|
| 571 |
+
h, w = H // self.latent_downsample, W // self.latent_downsample
|
| 572 |
+
num_image_tokens = h * w
|
| 573 |
+
packed_init_noises.append(
|
| 574 |
+
torch.randn(num_image_tokens, self.latent_channel * self.latent_patch_size ** 2)
|
| 575 |
+
)
|
| 576 |
+
packed_vae_token_indexes.extend(range(query_curr, query_curr + num_image_tokens))
|
| 577 |
+
packed_indexes.extend(range(curr, curr + num_image_tokens))
|
| 578 |
+
curr += num_image_tokens
|
| 579 |
+
query_curr += num_image_tokens
|
| 580 |
+
|
| 581 |
+
packed_text_ids.append(new_token_ids['end_of_image'])
|
| 582 |
+
packed_text_indexes.append(query_curr)
|
| 583 |
+
packed_indexes.append(curr)
|
| 584 |
+
curr += 1
|
| 585 |
+
query_curr += 1
|
| 586 |
+
|
| 587 |
+
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
|
| 588 |
+
packed_seqlens.append(num_image_tokens + 2)
|
| 589 |
+
|
| 590 |
+
generation_input = {
|
| 591 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
| 592 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
| 593 |
+
"packed_init_noises": torch.cat(packed_init_noises, dim=0),
|
| 594 |
+
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
|
| 595 |
+
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
|
| 596 |
+
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
| 597 |
+
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
| 598 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
| 599 |
+
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
| 600 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
| 601 |
+
}
|
| 602 |
+
|
| 603 |
+
return generation_input
|
| 604 |
+
|
| 605 |
+
def prepare_vae_latent_cfg(self, curr_kvlens, curr_rope, image_sizes):
|
| 606 |
+
packed_position_ids, packed_indexes, packed_key_value_indexes = list(), list(), list()
|
| 607 |
+
|
| 608 |
+
query_curr = curr = 0
|
| 609 |
+
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
|
| 610 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
| 611 |
+
curr += curr_kvlen
|
| 612 |
+
|
| 613 |
+
packed_indexes.append(curr)
|
| 614 |
+
curr += 1
|
| 615 |
+
query_curr += 1
|
| 616 |
+
|
| 617 |
+
h, w = H // self.latent_downsample, W // self.latent_downsample
|
| 618 |
+
num_image_tokens = h * w
|
| 619 |
+
packed_indexes.extend(range(curr, curr + num_image_tokens))
|
| 620 |
+
curr += num_image_tokens
|
| 621 |
+
query_curr += num_image_tokens
|
| 622 |
+
|
| 623 |
+
packed_indexes.append(curr)
|
| 624 |
+
curr += 1
|
| 625 |
+
query_curr += 1
|
| 626 |
+
|
| 627 |
+
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
|
| 628 |
+
|
| 629 |
+
generation_input = {
|
| 630 |
+
"cfg_packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
| 631 |
+
"cfg_key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
| 632 |
+
"cfg_packed_query_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
| 633 |
+
"cfg_packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
| 634 |
+
}
|
| 635 |
+
|
| 636 |
+
return generation_input
|
| 637 |
+
|
| 638 |
+
@torch.no_grad
|
| 639 |
+
def generate_image(
|
| 640 |
+
self,
|
| 641 |
+
packed_text_ids: torch.LongTensor,
|
| 642 |
+
packed_text_indexes: torch.LongTensor,
|
| 643 |
+
packed_init_noises: torch.Tensor,
|
| 644 |
+
packed_vae_position_ids: torch.LongTensor,
|
| 645 |
+
packed_vae_token_indexes: torch.LongTensor,
|
| 646 |
+
packed_seqlens: torch.IntTensor,
|
| 647 |
+
packed_position_ids: torch.LongTensor,
|
| 648 |
+
packed_indexes: torch.LongTensor,
|
| 649 |
+
past_key_values: NaiveCache,
|
| 650 |
+
key_values_lens: torch.IntTensor,
|
| 651 |
+
packed_key_value_indexes: torch.LongTensor,
|
| 652 |
+
num_timesteps: int = 24,
|
| 653 |
+
timestep_shift: float = 1.0,
|
| 654 |
+
cfg_renorm_min: float = 0.0,
|
| 655 |
+
cfg_renorm_type: str = "global",
|
| 656 |
+
cfg_interval: Optional[Tuple[float, float]] = [0, 1],
|
| 657 |
+
# cfg_text
|
| 658 |
+
cfg_text_scale: float = 1.0,
|
| 659 |
+
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
|
| 660 |
+
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
|
| 661 |
+
cfg_text_past_key_values: Optional[NaiveCache] = None,
|
| 662 |
+
cfg_text_key_values_lens: Optional[torch.IntTensor] = None,
|
| 663 |
+
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
| 664 |
+
# cfg_img
|
| 665 |
+
cfg_img_scale: float = 1.0,
|
| 666 |
+
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
|
| 667 |
+
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
|
| 668 |
+
cfg_img_past_key_values: Optional[NaiveCache] = None,
|
| 669 |
+
cfg_img_key_values_lens: Optional[torch.IntTensor] = None,
|
| 670 |
+
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
| 671 |
+
cfg_type: str = "parallel",
|
| 672 |
+
):
|
| 673 |
+
x_t = packed_init_noises
|
| 674 |
+
|
| 675 |
+
timesteps = torch.linspace(1, 0, num_timesteps, device=x_t.device)
|
| 676 |
+
timesteps = timestep_shift * timesteps / (1 + (timestep_shift - 1) * timesteps)
|
| 677 |
+
dts = timesteps[:-1] - timesteps[1:]
|
| 678 |
+
timesteps = timesteps[:-1]
|
| 679 |
+
|
| 680 |
+
for i, t in enumerate(timesteps):
|
| 681 |
+
|
| 682 |
+
timestep = torch.tensor([t] * x_t.shape[0], device=x_t.device)
|
| 683 |
+
if t > cfg_interval[0] and t <= cfg_interval[1]:
|
| 684 |
+
cfg_text_scale_ = cfg_text_scale
|
| 685 |
+
cfg_img_scale_ = cfg_img_scale
|
| 686 |
+
else:
|
| 687 |
+
cfg_text_scale_ = 1.0
|
| 688 |
+
cfg_img_scale_ = 1.0
|
| 689 |
+
v_t = self._forward_flow(
|
| 690 |
+
x_t=x_t,
|
| 691 |
+
timestep=timestep,
|
| 692 |
+
packed_vae_token_indexes=packed_vae_token_indexes,
|
| 693 |
+
packed_vae_position_ids=packed_vae_position_ids,
|
| 694 |
+
packed_text_ids=packed_text_ids,
|
| 695 |
+
packed_text_indexes=packed_text_indexes,
|
| 696 |
+
packed_position_ids=packed_position_ids,
|
| 697 |
+
packed_indexes=packed_indexes,
|
| 698 |
+
packed_seqlens=packed_seqlens,
|
| 699 |
+
key_values_lens=key_values_lens,
|
| 700 |
+
past_key_values=past_key_values,
|
| 701 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 702 |
+
cfg_renorm_min=cfg_renorm_min,
|
| 703 |
+
cfg_renorm_type=cfg_renorm_type,
|
| 704 |
+
# cfg_text
|
| 705 |
+
cfg_text_scale=cfg_text_scale_,
|
| 706 |
+
cfg_text_packed_position_ids=cfg_text_packed_position_ids,
|
| 707 |
+
cfg_text_packed_query_indexes=cfg_text_packed_query_indexes,
|
| 708 |
+
cfg_text_key_values_lens=cfg_text_key_values_lens,
|
| 709 |
+
cfg_text_past_key_values=cfg_text_past_key_values,
|
| 710 |
+
cfg_text_packed_key_value_indexes=cfg_text_packed_key_value_indexes,
|
| 711 |
+
# cfg_img
|
| 712 |
+
cfg_img_scale=cfg_img_scale_,
|
| 713 |
+
cfg_img_packed_position_ids=cfg_img_packed_position_ids,
|
| 714 |
+
cfg_img_packed_query_indexes=cfg_img_packed_query_indexes,
|
| 715 |
+
cfg_img_key_values_lens=cfg_img_key_values_lens,
|
| 716 |
+
cfg_img_past_key_values=cfg_img_past_key_values,
|
| 717 |
+
cfg_img_packed_key_value_indexes=cfg_img_packed_key_value_indexes,
|
| 718 |
+
cfg_type=cfg_type,
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
x_t = x_t - v_t.to(x_t.device) * dts[i] # velocity pointing from data to noise
|
| 722 |
+
|
| 723 |
+
unpacked_latent = x_t.split((packed_seqlens - 2).tolist())
|
| 724 |
+
return unpacked_latent
|
| 725 |
+
|
| 726 |
+
@torch.no_grad
|
| 727 |
+
def _forward_flow(
|
| 728 |
+
self,
|
| 729 |
+
x_t: torch.Tensor,
|
| 730 |
+
timestep: torch.LongTensor,
|
| 731 |
+
packed_vae_token_indexes: torch.LongTensor,
|
| 732 |
+
packed_vae_position_ids: torch.LongTensor,
|
| 733 |
+
packed_text_ids: torch.LongTensor,
|
| 734 |
+
packed_text_indexes: torch.LongTensor,
|
| 735 |
+
packed_indexes: torch.LongTensor,
|
| 736 |
+
packed_position_ids: torch.LongTensor,
|
| 737 |
+
packed_seqlens: torch.IntTensor,
|
| 738 |
+
key_values_lens: torch.IntTensor,
|
| 739 |
+
past_key_values: NaiveCache,
|
| 740 |
+
packed_key_value_indexes: torch.LongTensor,
|
| 741 |
+
cfg_renorm_min: float = 0.0,
|
| 742 |
+
cfg_renorm_type: str = "global",
|
| 743 |
+
# cfg_text
|
| 744 |
+
cfg_text_scale: float = 1.0,
|
| 745 |
+
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
|
| 746 |
+
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
|
| 747 |
+
cfg_text_key_values_lens: Optional[torch.Tensor] = None,
|
| 748 |
+
cfg_text_past_key_values: Optional[NaiveCache] = None,
|
| 749 |
+
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
| 750 |
+
# cfg_img
|
| 751 |
+
cfg_img_scale: float = 1.0,
|
| 752 |
+
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
|
| 753 |
+
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
|
| 754 |
+
cfg_img_key_values_lens: Optional[torch.Tensor] = None,
|
| 755 |
+
cfg_img_past_key_values: Optional[NaiveCache] = None,
|
| 756 |
+
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
| 757 |
+
cfg_type: str = "parallel",
|
| 758 |
+
):
|
| 759 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
| 760 |
+
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
| 761 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
| 762 |
+
|
| 763 |
+
assert timestep.unique().shape[0] == 1
|
| 764 |
+
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
|
| 765 |
+
packed_timestep_embeds = self.time_embedder(timestep)
|
| 766 |
+
x_t = self.vae2llm(x_t) + packed_timestep_embeds + packed_pos_embed
|
| 767 |
+
packed_sequence[packed_vae_token_indexes] = x_t
|
| 768 |
+
|
| 769 |
+
extra_inputs = {}
|
| 770 |
+
if self.use_moe:
|
| 771 |
+
extra_inputs = {
|
| 772 |
+
"mode": "gen",
|
| 773 |
+
"packed_vae_token_indexes": packed_vae_token_indexes,
|
| 774 |
+
"packed_text_indexes": packed_text_indexes
|
| 775 |
+
}
|
| 776 |
+
|
| 777 |
+
output = self.language_model.forward_inference(
|
| 778 |
+
packed_query_sequence=packed_sequence,
|
| 779 |
+
query_lens=packed_seqlens,
|
| 780 |
+
packed_query_position_ids=packed_position_ids,
|
| 781 |
+
packed_query_indexes=packed_indexes,
|
| 782 |
+
past_key_values=past_key_values,
|
| 783 |
+
key_values_lens=key_values_lens,
|
| 784 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 785 |
+
update_past_key_values=False,
|
| 786 |
+
is_causal=False,
|
| 787 |
+
**extra_inputs,
|
| 788 |
+
)
|
| 789 |
+
v_t = self.llm2vae(output.packed_query_sequence)
|
| 790 |
+
v_t = v_t[packed_vae_token_indexes]
|
| 791 |
+
|
| 792 |
+
if cfg_text_scale > 1.0:
|
| 793 |
+
cfg_text_output = self.language_model.forward_inference(
|
| 794 |
+
packed_query_sequence=packed_sequence,
|
| 795 |
+
query_lens=packed_seqlens,
|
| 796 |
+
packed_query_position_ids=cfg_text_packed_position_ids,
|
| 797 |
+
packed_query_indexes=cfg_text_packed_query_indexes,
|
| 798 |
+
past_key_values=cfg_text_past_key_values,
|
| 799 |
+
key_values_lens=cfg_text_key_values_lens,
|
| 800 |
+
packed_key_value_indexes=cfg_text_packed_key_value_indexes,
|
| 801 |
+
update_past_key_values=False,
|
| 802 |
+
is_causal=False,
|
| 803 |
+
**extra_inputs,
|
| 804 |
+
)
|
| 805 |
+
cfg_text_v_t = self.llm2vae(cfg_text_output.packed_query_sequence)
|
| 806 |
+
cfg_text_v_t = cfg_text_v_t[packed_vae_token_indexes]
|
| 807 |
+
|
| 808 |
+
if cfg_img_scale > 1.0:
|
| 809 |
+
cfg_img_output = self.language_model.forward_inference(
|
| 810 |
+
packed_query_sequence=packed_sequence,
|
| 811 |
+
query_lens=packed_seqlens,
|
| 812 |
+
packed_query_position_ids=cfg_img_packed_position_ids,
|
| 813 |
+
packed_query_indexes=cfg_img_packed_query_indexes,
|
| 814 |
+
past_key_values=cfg_img_past_key_values,
|
| 815 |
+
key_values_lens=cfg_img_key_values_lens,
|
| 816 |
+
packed_key_value_indexes=cfg_img_packed_key_value_indexes,
|
| 817 |
+
update_past_key_values=False,
|
| 818 |
+
is_causal=False,
|
| 819 |
+
**extra_inputs,
|
| 820 |
+
)
|
| 821 |
+
cfg_img_v_t = self.llm2vae(cfg_img_output.packed_query_sequence)
|
| 822 |
+
cfg_img_v_t = cfg_img_v_t[packed_vae_token_indexes]
|
| 823 |
+
|
| 824 |
+
if cfg_text_scale > 1.0:
|
| 825 |
+
if cfg_renorm_type == "text_channel":
|
| 826 |
+
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
|
| 827 |
+
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
|
| 828 |
+
norm_v_t_text_ = torch.norm(v_t_text_, dim=-1, keepdim=True)
|
| 829 |
+
scale = (norm_v_t / (norm_v_t_text_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
|
| 830 |
+
v_t_text = v_t_text_ * scale
|
| 831 |
+
if cfg_img_scale > 1.0:
|
| 832 |
+
v_t = cfg_img_v_t + cfg_img_scale * (v_t_text - cfg_img_v_t)
|
| 833 |
+
else:
|
| 834 |
+
v_t = v_t_text
|
| 835 |
+
else:
|
| 836 |
+
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
|
| 837 |
+
|
| 838 |
+
if cfg_img_scale > 1.0:
|
| 839 |
+
v_t_ = cfg_img_v_t + cfg_img_scale * (v_t_text_ - cfg_img_v_t)
|
| 840 |
+
else:
|
| 841 |
+
v_t_ = v_t_text_
|
| 842 |
+
|
| 843 |
+
# NOTE norm is computed over all dimensions, thus currently only supports batch_size = 1 with navit
|
| 844 |
+
if cfg_renorm_type == "global":
|
| 845 |
+
norm_v_t = torch.norm(v_t)
|
| 846 |
+
norm_v_t_ = torch.norm(v_t_)
|
| 847 |
+
elif cfg_renorm_type == "channel":
|
| 848 |
+
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
|
| 849 |
+
norm_v_t_ = torch.norm(v_t_, dim=-1, keepdim=True)
|
| 850 |
+
else:
|
| 851 |
+
raise NotImplementedError(f"{cfg_renorm_type} is not suppoprted")
|
| 852 |
+
scale = (norm_v_t / (norm_v_t_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
|
| 853 |
+
v_t = v_t_ * scale
|
| 854 |
+
else:
|
| 855 |
+
# No CFG
|
| 856 |
+
pass
|
| 857 |
+
|
| 858 |
+
return v_t
|
| 859 |
+
|
| 860 |
+
def prepare_start_tokens(self, curr_kvlens, curr_rope, new_token_ids):
|
| 861 |
+
packed_start_tokens, packed_key_value_indexes = list(), list()
|
| 862 |
+
packed_query_position_ids = list()
|
| 863 |
+
|
| 864 |
+
curr = 0
|
| 865 |
+
for curr_kvlen, curr_position_id in zip(curr_kvlens, curr_rope):
|
| 866 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
| 867 |
+
packed_start_tokens.append(new_token_ids['bos_token_id'])
|
| 868 |
+
packed_query_position_ids.append(curr_position_id)
|
| 869 |
+
curr += curr_kvlen
|
| 870 |
+
|
| 871 |
+
generation_input = {
|
| 872 |
+
"packed_start_tokens": torch.tensor(packed_start_tokens, dtype=torch.long),
|
| 873 |
+
"packed_query_position_ids": torch.tensor(packed_query_position_ids, dtype=torch.long),
|
| 874 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
| 875 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
| 876 |
+
}
|
| 877 |
+
|
| 878 |
+
return generation_input
|
| 879 |
+
|
| 880 |
+
@torch.no_grad
|
| 881 |
+
def generate_text(
|
| 882 |
+
self,
|
| 883 |
+
past_key_values: NaiveCache,
|
| 884 |
+
packed_key_value_indexes: torch.LongTensor,
|
| 885 |
+
key_values_lens: torch.IntTensor,
|
| 886 |
+
packed_start_tokens: torch.LongTensor,
|
| 887 |
+
packed_query_position_ids: torch.LongTensor,
|
| 888 |
+
max_length: int,
|
| 889 |
+
do_sample: bool = False,
|
| 890 |
+
temperature: float = 1.0,
|
| 891 |
+
end_token_id: int = None,
|
| 892 |
+
):
|
| 893 |
+
step = 0
|
| 894 |
+
generated_sequence = []
|
| 895 |
+
curr_tokens = packed_start_tokens
|
| 896 |
+
while step < max_length:
|
| 897 |
+
generated_sequence.append(curr_tokens)
|
| 898 |
+
packed_text_embedding = self.language_model.model.embed_tokens(curr_tokens)
|
| 899 |
+
query_lens = torch.ones_like(curr_tokens)
|
| 900 |
+
packed_query_indexes = torch.cumsum(key_values_lens, dim=0) + torch.arange(
|
| 901 |
+
0, len(key_values_lens),
|
| 902 |
+
device=key_values_lens.device,
|
| 903 |
+
dtype=key_values_lens.dtype
|
| 904 |
+
)
|
| 905 |
+
|
| 906 |
+
uppacked = list(packed_key_value_indexes.split(key_values_lens.tolist(), dim=0))
|
| 907 |
+
for i in range(len(uppacked)):
|
| 908 |
+
uppacked[i] += i
|
| 909 |
+
packed_key_value_indexes = torch.cat(uppacked, dim=0)
|
| 910 |
+
|
| 911 |
+
extra_inputs = {}
|
| 912 |
+
if self.use_moe:
|
| 913 |
+
extra_inputs = {"mode": "und"}
|
| 914 |
+
|
| 915 |
+
output = self.language_model.forward_inference(
|
| 916 |
+
packed_query_sequence=packed_text_embedding,
|
| 917 |
+
query_lens=query_lens,
|
| 918 |
+
packed_query_position_ids=packed_query_position_ids,
|
| 919 |
+
packed_query_indexes=packed_query_indexes,
|
| 920 |
+
past_key_values=past_key_values,
|
| 921 |
+
key_values_lens=key_values_lens,
|
| 922 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 923 |
+
update_past_key_values=True,
|
| 924 |
+
is_causal=True,
|
| 925 |
+
**extra_inputs,
|
| 926 |
+
)
|
| 927 |
+
past_key_values = output.past_key_values
|
| 928 |
+
packed_query_sequence = output.packed_query_sequence
|
| 929 |
+
pred_logits = self.language_model.lm_head(packed_query_sequence)
|
| 930 |
+
|
| 931 |
+
if do_sample:
|
| 932 |
+
probs = nn.functional.softmax(pred_logits / temperature, dim=-1)
|
| 933 |
+
curr_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
| 934 |
+
else:
|
| 935 |
+
curr_tokens = torch.argmax(pred_logits, dim=-1)
|
| 936 |
+
|
| 937 |
+
uppacked = list(packed_key_value_indexes.split(key_values_lens.tolist(), dim=0))
|
| 938 |
+
for i in range(len(uppacked)):
|
| 939 |
+
uppacked[i] = torch.cat(
|
| 940 |
+
[uppacked[i], torch.tensor([uppacked[i][-1] + 1], device=uppacked[i].device)], dim=0
|
| 941 |
+
)
|
| 942 |
+
packed_key_value_indexes = torch.cat(uppacked, dim=0)
|
| 943 |
+
key_values_lens = key_values_lens + 1
|
| 944 |
+
packed_query_position_ids = packed_query_position_ids + 1
|
| 945 |
+
step += 1
|
| 946 |
+
|
| 947 |
+
if end_token_id is not None and curr_tokens[0] == end_token_id: # only support batch=1
|
| 948 |
+
break
|
| 949 |
+
|
| 950 |
+
output_device = generated_sequence[0].device
|
| 951 |
+
return torch.stack([i.to(output_device) for i in generated_sequence], dim=0)
|
| 952 |
+
|
| 953 |
+
# for evaluation
|
| 954 |
+
@torch.no_grad()
|
| 955 |
+
def chat(
|
| 956 |
+
self,
|
| 957 |
+
tokenizer,
|
| 958 |
+
new_token_ids,
|
| 959 |
+
image_transform,
|
| 960 |
+
images,
|
| 961 |
+
prompt,
|
| 962 |
+
max_length: int,
|
| 963 |
+
do_sample: bool = False,
|
| 964 |
+
temperature: float = 1.0,
|
| 965 |
+
):
|
| 966 |
+
device = next(self.parameters()).device
|
| 967 |
+
|
| 968 |
+
if isinstance(new_token_ids, dict):
|
| 969 |
+
for k, v in new_token_ids.items():
|
| 970 |
+
if torch.is_tensor(v):
|
| 971 |
+
new_token_ids[k] = v.to(device)
|
| 972 |
+
elif torch.is_tensor(new_token_ids):
|
| 973 |
+
new_token_ids = new_token_ids.to(device)
|
| 974 |
+
|
| 975 |
+
# prefill
|
| 976 |
+
past_key_values = NaiveCache(self.config.llm_config.num_hidden_layers)
|
| 977 |
+
newlens = [0]
|
| 978 |
+
new_rope = [0]
|
| 979 |
+
|
| 980 |
+
# add images
|
| 981 |
+
for image in images:
|
| 982 |
+
generation_input, newlens, new_rope = self.prepare_vit_images(
|
| 983 |
+
curr_kvlens=newlens,
|
| 984 |
+
curr_rope=new_rope,
|
| 985 |
+
images=[image],
|
| 986 |
+
transforms=image_transform,
|
| 987 |
+
new_token_ids=new_token_ids,
|
| 988 |
+
)
|
| 989 |
+
for k, v in generation_input.items():
|
| 990 |
+
if torch.is_tensor(v):
|
| 991 |
+
generation_input[k] = v.to(device)
|
| 992 |
+
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
| 993 |
+
past_key_values = self.forward_cache_update_vit(past_key_values, **generation_input)
|
| 994 |
+
|
| 995 |
+
# add text
|
| 996 |
+
generation_input, newlens, new_rope = self.prepare_prompts(
|
| 997 |
+
curr_kvlens=newlens,
|
| 998 |
+
curr_rope=new_rope,
|
| 999 |
+
prompts=[prompt],
|
| 1000 |
+
tokenizer=tokenizer,
|
| 1001 |
+
new_token_ids=new_token_ids,
|
| 1002 |
+
)
|
| 1003 |
+
for k, v in generation_input.items():
|
| 1004 |
+
if torch.is_tensor(v):
|
| 1005 |
+
generation_input[k] = v.to(device)
|
| 1006 |
+
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
| 1007 |
+
past_key_values = self.forward_cache_update_text(past_key_values, **generation_input)
|
| 1008 |
+
|
| 1009 |
+
# decode
|
| 1010 |
+
generation_input = self.prepare_start_tokens(newlens, new_rope, new_token_ids)
|
| 1011 |
+
for k, v in generation_input.items():
|
| 1012 |
+
if torch.is_tensor(v):
|
| 1013 |
+
generation_input[k] = v.to(device)
|
| 1014 |
+
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
| 1015 |
+
unpacked_latent = self.generate_text(
|
| 1016 |
+
past_key_values=past_key_values,
|
| 1017 |
+
max_length=max_length,
|
| 1018 |
+
do_sample=do_sample,
|
| 1019 |
+
temperature=temperature,
|
| 1020 |
+
end_token_id=new_token_ids['eos_token_id'],
|
| 1021 |
+
**generation_input,
|
| 1022 |
+
)
|
| 1023 |
+
output = tokenizer.decode(unpacked_latent[:,0])
|
| 1024 |
+
output = output.split('<|im_end|>')[0].split('<|im_start|>')[1]
|
| 1025 |
+
|
| 1026 |
+
return output
|
modeling/bagel/modeling_utils.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022 Facebook, Inc. and its affiliates.
|
| 2 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
| 3 |
+
# SPDX-License-Identifier: CC BY-NC 4.0
|
| 4 |
+
#
|
| 5 |
+
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
| 6 |
+
#
|
| 7 |
+
# Original file was released under CC BY-NC 4.0, with the full license text
|
| 8 |
+
# available at https://github.com/facebookresearch/DiT/blob/main/LICENSE.txt.
|
| 9 |
+
#
|
| 10 |
+
# This modified file is released under the same license.
|
| 11 |
+
|
| 12 |
+
import math
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch
|
| 16 |
+
from torch import nn
|
| 17 |
+
from transformers.activations import ACT2FN
|
| 18 |
+
|
| 19 |
+
# --------------------------------------------------------
|
| 20 |
+
# 2D sine-cosine position embedding
|
| 21 |
+
# References:
|
| 22 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
| 23 |
+
# --------------------------------------------------------
|
| 24 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
|
| 25 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
| 26 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
| 27 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 28 |
+
grid = np.stack(grid, axis=0)
|
| 29 |
+
|
| 30 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 31 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 32 |
+
if cls_token and extra_tokens > 0:
|
| 33 |
+
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
| 34 |
+
return pos_embed
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 38 |
+
assert embed_dim % 2 == 0
|
| 39 |
+
|
| 40 |
+
# use half of dimensions to encode grid_h
|
| 41 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 42 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 43 |
+
|
| 44 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 45 |
+
return emb
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 49 |
+
"""
|
| 50 |
+
embed_dim: output dimension for each position
|
| 51 |
+
pos: a list of positions to be encoded: size (M,)
|
| 52 |
+
out: (M, D)
|
| 53 |
+
"""
|
| 54 |
+
assert embed_dim % 2 == 0
|
| 55 |
+
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
| 56 |
+
omega /= embed_dim / 2.
|
| 57 |
+
omega = 1. / 10000**omega # (D/2,)
|
| 58 |
+
|
| 59 |
+
pos = pos.reshape(-1) # (M,)
|
| 60 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
| 61 |
+
|
| 62 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 63 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 64 |
+
|
| 65 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 66 |
+
return emb
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# --------------------------------------------------------
|
| 70 |
+
# TimestepEmbedder
|
| 71 |
+
# Reference:
|
| 72 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
| 73 |
+
# --------------------------------------------------------
|
| 74 |
+
class TimestepEmbedder(nn.Module):
|
| 75 |
+
"""
|
| 76 |
+
Embeds scalar timesteps into vector representations.
|
| 77 |
+
"""
|
| 78 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 79 |
+
super().__init__()
|
| 80 |
+
self.mlp = nn.Sequential(
|
| 81 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 82 |
+
nn.SiLU(),
|
| 83 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 84 |
+
)
|
| 85 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 86 |
+
|
| 87 |
+
@staticmethod
|
| 88 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 89 |
+
"""
|
| 90 |
+
Create sinusoidal timestep embeddings.
|
| 91 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
| 92 |
+
These may be fractional.
|
| 93 |
+
:param dim: the dimension of the output.
|
| 94 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 95 |
+
:return: an (N, D) Tensor of positional embeddings.
|
| 96 |
+
"""
|
| 97 |
+
half = dim // 2
|
| 98 |
+
freqs = torch.exp(
|
| 99 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 100 |
+
).to(device=t.device)
|
| 101 |
+
args = t[:, None].float() * freqs[None]
|
| 102 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 103 |
+
if dim % 2:
|
| 104 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 105 |
+
return embedding
|
| 106 |
+
|
| 107 |
+
def forward(self, t):
|
| 108 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 109 |
+
t_emb = self.mlp(t_freq)
|
| 110 |
+
return t_emb
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class MLPconnector(nn.Module):
|
| 114 |
+
def __init__(self, in_dim: int, out_dim: int, hidden_act: str):
|
| 115 |
+
super().__init__()
|
| 116 |
+
self.activation_fn = ACT2FN[hidden_act]
|
| 117 |
+
self.fc1 = nn.Linear(in_dim, out_dim)
|
| 118 |
+
self.fc2 = nn.Linear(out_dim, out_dim)
|
| 119 |
+
|
| 120 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 121 |
+
hidden_states = self.fc1(hidden_states)
|
| 122 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 123 |
+
hidden_states = self.fc2(hidden_states)
|
| 124 |
+
return hidden_states
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class PositionEmbedding(nn.Module):
|
| 128 |
+
def __init__(self, max_num_patch_per_side, hidden_size):
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.max_num_patch_per_side = max_num_patch_per_side
|
| 131 |
+
self.hidden_size = hidden_size
|
| 132 |
+
self.pos_embed = nn.Parameter(
|
| 133 |
+
torch.zeros(max_num_patch_per_side ** 2, hidden_size),
|
| 134 |
+
requires_grad=False
|
| 135 |
+
)
|
| 136 |
+
self._init_weights()
|
| 137 |
+
|
| 138 |
+
def _init_weights(self):
|
| 139 |
+
# Initialize (and freeze) pos_embed by sin-cos embedding:
|
| 140 |
+
pos_embed = get_2d_sincos_pos_embed(self.hidden_size, self.max_num_patch_per_side)
|
| 141 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float())
|
| 142 |
+
|
| 143 |
+
def forward(self, position_ids):
|
| 144 |
+
return self.pos_embed[position_ids]
|
modeling/bagel/qwen2_navit.py
ADDED
|
@@ -0,0 +1,1157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 The Qwen Team and The HuggingFace Inc. team.
|
| 2 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
| 3 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 4 |
+
#
|
| 5 |
+
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
| 6 |
+
#
|
| 7 |
+
# Original file was released under Apache-2.0, with the full license text
|
| 8 |
+
# available at https://github.com/huggingface/transformers/blob/main/LICENSE.
|
| 9 |
+
#
|
| 10 |
+
# This modified file is released under the same license.
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
from dataclasses import dataclass
|
| 14 |
+
from functools import partial
|
| 15 |
+
from typing import List, Optional, Tuple
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
| 20 |
+
from torch.nn.attention.flex_attention import flex_attention
|
| 21 |
+
from torch.nn.functional import scaled_dot_product_attention
|
| 22 |
+
from transformers.utils import ModelOutput
|
| 23 |
+
|
| 24 |
+
from flash_attn import flash_attn_varlen_func
|
| 25 |
+
from modeling.qwen2.modeling_qwen2 import (
|
| 26 |
+
Qwen2Attention,
|
| 27 |
+
Qwen2MLP,
|
| 28 |
+
Qwen2PreTrainedModel,
|
| 29 |
+
Qwen2RMSNorm,
|
| 30 |
+
Qwen2RotaryEmbedding,
|
| 31 |
+
apply_rotary_pos_emb,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
from modeling.qwen2.configuration_qwen2 import Qwen2Config as _Qwen2Config
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
torch._dynamo.config.cache_size_limit = 512
|
| 38 |
+
torch._dynamo.config.accumulated_cache_size_limit = 4096
|
| 39 |
+
# flex_attention = torch.compile(flex_attention) # , dynamic=True, mode='max-autotune'
|
| 40 |
+
flex_attention = torch.compile(flex_attention)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class Qwen2Config(_Qwen2Config):
|
| 44 |
+
r"""
|
| 45 |
+
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
| 46 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 47 |
+
with the defaults will yield a similar configuration to that of
|
| 48 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
| 49 |
+
|
| 50 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 51 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
| 55 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
| 56 |
+
`inputs_ids` passed when calling [`Qwen2Model`]
|
| 57 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 58 |
+
Dimension of the hidden representations.
|
| 59 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
| 60 |
+
Dimension of the MLP representations.
|
| 61 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 62 |
+
Number of hidden layers in the Transformer encoder.
|
| 63 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 64 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 65 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
| 66 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 67 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 68 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 69 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 70 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 71 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
| 72 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 73 |
+
The non-linear activation function (function or string) in the decoder.
|
| 74 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 75 |
+
The maximum sequence length that this model might ever be used with.
|
| 76 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 77 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 78 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 79 |
+
The epsilon used by the rms normalization layers.
|
| 80 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 81 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 82 |
+
relevant if `config.is_decoder=True`.
|
| 83 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 84 |
+
Whether the model's input and output word embeddings should be tied.
|
| 85 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 86 |
+
The base period of the RoPE embeddings.
|
| 87 |
+
rope_scaling (`Dict`, *optional*):
|
| 88 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 89 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 90 |
+
accordingly.
|
| 91 |
+
Expected contents:
|
| 92 |
+
`rope_type` (`str`):
|
| 93 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 94 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 95 |
+
`factor` (`float`, *optional*):
|
| 96 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 97 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 98 |
+
original maximum pre-trained length.
|
| 99 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 100 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 101 |
+
pretraining.
|
| 102 |
+
`attention_factor` (`float`, *optional*):
|
| 103 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 104 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 105 |
+
`factor` field to infer the suggested value.
|
| 106 |
+
`beta_fast` (`float`, *optional*):
|
| 107 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 108 |
+
ramp function. If unspecified, it defaults to 32.
|
| 109 |
+
`beta_slow` (`float`, *optional*):
|
| 110 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 111 |
+
ramp function. If unspecified, it defaults to 1.
|
| 112 |
+
`short_factor` (`List[float]`, *optional*):
|
| 113 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 114 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 115 |
+
size divided by the number of attention heads divided by 2
|
| 116 |
+
`long_factor` (`List[float]`, *optional*):
|
| 117 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 118 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 119 |
+
size divided by the number of attention heads divided by 2
|
| 120 |
+
`low_freq_factor` (`float`, *optional*):
|
| 121 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 122 |
+
`high_freq_factor` (`float`, *optional*):
|
| 123 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 124 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 125 |
+
Whether to use sliding window attention.
|
| 126 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 127 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 128 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
| 129 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 130 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 131 |
+
The dropout ratio for the attention probabilities.
|
| 132 |
+
|
| 133 |
+
```python
|
| 134 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
| 135 |
+
|
| 136 |
+
>>> # Initializing a Qwen2 style configuration
|
| 137 |
+
>>> configuration = Qwen2Config()
|
| 138 |
+
|
| 139 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
| 140 |
+
>>> model = Qwen2Model(configuration)
|
| 141 |
+
|
| 142 |
+
>>> # Accessing the model configuration
|
| 143 |
+
>>> configuration = model.config
|
| 144 |
+
```"""
|
| 145 |
+
|
| 146 |
+
model_type = "qwen2"
|
| 147 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 148 |
+
|
| 149 |
+
def __init__(
|
| 150 |
+
self,
|
| 151 |
+
vocab_size=151936,
|
| 152 |
+
hidden_size=4096,
|
| 153 |
+
intermediate_size=22016,
|
| 154 |
+
num_hidden_layers=32,
|
| 155 |
+
num_attention_heads=32,
|
| 156 |
+
num_key_value_heads=32,
|
| 157 |
+
hidden_act="silu",
|
| 158 |
+
max_position_embeddings=32768,
|
| 159 |
+
initializer_range=0.02,
|
| 160 |
+
rms_norm_eps=1e-6,
|
| 161 |
+
use_cache=True,
|
| 162 |
+
tie_word_embeddings=False,
|
| 163 |
+
rope_theta=10000.0,
|
| 164 |
+
rope_scaling=None,
|
| 165 |
+
use_sliding_window=False,
|
| 166 |
+
sliding_window=4096,
|
| 167 |
+
max_window_layers=28,
|
| 168 |
+
attention_dropout=0.0,
|
| 169 |
+
is_causal=True,
|
| 170 |
+
_attn_implementation="flash_attention_2",
|
| 171 |
+
qk_norm=True,
|
| 172 |
+
layer_module="Qwen2DecoderLayer",
|
| 173 |
+
freeze_und=False,
|
| 174 |
+
**kwargs,
|
| 175 |
+
):
|
| 176 |
+
super().__init__(
|
| 177 |
+
vocab_size=vocab_size,
|
| 178 |
+
hidden_size=hidden_size,
|
| 179 |
+
intermediate_size=intermediate_size,
|
| 180 |
+
num_hidden_layers=num_hidden_layers,
|
| 181 |
+
num_attention_heads=num_attention_heads,
|
| 182 |
+
num_key_value_heads=num_key_value_heads,
|
| 183 |
+
hidden_act=hidden_act,
|
| 184 |
+
max_position_embeddings=max_position_embeddings,
|
| 185 |
+
initializer_range=initializer_range,
|
| 186 |
+
rms_norm_eps=rms_norm_eps,
|
| 187 |
+
use_cache=use_cache,
|
| 188 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 189 |
+
rope_theta=rope_theta,
|
| 190 |
+
rope_scaling=rope_scaling,
|
| 191 |
+
use_sliding_window=use_sliding_window,
|
| 192 |
+
sliding_window=sliding_window,
|
| 193 |
+
max_window_layers=max_window_layers,
|
| 194 |
+
attention_dropout=attention_dropout,
|
| 195 |
+
is_causal=is_causal,
|
| 196 |
+
_attn_implementation=_attn_implementation,
|
| 197 |
+
**kwargs,
|
| 198 |
+
)
|
| 199 |
+
self.qk_norm = qk_norm
|
| 200 |
+
self.layer_module = layer_module
|
| 201 |
+
self.freeze_und = freeze_und
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
class NaiveCache:
|
| 205 |
+
def __init__(self, num_layers):
|
| 206 |
+
self.key_cache = {k: None for k in range(num_layers)}
|
| 207 |
+
self.value_cache = {k: None for k in range(num_layers)}
|
| 208 |
+
|
| 209 |
+
@property
|
| 210 |
+
def num_layers(self):
|
| 211 |
+
return len(self.key_cache)
|
| 212 |
+
|
| 213 |
+
@property
|
| 214 |
+
def seq_lens(self):
|
| 215 |
+
if self.key_cache[0] is not None:
|
| 216 |
+
return self.key_cache[0].shape[0]
|
| 217 |
+
else:
|
| 218 |
+
return 0
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
@dataclass
|
| 222 |
+
class BaseNavitOutputWithPast(ModelOutput):
|
| 223 |
+
packed_query_sequence: torch.FloatTensor = None
|
| 224 |
+
past_key_values: Optional[NaiveCache] = None
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def pad_sequence(tensor, pad_size):
|
| 228 |
+
H, L, D = tensor.shape
|
| 229 |
+
pad_tensor = tensor.new_zeros((H, pad_size, D))
|
| 230 |
+
return torch.cat([tensor, pad_tensor], dim=1)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class PackedAttention(Qwen2Attention):
|
| 234 |
+
def __init__(self, config, layer_idx: Optional[int] = None):
|
| 235 |
+
super().__init__(config, layer_idx)
|
| 236 |
+
if self.config.qk_norm:
|
| 237 |
+
self.q_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 238 |
+
self.k_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 239 |
+
else:
|
| 240 |
+
self.q_norm = nn.Identity()
|
| 241 |
+
self.k_norm = nn.Identity()
|
| 242 |
+
|
| 243 |
+
def forward(self, *args, **kwargs):
|
| 244 |
+
if self.training:
|
| 245 |
+
return self.forward_train(*args, **kwargs)
|
| 246 |
+
else:
|
| 247 |
+
return self.forward_inference(*args, **kwargs)
|
| 248 |
+
|
| 249 |
+
def forward_train(
|
| 250 |
+
self,
|
| 251 |
+
packed_sequence: torch.Tensor,
|
| 252 |
+
sample_lens: List[int],
|
| 253 |
+
attention_mask: List[torch.Tensor],
|
| 254 |
+
packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 255 |
+
):
|
| 256 |
+
packed_query_states = self.q_proj(packed_sequence).view(-1, self.num_heads, self.head_dim)
|
| 257 |
+
packed_key_states = self.k_proj(packed_sequence).view(-1, self.num_key_value_heads, self.head_dim)
|
| 258 |
+
packed_value_states = self.v_proj(packed_sequence).view(-1, self.num_key_value_heads, self.head_dim)
|
| 259 |
+
|
| 260 |
+
packed_query_states = self.q_norm(packed_query_states)
|
| 261 |
+
packed_key_states = self.k_norm(packed_key_states)
|
| 262 |
+
|
| 263 |
+
packed_cos, packed_sin = packed_position_embeddings
|
| 264 |
+
packed_query_states, packed_key_states = apply_rotary_pos_emb(
|
| 265 |
+
packed_query_states, packed_key_states, packed_cos, packed_sin, unsqueeze_dim=1
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
if isinstance(attention_mask, List):
|
| 269 |
+
packed_key_states = packed_key_states[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1)
|
| 270 |
+
packed_key_states = packed_key_states.reshape(-1, self.num_heads, self.head_dim)
|
| 271 |
+
packed_value_states = packed_value_states[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1)
|
| 272 |
+
packed_value_states = packed_value_states.reshape(-1, self.num_heads, self.head_dim)
|
| 273 |
+
|
| 274 |
+
unpacked_query_states = packed_query_states.transpose(0, 1).split(sample_lens, dim=1)
|
| 275 |
+
unpacked_key_states = packed_key_states.transpose(0, 1).split(sample_lens, dim=1)
|
| 276 |
+
unpacked_value_states = packed_value_states.transpose(0, 1).split(sample_lens, dim=1)
|
| 277 |
+
upacked_attn_output = []
|
| 278 |
+
for query_states, key_states, value_states, attention_mask_per_sample in zip(
|
| 279 |
+
unpacked_query_states, unpacked_key_states, unpacked_value_states, attention_mask
|
| 280 |
+
):
|
| 281 |
+
with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]):
|
| 282 |
+
attn_output = scaled_dot_product_attention(
|
| 283 |
+
query_states.to(torch.bfloat16).unsqueeze(0),
|
| 284 |
+
key_states.to(torch.bfloat16).unsqueeze(0),
|
| 285 |
+
value_states.to(torch.bfloat16).unsqueeze(0),
|
| 286 |
+
attention_mask_per_sample.to(torch.bfloat16).unsqueeze(0),
|
| 287 |
+
)
|
| 288 |
+
upacked_attn_output.append(attn_output.squeeze(0))
|
| 289 |
+
packed_attn_output = torch.cat(upacked_attn_output, dim=1)
|
| 290 |
+
else:
|
| 291 |
+
pad_size = sum(sample_lens) - packed_query_states.shape[0]
|
| 292 |
+
packed_query_states = pad_sequence(packed_query_states.permute(1, 0, 2), pad_size)
|
| 293 |
+
packed_key_states = pad_sequence(packed_key_states.permute(1, 0, 2), pad_size)
|
| 294 |
+
packed_value_states = pad_sequence(packed_value_states.permute(1, 0, 2), pad_size)
|
| 295 |
+
packed_attn_output = flex_attention(
|
| 296 |
+
packed_query_states.unsqueeze(0),
|
| 297 |
+
packed_key_states.unsqueeze(0),
|
| 298 |
+
packed_value_states.unsqueeze(0),
|
| 299 |
+
enable_gqa=True,
|
| 300 |
+
block_mask=attention_mask,
|
| 301 |
+
)
|
| 302 |
+
end_index = packed_attn_output.shape[2] - pad_size
|
| 303 |
+
packed_attn_output = packed_attn_output[0, :, :end_index, :]
|
| 304 |
+
|
| 305 |
+
packed_attn_output = packed_attn_output.transpose(0, 1).reshape(-1, self.hidden_size)
|
| 306 |
+
packed_attn_output = self.o_proj(packed_attn_output)
|
| 307 |
+
|
| 308 |
+
return packed_attn_output
|
| 309 |
+
|
| 310 |
+
def forward_inference(
|
| 311 |
+
self,
|
| 312 |
+
packed_query_sequence: torch.Tensor,
|
| 313 |
+
query_lens: torch.Tensor,
|
| 314 |
+
packed_query_position_embeddings: torch.Tensor,
|
| 315 |
+
packed_query_indexes: torch.Tensor,
|
| 316 |
+
past_key_values: Optional[NaiveCache] = None,
|
| 317 |
+
key_values_lens: Optional[torch.Tensor] = None,
|
| 318 |
+
packed_key_value_indexes: Optional[torch.Tensor] = None,
|
| 319 |
+
update_past_key_values=True,
|
| 320 |
+
is_causal=True,
|
| 321 |
+
):
|
| 322 |
+
packed_query_states = self.q_proj(packed_query_sequence).view(-1, self.num_heads, self.head_dim)
|
| 323 |
+
packed_key_states = self.k_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim)
|
| 324 |
+
packed_value_states = self.v_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim)
|
| 325 |
+
|
| 326 |
+
packed_query_states = self.q_norm(packed_query_states)
|
| 327 |
+
packed_key_states = self.k_norm(packed_key_states)
|
| 328 |
+
|
| 329 |
+
packed_cos, packed_sin = packed_query_position_embeddings
|
| 330 |
+
packed_query_states, packed_key_states = apply_rotary_pos_emb(
|
| 331 |
+
packed_query_states, packed_key_states, packed_cos, packed_sin, unsqueeze_dim=1
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
packed_query_states = packed_query_states.to(torch.bfloat16)
|
| 335 |
+
packed_key_states = packed_key_states.to(torch.bfloat16)
|
| 336 |
+
packed_value_states = packed_value_states.to(torch.bfloat16)
|
| 337 |
+
|
| 338 |
+
if past_key_values is not None and past_key_values.key_cache[self.layer_idx] is not None:
|
| 339 |
+
past_key_states = past_key_values.key_cache[self.layer_idx]
|
| 340 |
+
past_value_states = past_key_values.value_cache[self.layer_idx]
|
| 341 |
+
|
| 342 |
+
seqlens = sum(query_lens) + sum(key_values_lens)
|
| 343 |
+
merged_key_states = past_key_states.new_zeros((seqlens, self.num_key_value_heads, self.head_dim))
|
| 344 |
+
merged_value_states = past_key_states.new_zeros((seqlens, self.num_key_value_heads, self.head_dim))
|
| 345 |
+
merged_key_states[packed_query_indexes] = packed_key_states
|
| 346 |
+
merged_key_states[packed_key_value_indexes] = past_key_states
|
| 347 |
+
merged_value_states[packed_query_indexes] = packed_value_states
|
| 348 |
+
merged_value_states[packed_key_value_indexes] = past_value_states
|
| 349 |
+
key_values_lens = key_values_lens + query_lens
|
| 350 |
+
else:
|
| 351 |
+
merged_key_states = packed_key_states
|
| 352 |
+
merged_value_states = packed_value_states
|
| 353 |
+
key_values_lens = query_lens
|
| 354 |
+
|
| 355 |
+
cu_seqlens_q = torch.nn.functional.pad(torch.cumsum(query_lens, dim=0), (1, 0))
|
| 356 |
+
cu_seqlens_k = torch.nn.functional.pad(torch.cumsum(key_values_lens, dim=0), (1, 0))
|
| 357 |
+
|
| 358 |
+
packed_attn_output = flash_attn_varlen_func(
|
| 359 |
+
q=packed_query_states,
|
| 360 |
+
k=merged_key_states,
|
| 361 |
+
v=merged_value_states,
|
| 362 |
+
cu_seqlens_q=cu_seqlens_q.to(torch.int32),
|
| 363 |
+
cu_seqlens_k=cu_seqlens_k.to(torch.int32),
|
| 364 |
+
max_seqlen_q=max(query_lens).item(),
|
| 365 |
+
max_seqlen_k=max(key_values_lens).item(),
|
| 366 |
+
causal=is_causal,
|
| 367 |
+
)
|
| 368 |
+
packed_attn_output = packed_attn_output.reshape(-1, self.hidden_size)
|
| 369 |
+
packed_attn_output = self.o_proj(packed_attn_output)
|
| 370 |
+
|
| 371 |
+
if update_past_key_values:
|
| 372 |
+
past_key_values.key_cache[self.layer_idx] = merged_key_states
|
| 373 |
+
past_key_values.value_cache[self.layer_idx] = merged_value_states
|
| 374 |
+
|
| 375 |
+
return packed_attn_output, past_key_values
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
class PackedAttentionMoT(Qwen2Attention):
|
| 379 |
+
def __init__(self, config, layer_idx: Optional[int] = None):
|
| 380 |
+
super().__init__(config, layer_idx)
|
| 381 |
+
if self.config.qk_norm:
|
| 382 |
+
self.q_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 383 |
+
self.k_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 384 |
+
self.q_norm_moe_gen = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 385 |
+
self.k_norm_moe_gen = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 386 |
+
else:
|
| 387 |
+
self.q_norm = nn.Identity()
|
| 388 |
+
self.k_norm = nn.Identity()
|
| 389 |
+
self.q_norm_moe_gen = nn.Identity()
|
| 390 |
+
self.k_norm_moe_gen = nn.Identity()
|
| 391 |
+
|
| 392 |
+
self.q_proj_moe_gen = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
| 393 |
+
self.k_proj_moe_gen = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 394 |
+
self.v_proj_moe_gen = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 395 |
+
self.o_proj_moe_gen = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 396 |
+
|
| 397 |
+
def forward(self, *args, **kwargs):
|
| 398 |
+
if self.training:
|
| 399 |
+
return self.forward_train(*args, **kwargs)
|
| 400 |
+
else:
|
| 401 |
+
return self.forward_inference(*args, **kwargs)
|
| 402 |
+
|
| 403 |
+
def forward_train(
|
| 404 |
+
self,
|
| 405 |
+
packed_sequence: torch.Tensor,
|
| 406 |
+
sample_lens: List[int],
|
| 407 |
+
attention_mask,
|
| 408 |
+
packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 409 |
+
packed_und_token_indexes: torch.LongTensor,
|
| 410 |
+
packed_gen_token_indexes: torch.LongTensor,
|
| 411 |
+
):
|
| 412 |
+
packed_query_states = packed_sequence.new_zeros((packed_sequence.shape[0], self.num_heads * self.head_dim))
|
| 413 |
+
packed_key_states = packed_sequence.new_zeros((packed_sequence.shape[0], self.num_key_value_heads * self.head_dim))
|
| 414 |
+
packed_value_states = packed_sequence.new_zeros((packed_sequence.shape[0], self.num_key_value_heads * self.head_dim))
|
| 415 |
+
|
| 416 |
+
packed_sequence_und = packed_sequence[packed_und_token_indexes]
|
| 417 |
+
packed_sequence_gen = packed_sequence[packed_gen_token_indexes]
|
| 418 |
+
|
| 419 |
+
packed_query_states[packed_und_token_indexes] = self.q_proj(packed_sequence_und)
|
| 420 |
+
packed_query_states[packed_gen_token_indexes] = self.q_proj_moe_gen(packed_sequence_gen)
|
| 421 |
+
|
| 422 |
+
packed_key_states[packed_und_token_indexes] = self.k_proj(packed_sequence_und)
|
| 423 |
+
packed_key_states[packed_gen_token_indexes] = self.k_proj_moe_gen(packed_sequence_gen)
|
| 424 |
+
|
| 425 |
+
packed_value_states[packed_und_token_indexes] = self.v_proj(packed_sequence_und)
|
| 426 |
+
packed_value_states[packed_gen_token_indexes] = self.v_proj_moe_gen(packed_sequence_gen)
|
| 427 |
+
|
| 428 |
+
packed_query_states = packed_query_states.view(-1, self.num_heads, self.head_dim)
|
| 429 |
+
packed_key_states = packed_key_states.view(-1, self.num_key_value_heads, self.head_dim)
|
| 430 |
+
packed_value_states = packed_value_states.view(-1, self.num_key_value_heads, self.head_dim)
|
| 431 |
+
if self.config.freeze_und:
|
| 432 |
+
packed_value_states[packed_und_token_indexes] = packed_value_states[packed_und_token_indexes].detach()
|
| 433 |
+
|
| 434 |
+
packed_query_states_ = packed_query_states.new_zeros(packed_query_states.shape)
|
| 435 |
+
packed_key_states_ = packed_key_states.new_zeros(packed_key_states.shape)
|
| 436 |
+
|
| 437 |
+
packed_query_states_[packed_und_token_indexes] = self.q_norm(packed_query_states[packed_und_token_indexes])
|
| 438 |
+
if self.config.freeze_und:
|
| 439 |
+
packed_query_states_[packed_und_token_indexes] = packed_query_states_[packed_und_token_indexes].detach()
|
| 440 |
+
packed_query_states_[packed_gen_token_indexes] = self.q_norm_moe_gen(packed_query_states[packed_gen_token_indexes])
|
| 441 |
+
|
| 442 |
+
packed_key_states_[packed_und_token_indexes] = self.k_norm(packed_key_states[packed_und_token_indexes])
|
| 443 |
+
if self.config.freeze_und:
|
| 444 |
+
packed_key_states_[packed_und_token_indexes] = packed_key_states_[packed_und_token_indexes].detach()
|
| 445 |
+
packed_key_states_[packed_gen_token_indexes] = self.k_norm_moe_gen(packed_key_states[packed_gen_token_indexes])
|
| 446 |
+
|
| 447 |
+
packed_cos, packed_sin = packed_position_embeddings
|
| 448 |
+
packed_query_states_, packed_key_states_ = apply_rotary_pos_emb(
|
| 449 |
+
packed_query_states_, packed_key_states_, packed_cos, packed_sin, unsqueeze_dim=1
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
if isinstance(attention_mask, List):
|
| 453 |
+
packed_key_states_ = packed_key_states_[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1)
|
| 454 |
+
packed_key_states_ = packed_key_states_.reshape(-1, self.num_heads, self.head_dim)
|
| 455 |
+
packed_value_states = packed_value_states[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1)
|
| 456 |
+
packed_value_states = packed_value_states.reshape(-1, self.num_heads, self.head_dim)
|
| 457 |
+
|
| 458 |
+
unpacked_query_states = packed_query_states_.transpose(0, 1).split(sample_lens, dim=1)
|
| 459 |
+
unpacked_key_states = packed_key_states_.transpose(0, 1).split(sample_lens, dim=1)
|
| 460 |
+
unpacked_value_states = packed_value_states.transpose(0, 1).split(sample_lens, dim=1)
|
| 461 |
+
upacked_attn_output = []
|
| 462 |
+
for query_states, key_states, value_states, attention_mask_per_sample in zip(
|
| 463 |
+
unpacked_query_states, unpacked_key_states, unpacked_value_states, attention_mask
|
| 464 |
+
):
|
| 465 |
+
with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]):
|
| 466 |
+
attn_output = scaled_dot_product_attention(
|
| 467 |
+
query_states.to(torch.bfloat16).unsqueeze(0),
|
| 468 |
+
key_states.to(torch.bfloat16).unsqueeze(0),
|
| 469 |
+
value_states.to(torch.bfloat16).unsqueeze(0),
|
| 470 |
+
attention_mask_per_sample.to(torch.bfloat16).unsqueeze(0),
|
| 471 |
+
)
|
| 472 |
+
upacked_attn_output.append(attn_output.squeeze(0))
|
| 473 |
+
packed_attn_output = torch.cat(upacked_attn_output, dim=1)
|
| 474 |
+
else:
|
| 475 |
+
pad_size = sum(sample_lens) - packed_query_states.shape[0]
|
| 476 |
+
packed_query_states_ = pad_sequence(packed_query_states_.permute(1, 0, 2), pad_size)
|
| 477 |
+
packed_key_states_ = pad_sequence(packed_key_states_.permute(1, 0, 2), pad_size)
|
| 478 |
+
packed_value_states = pad_sequence(packed_value_states.permute(1, 0, 2), pad_size)
|
| 479 |
+
packed_attn_output = flex_attention(
|
| 480 |
+
packed_query_states_.unsqueeze(0), # 1, num_head, L, head_dim
|
| 481 |
+
packed_key_states_.unsqueeze(0),
|
| 482 |
+
packed_value_states.unsqueeze(0),
|
| 483 |
+
enable_gqa=True,
|
| 484 |
+
block_mask=attention_mask,
|
| 485 |
+
)
|
| 486 |
+
end_index = packed_attn_output.shape[2] - pad_size
|
| 487 |
+
packed_attn_output = packed_attn_output[0, :, :end_index, :]
|
| 488 |
+
|
| 489 |
+
packed_attn_output = packed_attn_output.transpose(0, 1).reshape(-1, self.num_heads * self.head_dim)
|
| 490 |
+
packed_attn_output_ = packed_attn_output.new_zeros(packed_attn_output.shape)
|
| 491 |
+
packed_attn_output_[packed_und_token_indexes] = self.o_proj(packed_attn_output[packed_und_token_indexes])
|
| 492 |
+
packed_attn_output_[packed_gen_token_indexes] = self.o_proj_moe_gen(packed_attn_output[packed_gen_token_indexes])
|
| 493 |
+
|
| 494 |
+
return packed_attn_output_
|
| 495 |
+
|
| 496 |
+
def forward_inference(
|
| 497 |
+
self,
|
| 498 |
+
packed_query_sequence: torch.Tensor,
|
| 499 |
+
query_lens: torch.Tensor,
|
| 500 |
+
packed_query_position_embeddings: torch.Tensor,
|
| 501 |
+
packed_query_indexes: torch.Tensor,
|
| 502 |
+
past_key_values: Optional[NaiveCache] = None,
|
| 503 |
+
key_values_lens: Optional[torch.Tensor] = None,
|
| 504 |
+
packed_key_value_indexes: Optional[torch.Tensor] = None,
|
| 505 |
+
update_past_key_values=True,
|
| 506 |
+
is_causal=True,
|
| 507 |
+
mode="und",
|
| 508 |
+
packed_vae_token_indexes=None,
|
| 509 |
+
packed_text_indexes=None,
|
| 510 |
+
):
|
| 511 |
+
if mode == 'und':
|
| 512 |
+
packed_query_states = self.q_proj(packed_query_sequence).view(-1, self.num_heads, self.head_dim)
|
| 513 |
+
packed_key_states = self.k_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim)
|
| 514 |
+
packed_value_states = self.v_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim)
|
| 515 |
+
packed_query_states = self.q_norm(packed_query_states)
|
| 516 |
+
packed_key_states = self.k_norm(packed_key_states)
|
| 517 |
+
elif mode == 'gen':
|
| 518 |
+
packed_query_sequence = packed_query_sequence.to(torch.bfloat16)
|
| 519 |
+
packed_query_states = packed_query_sequence.new_zeros((packed_query_sequence.shape[0], self.num_heads * self.head_dim))
|
| 520 |
+
packed_key_states = packed_query_sequence.new_zeros((packed_query_sequence.shape[0], self.num_key_value_heads * self.head_dim))
|
| 521 |
+
packed_value_states = packed_query_sequence.new_zeros((packed_query_sequence.shape[0], self.num_key_value_heads * self.head_dim))
|
| 522 |
+
|
| 523 |
+
packed_text_query_sequence = packed_query_sequence[packed_text_indexes]
|
| 524 |
+
packed_vae_query_sequence = packed_query_sequence[packed_vae_token_indexes]
|
| 525 |
+
|
| 526 |
+
packed_query_states[packed_text_indexes] = self.q_proj(packed_text_query_sequence)
|
| 527 |
+
packed_query_states[packed_vae_token_indexes] = self.q_proj_moe_gen(packed_vae_query_sequence)
|
| 528 |
+
|
| 529 |
+
packed_key_states[packed_text_indexes] = self.k_proj(packed_text_query_sequence)
|
| 530 |
+
packed_key_states[packed_vae_token_indexes] = self.k_proj_moe_gen(packed_vae_query_sequence)
|
| 531 |
+
|
| 532 |
+
packed_value_states[packed_text_indexes] = self.v_proj(packed_text_query_sequence)
|
| 533 |
+
packed_value_states[packed_vae_token_indexes] = self.v_proj_moe_gen(packed_vae_query_sequence)
|
| 534 |
+
|
| 535 |
+
packed_query_states = packed_query_states.view(-1, self.num_heads, self.head_dim)
|
| 536 |
+
packed_key_states = packed_key_states.view(-1, self.num_key_value_heads, self.head_dim)
|
| 537 |
+
packed_value_states = packed_value_states.view(-1, self.num_key_value_heads, self.head_dim)
|
| 538 |
+
|
| 539 |
+
packed_query_states = packed_query_states.to(torch.float32)
|
| 540 |
+
packed_query_states[packed_text_indexes] = self.q_norm(packed_query_states[packed_text_indexes])
|
| 541 |
+
packed_query_states[packed_vae_token_indexes] = self.q_norm_moe_gen(packed_query_states[packed_vae_token_indexes])
|
| 542 |
+
|
| 543 |
+
packed_key_states = packed_key_states.to(torch.float32)
|
| 544 |
+
packed_key_states[packed_text_indexes] = self.k_norm(packed_key_states[packed_text_indexes])
|
| 545 |
+
packed_key_states[packed_vae_token_indexes] = self.k_norm_moe_gen(packed_key_states[packed_vae_token_indexes])
|
| 546 |
+
|
| 547 |
+
packed_cos, packed_sin = packed_query_position_embeddings
|
| 548 |
+
packed_query_states, packed_key_states = apply_rotary_pos_emb(
|
| 549 |
+
packed_query_states, packed_key_states, packed_cos, packed_sin, unsqueeze_dim=1
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
packed_query_states = packed_query_states.to(torch.bfloat16)
|
| 553 |
+
packed_key_states = packed_key_states.to(torch.bfloat16)
|
| 554 |
+
packed_value_states = packed_value_states.to(torch.bfloat16)
|
| 555 |
+
|
| 556 |
+
if past_key_values is not None and past_key_values.key_cache[self.layer_idx] is not None:
|
| 557 |
+
past_key_states = past_key_values.key_cache[self.layer_idx]
|
| 558 |
+
past_value_states = past_key_values.value_cache[self.layer_idx]
|
| 559 |
+
|
| 560 |
+
seqlens = sum(query_lens) + sum(key_values_lens)
|
| 561 |
+
merged_key_states = past_key_states.new_zeros(size=[seqlens, self.num_key_value_heads, self.head_dim])
|
| 562 |
+
merged_value_states = past_key_states.new_zeros(size=[seqlens, self.num_key_value_heads, self.head_dim])
|
| 563 |
+
merged_key_states[packed_query_indexes] = packed_key_states
|
| 564 |
+
merged_key_states[packed_key_value_indexes] = past_key_states
|
| 565 |
+
merged_value_states[packed_query_indexes] = packed_value_states
|
| 566 |
+
merged_value_states[packed_key_value_indexes] = past_value_states
|
| 567 |
+
key_values_lens = key_values_lens + query_lens
|
| 568 |
+
else:
|
| 569 |
+
merged_key_states = packed_key_states
|
| 570 |
+
merged_value_states = packed_value_states
|
| 571 |
+
key_values_lens = query_lens
|
| 572 |
+
|
| 573 |
+
cu_seqlens_q = torch.nn.functional.pad(torch.cumsum(query_lens, dim=0), (1, 0))
|
| 574 |
+
cu_seqlens_k = torch.nn.functional.pad(torch.cumsum(key_values_lens, dim=0), (1, 0))
|
| 575 |
+
|
| 576 |
+
packed_attn_output = flash_attn_varlen_func(
|
| 577 |
+
q=packed_query_states,
|
| 578 |
+
k=merged_key_states,
|
| 579 |
+
v=merged_value_states,
|
| 580 |
+
cu_seqlens_q=cu_seqlens_q.to(torch.int32),
|
| 581 |
+
cu_seqlens_k=cu_seqlens_k.to(torch.int32),
|
| 582 |
+
max_seqlen_q=max(query_lens).item(),
|
| 583 |
+
max_seqlen_k=max(key_values_lens).item(),
|
| 584 |
+
causal=is_causal,
|
| 585 |
+
)
|
| 586 |
+
packed_attn_output = packed_attn_output.reshape(-1, self.hidden_size)
|
| 587 |
+
if mode == 'und':
|
| 588 |
+
packed_attn_output = self.o_proj(packed_attn_output)
|
| 589 |
+
elif mode == 'gen':
|
| 590 |
+
packed_attn_output[packed_text_indexes] = self.o_proj(packed_attn_output[packed_text_indexes])
|
| 591 |
+
packed_attn_output[packed_vae_token_indexes] = self.o_proj_moe_gen(packed_attn_output[packed_vae_token_indexes])
|
| 592 |
+
|
| 593 |
+
if update_past_key_values:
|
| 594 |
+
past_key_values.key_cache[self.layer_idx] = merged_key_states
|
| 595 |
+
past_key_values.value_cache[self.layer_idx] = merged_value_states
|
| 596 |
+
|
| 597 |
+
return packed_attn_output, past_key_values
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
class Qwen2DecoderLayer(nn.Module):
|
| 601 |
+
def __init__(self, config, layer_idx: Optional[int] = None):
|
| 602 |
+
super().__init__()
|
| 603 |
+
self.hidden_size = config.hidden_size
|
| 604 |
+
|
| 605 |
+
self.self_attn = PackedAttention(config, layer_idx)
|
| 606 |
+
|
| 607 |
+
self.mlp = Qwen2MLP(config)
|
| 608 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 609 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 610 |
+
|
| 611 |
+
def forward(self, *args, **kwargs):
|
| 612 |
+
if self.training:
|
| 613 |
+
return self.forward_train(*args, **kwargs)
|
| 614 |
+
else:
|
| 615 |
+
return self.forward_inference(*args, **kwargs)
|
| 616 |
+
|
| 617 |
+
def forward_train(
|
| 618 |
+
self,
|
| 619 |
+
packed_sequence: torch.Tensor,
|
| 620 |
+
sample_lens: List[int],
|
| 621 |
+
attention_mask,
|
| 622 |
+
packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 623 |
+
) -> torch.Tensor:
|
| 624 |
+
|
| 625 |
+
residual = packed_sequence
|
| 626 |
+
packed_sequence = self.input_layernorm(packed_sequence)
|
| 627 |
+
|
| 628 |
+
# Self Attention
|
| 629 |
+
packed_sequence = self.self_attn(
|
| 630 |
+
packed_sequence=packed_sequence,
|
| 631 |
+
sample_lens=sample_lens,
|
| 632 |
+
attention_mask=attention_mask,
|
| 633 |
+
packed_position_embeddings=packed_position_embeddings,
|
| 634 |
+
)
|
| 635 |
+
packed_sequence = residual + packed_sequence
|
| 636 |
+
|
| 637 |
+
# Fully Connected
|
| 638 |
+
residual = packed_sequence
|
| 639 |
+
packed_sequence = self.post_attention_layernorm(packed_sequence)
|
| 640 |
+
packed_sequence = self.mlp(packed_sequence)
|
| 641 |
+
packed_sequence = residual + packed_sequence
|
| 642 |
+
|
| 643 |
+
return packed_sequence
|
| 644 |
+
|
| 645 |
+
def forward_inference(
|
| 646 |
+
self,
|
| 647 |
+
packed_query_sequence: torch.Tensor,
|
| 648 |
+
query_lens: torch.Tensor,
|
| 649 |
+
packed_query_position_embeddings: torch.Tensor,
|
| 650 |
+
packed_query_indexes: torch.Tensor,
|
| 651 |
+
past_key_values: Optional[NaiveCache] = None,
|
| 652 |
+
key_values_lens: Optional[torch.Tensor] = None,
|
| 653 |
+
packed_key_value_indexes: Optional[torch.Tensor] = None,
|
| 654 |
+
update_past_key_values=True,
|
| 655 |
+
is_causal=True,
|
| 656 |
+
) -> BaseNavitOutputWithPast:
|
| 657 |
+
|
| 658 |
+
residual = packed_query_sequence
|
| 659 |
+
packed_query_sequence = self.input_layernorm(packed_query_sequence)
|
| 660 |
+
|
| 661 |
+
# Self Attention
|
| 662 |
+
packed_query_sequence, past_key_values = self.self_attn(
|
| 663 |
+
packed_query_sequence=packed_query_sequence,
|
| 664 |
+
query_lens=query_lens,
|
| 665 |
+
packed_query_position_embeddings=packed_query_position_embeddings,
|
| 666 |
+
packed_query_indexes=packed_query_indexes,
|
| 667 |
+
past_key_values=past_key_values,
|
| 668 |
+
key_values_lens=key_values_lens,
|
| 669 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 670 |
+
update_past_key_values=update_past_key_values,
|
| 671 |
+
is_causal=is_causal,
|
| 672 |
+
)
|
| 673 |
+
packed_query_sequence = residual + packed_query_sequence
|
| 674 |
+
|
| 675 |
+
# Fully Connected
|
| 676 |
+
residual = packed_query_sequence
|
| 677 |
+
packed_query_sequence = self.post_attention_layernorm(packed_query_sequence)
|
| 678 |
+
packed_query_sequence = self.mlp(packed_query_sequence)
|
| 679 |
+
packed_query_sequence = residual + packed_query_sequence
|
| 680 |
+
|
| 681 |
+
return packed_query_sequence, past_key_values
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
class Qwen2MoTDecoderLayer(nn.Module):
|
| 685 |
+
def __init__(
|
| 686 |
+
self,
|
| 687 |
+
config,
|
| 688 |
+
layer_idx: Optional[int] = None,
|
| 689 |
+
attn_module: Optional[Qwen2Attention] = PackedAttentionMoT,
|
| 690 |
+
):
|
| 691 |
+
super().__init__()
|
| 692 |
+
self.hidden_size = config.hidden_size
|
| 693 |
+
self.freeze_und = config.freeze_und
|
| 694 |
+
|
| 695 |
+
self.self_attn = attn_module(config, layer_idx)
|
| 696 |
+
|
| 697 |
+
self.mlp = Qwen2MLP(config)
|
| 698 |
+
self.mlp_moe_gen = Qwen2MLP(config)
|
| 699 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 700 |
+
self.input_layernorm_moe_gen = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 701 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 702 |
+
self.post_attention_layernorm_moe_gen = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 703 |
+
|
| 704 |
+
def forward(self, *args, **kwargs):
|
| 705 |
+
if self.training:
|
| 706 |
+
return self.forward_train(*args, **kwargs)
|
| 707 |
+
else:
|
| 708 |
+
return self.forward_inference(*args, **kwargs)
|
| 709 |
+
|
| 710 |
+
def forward_train(
|
| 711 |
+
self,
|
| 712 |
+
packed_sequence: torch.Tensor,
|
| 713 |
+
sample_lens: List[int],
|
| 714 |
+
attention_mask,
|
| 715 |
+
packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 716 |
+
packed_und_token_indexes: torch.LongTensor,
|
| 717 |
+
packed_gen_token_indexes: torch.LongTensor,
|
| 718 |
+
) -> torch.Tensor:
|
| 719 |
+
|
| 720 |
+
residual = packed_sequence
|
| 721 |
+
packed_sequence_ = packed_sequence.new_zeros(packed_sequence.shape)
|
| 722 |
+
packed_sequence_[packed_und_token_indexes] = self.input_layernorm(packed_sequence[packed_und_token_indexes])
|
| 723 |
+
packed_sequence_[packed_gen_token_indexes] = self.input_layernorm_moe_gen(packed_sequence[packed_gen_token_indexes])
|
| 724 |
+
|
| 725 |
+
# Self Attention
|
| 726 |
+
packed_sequence_ = self.self_attn(
|
| 727 |
+
packed_sequence=packed_sequence_,
|
| 728 |
+
sample_lens=sample_lens,
|
| 729 |
+
attention_mask=attention_mask,
|
| 730 |
+
packed_position_embeddings=packed_position_embeddings,
|
| 731 |
+
packed_und_token_indexes=packed_und_token_indexes,
|
| 732 |
+
packed_gen_token_indexes=packed_gen_token_indexes,
|
| 733 |
+
)
|
| 734 |
+
if self.freeze_und:
|
| 735 |
+
packed_sequence_[packed_und_token_indexes] = packed_sequence_[packed_und_token_indexes].detach()
|
| 736 |
+
packed_sequence = residual + packed_sequence_
|
| 737 |
+
|
| 738 |
+
# Fully Connected
|
| 739 |
+
residual = packed_sequence
|
| 740 |
+
packed_sequence_ = packed_sequence.new_zeros(packed_sequence.shape)
|
| 741 |
+
packed_sequence_[packed_und_token_indexes] = self.mlp(
|
| 742 |
+
self.post_attention_layernorm(packed_sequence[packed_und_token_indexes])
|
| 743 |
+
)
|
| 744 |
+
if self.freeze_und:
|
| 745 |
+
packed_sequence_[packed_und_token_indexes] = packed_sequence_[packed_und_token_indexes].detach()
|
| 746 |
+
|
| 747 |
+
packed_sequence_[packed_gen_token_indexes] = self.mlp_moe_gen(
|
| 748 |
+
self.post_attention_layernorm_moe_gen(packed_sequence[packed_gen_token_indexes])
|
| 749 |
+
)
|
| 750 |
+
packed_sequence = residual + packed_sequence_
|
| 751 |
+
|
| 752 |
+
return packed_sequence
|
| 753 |
+
|
| 754 |
+
def forward_inference(
|
| 755 |
+
self,
|
| 756 |
+
packed_query_sequence: torch.Tensor,
|
| 757 |
+
query_lens: torch.Tensor,
|
| 758 |
+
packed_query_position_embeddings: torch.Tensor,
|
| 759 |
+
packed_query_indexes: torch.Tensor,
|
| 760 |
+
past_key_values: Optional[NaiveCache] = None,
|
| 761 |
+
key_values_lens: Optional[torch.Tensor] = None,
|
| 762 |
+
packed_key_value_indexes: Optional[torch.Tensor] = None,
|
| 763 |
+
update_past_key_values=True,
|
| 764 |
+
is_causal=True,
|
| 765 |
+
mode="und",
|
| 766 |
+
packed_vae_token_indexes=None,
|
| 767 |
+
packed_text_indexes=None,
|
| 768 |
+
) -> BaseNavitOutputWithPast:
|
| 769 |
+
|
| 770 |
+
residual = packed_query_sequence
|
| 771 |
+
if mode == "und":
|
| 772 |
+
packed_query_sequence = self.input_layernorm(packed_query_sequence)
|
| 773 |
+
elif mode == "gen":
|
| 774 |
+
packed_query_sequence_ = torch.zeros_like(packed_query_sequence)
|
| 775 |
+
packed_query_sequence_[packed_text_indexes] = self.input_layernorm(packed_query_sequence[packed_text_indexes])
|
| 776 |
+
packed_query_sequence_[packed_vae_token_indexes] = self.input_layernorm_moe_gen(packed_query_sequence[packed_vae_token_indexes])
|
| 777 |
+
packed_query_sequence = packed_query_sequence_
|
| 778 |
+
|
| 779 |
+
# Self Attention
|
| 780 |
+
packed_query_sequence, past_key_values = self.self_attn(
|
| 781 |
+
packed_query_sequence=packed_query_sequence,
|
| 782 |
+
query_lens=query_lens,
|
| 783 |
+
packed_query_position_embeddings=packed_query_position_embeddings,
|
| 784 |
+
packed_query_indexes=packed_query_indexes,
|
| 785 |
+
past_key_values=past_key_values,
|
| 786 |
+
key_values_lens=key_values_lens,
|
| 787 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 788 |
+
update_past_key_values=update_past_key_values,
|
| 789 |
+
is_causal=is_causal,
|
| 790 |
+
mode=mode,
|
| 791 |
+
packed_vae_token_indexes=packed_vae_token_indexes,
|
| 792 |
+
packed_text_indexes=packed_text_indexes,
|
| 793 |
+
)
|
| 794 |
+
packed_query_sequence = residual + packed_query_sequence
|
| 795 |
+
|
| 796 |
+
# Fully Connected
|
| 797 |
+
residual = packed_query_sequence
|
| 798 |
+
if mode == "und":
|
| 799 |
+
packed_query_sequence = self.post_attention_layernorm(packed_query_sequence)
|
| 800 |
+
packed_query_sequence = self.mlp(packed_query_sequence)
|
| 801 |
+
elif mode == "gen":
|
| 802 |
+
packed_text_query_sequence = packed_query_sequence[packed_text_indexes]
|
| 803 |
+
packed_vae_query_sequence = packed_query_sequence[packed_vae_token_indexes]
|
| 804 |
+
packed_text_query_sequence = self.post_attention_layernorm(packed_text_query_sequence).to(torch.bfloat16)
|
| 805 |
+
packed_vae_query_sequence = self.post_attention_layernorm_moe_gen(packed_vae_query_sequence).to(torch.bfloat16)
|
| 806 |
+
|
| 807 |
+
packed_query_sequence_ = torch.zeros_like(packed_query_sequence).to(torch.bfloat16)
|
| 808 |
+
packed_query_sequence_[packed_text_indexes] = self.mlp(packed_text_query_sequence)
|
| 809 |
+
packed_query_sequence_[packed_vae_token_indexes] = self.mlp_moe_gen(packed_vae_query_sequence)
|
| 810 |
+
packed_query_sequence = packed_query_sequence_
|
| 811 |
+
|
| 812 |
+
packed_query_sequence = residual + packed_query_sequence
|
| 813 |
+
return packed_query_sequence, past_key_values
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
class Qwen2MoEDecoderLayer(nn.Module):
|
| 817 |
+
def __init__(self, config, layer_idx: Optional[int] = None):
|
| 818 |
+
super().__init__()
|
| 819 |
+
self.hidden_size = config.hidden_size
|
| 820 |
+
|
| 821 |
+
self.self_attn = PackedAttention(config, layer_idx)
|
| 822 |
+
|
| 823 |
+
self.mlp = Qwen2MLP(config)
|
| 824 |
+
self.mlp_moe_gen = Qwen2MLP(config)
|
| 825 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 826 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 827 |
+
|
| 828 |
+
def forward(self, *args, **kwargs):
|
| 829 |
+
if self.training:
|
| 830 |
+
return self.forward_train(*args, **kwargs)
|
| 831 |
+
else:
|
| 832 |
+
return self.forward_inference(*args, **kwargs)
|
| 833 |
+
|
| 834 |
+
def forward_train(
|
| 835 |
+
self,
|
| 836 |
+
packed_sequence: torch.Tensor,
|
| 837 |
+
sample_lens: List[int],
|
| 838 |
+
attention_mask,
|
| 839 |
+
packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 840 |
+
packed_und_token_indexes: torch.LongTensor,
|
| 841 |
+
packed_gen_token_indexes: torch.LongTensor,
|
| 842 |
+
) -> torch.Tensor:
|
| 843 |
+
|
| 844 |
+
residual = packed_sequence
|
| 845 |
+
packed_sequence = self.input_layernorm(packed_sequence)
|
| 846 |
+
|
| 847 |
+
# Self Attention
|
| 848 |
+
packed_sequence = self.self_attn(
|
| 849 |
+
packed_sequence=packed_sequence,
|
| 850 |
+
sample_lens=sample_lens,
|
| 851 |
+
attention_mask=attention_mask,
|
| 852 |
+
packed_position_embeddings=packed_position_embeddings,
|
| 853 |
+
)
|
| 854 |
+
packed_sequence = residual + packed_sequence
|
| 855 |
+
|
| 856 |
+
# Fully Connected
|
| 857 |
+
residual = packed_sequence
|
| 858 |
+
packed_sequence = self.post_attention_layernorm(packed_sequence)
|
| 859 |
+
|
| 860 |
+
packed_sequence_new = packed_sequence.new_zeros(packed_sequence.shape)
|
| 861 |
+
packed_sequence_und = self.mlp(packed_sequence[packed_und_token_indexes])
|
| 862 |
+
packed_sequence_gen = self.mlp_moe_gen(packed_sequence[packed_gen_token_indexes])
|
| 863 |
+
packed_sequence_new[packed_und_token_indexes] = packed_sequence_und
|
| 864 |
+
packed_sequence_new[packed_gen_token_indexes] = packed_sequence_gen
|
| 865 |
+
|
| 866 |
+
packed_sequence = residual + packed_sequence_new
|
| 867 |
+
|
| 868 |
+
return packed_sequence
|
| 869 |
+
|
| 870 |
+
def forward_inference(
|
| 871 |
+
self,
|
| 872 |
+
packed_query_sequence: torch.Tensor,
|
| 873 |
+
query_lens: torch.Tensor,
|
| 874 |
+
packed_query_position_embeddings: torch.Tensor,
|
| 875 |
+
packed_query_indexes: torch.Tensor,
|
| 876 |
+
past_key_values: Optional[NaiveCache] = None,
|
| 877 |
+
key_values_lens: Optional[torch.Tensor] = None,
|
| 878 |
+
packed_key_value_indexes: Optional[torch.Tensor] = None,
|
| 879 |
+
update_past_key_values=True,
|
| 880 |
+
is_causal=True,
|
| 881 |
+
mode="und",
|
| 882 |
+
packed_vae_token_indexes=None,
|
| 883 |
+
packed_text_indexes=None,
|
| 884 |
+
) -> BaseNavitOutputWithPast:
|
| 885 |
+
|
| 886 |
+
residual = packed_query_sequence
|
| 887 |
+
packed_query_sequence = self.input_layernorm(packed_query_sequence)
|
| 888 |
+
|
| 889 |
+
# Self Attention
|
| 890 |
+
packed_query_sequence, past_key_values = self.self_attn(
|
| 891 |
+
packed_query_sequence=packed_query_sequence,
|
| 892 |
+
query_lens=query_lens,
|
| 893 |
+
packed_query_position_embeddings=packed_query_position_embeddings,
|
| 894 |
+
packed_query_indexes=packed_query_indexes,
|
| 895 |
+
past_key_values=past_key_values,
|
| 896 |
+
key_values_lens=key_values_lens,
|
| 897 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 898 |
+
update_past_key_values=update_past_key_values,
|
| 899 |
+
is_causal=is_causal,
|
| 900 |
+
)
|
| 901 |
+
packed_query_sequence = residual + packed_query_sequence
|
| 902 |
+
|
| 903 |
+
# Fully Connected
|
| 904 |
+
residual = packed_query_sequence
|
| 905 |
+
packed_query_sequence = self.post_attention_layernorm(packed_query_sequence)
|
| 906 |
+
if mode == "und":
|
| 907 |
+
packed_query_sequence = self.mlp(packed_query_sequence)
|
| 908 |
+
elif mode == "gen":
|
| 909 |
+
packed_query_sequence_ = torch.zeros_like(packed_query_sequence).to(torch.bfloat16)
|
| 910 |
+
packed_query_sequence_[packed_text_indexes] = self.mlp(packed_query_sequence[packed_text_indexes])
|
| 911 |
+
packed_query_sequence_[packed_vae_token_indexes] = self.mlp_moe_gen(packed_query_sequence[packed_vae_token_indexes])
|
| 912 |
+
packed_query_sequence = packed_query_sequence_
|
| 913 |
+
packed_query_sequence = residual + packed_query_sequence
|
| 914 |
+
|
| 915 |
+
return packed_query_sequence, past_key_values
|
| 916 |
+
|
| 917 |
+
|
| 918 |
+
Decoder_layer_dict = {
|
| 919 |
+
"Qwen2DecoderLayer": Qwen2DecoderLayer,
|
| 920 |
+
"Qwen2MoEDecoderLayer": Qwen2MoEDecoderLayer,
|
| 921 |
+
"Qwen2MoTDecoderLayer": partial(Qwen2MoTDecoderLayer, attn_module=PackedAttentionMoT),
|
| 922 |
+
}
|
| 923 |
+
|
| 924 |
+
|
| 925 |
+
class Qwen2Model(Qwen2PreTrainedModel):
|
| 926 |
+
def __init__(self, config):
|
| 927 |
+
super().__init__(config)
|
| 928 |
+
self.padding_idx = config.pad_token_id
|
| 929 |
+
self.vocab_size = config.vocab_size
|
| 930 |
+
self.use_moe = 'Mo' in config.layer_module
|
| 931 |
+
|
| 932 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 933 |
+
layer_module = Decoder_layer_dict[config.layer_module]
|
| 934 |
+
self.layers = nn.ModuleList(
|
| 935 |
+
[layer_module(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 936 |
+
)
|
| 937 |
+
|
| 938 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 939 |
+
if self.use_moe:
|
| 940 |
+
self.norm_moe_gen = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 941 |
+
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
| 942 |
+
|
| 943 |
+
# Initialize weights and apply final processing
|
| 944 |
+
self.post_init()
|
| 945 |
+
|
| 946 |
+
def forward(self, *args, **kwargs):
|
| 947 |
+
if self.training:
|
| 948 |
+
return self.forward_train(*args, **kwargs)
|
| 949 |
+
else:
|
| 950 |
+
return self.forward_inference(*args, **kwargs)
|
| 951 |
+
|
| 952 |
+
def forward_train(
|
| 953 |
+
self,
|
| 954 |
+
packed_sequence: torch.Tensor,
|
| 955 |
+
sample_lens: List[int],
|
| 956 |
+
attention_mask,
|
| 957 |
+
packed_position_ids: torch.Tensor,
|
| 958 |
+
packed_und_token_indexes: Optional[torch.LongTensor] = None,
|
| 959 |
+
packed_gen_token_indexes: Optional[torch.LongTensor] = None,
|
| 960 |
+
) -> torch.Tensor:
|
| 961 |
+
|
| 962 |
+
if self.config.freeze_und:
|
| 963 |
+
packed_sequence[packed_und_token_indexes] = packed_sequence[packed_und_token_indexes].detach()
|
| 964 |
+
|
| 965 |
+
# create position embeddings to be shared across the decoder layers
|
| 966 |
+
cos, sin = self.rotary_emb(packed_sequence, packed_position_ids.unsqueeze(0))
|
| 967 |
+
cos = cos.squeeze(0)
|
| 968 |
+
sin = sin.squeeze(0)
|
| 969 |
+
packed_position_embeddings = (cos, sin)
|
| 970 |
+
|
| 971 |
+
extra_inputs = {}
|
| 972 |
+
if self.use_moe:
|
| 973 |
+
assert packed_und_token_indexes is not None
|
| 974 |
+
if packed_gen_token_indexes is None:
|
| 975 |
+
packed_gen_token_indexes = packed_und_token_indexes.new_ones(size=[0])
|
| 976 |
+
extra_inputs.update(
|
| 977 |
+
packed_und_token_indexes=packed_und_token_indexes,
|
| 978 |
+
packed_gen_token_indexes=packed_gen_token_indexes,
|
| 979 |
+
)
|
| 980 |
+
|
| 981 |
+
for decoder_layer in self.layers:
|
| 982 |
+
packed_sequence = decoder_layer(
|
| 983 |
+
packed_sequence=packed_sequence,
|
| 984 |
+
sample_lens=sample_lens,
|
| 985 |
+
attention_mask=attention_mask,
|
| 986 |
+
packed_position_embeddings=packed_position_embeddings,
|
| 987 |
+
**extra_inputs
|
| 988 |
+
)
|
| 989 |
+
|
| 990 |
+
if self.use_moe:
|
| 991 |
+
packed_sequence_ = torch.zeros_like(packed_sequence)
|
| 992 |
+
packed_sequence_[packed_und_token_indexes] = self.norm(packed_sequence[packed_und_token_indexes])
|
| 993 |
+
if self.config.freeze_und:
|
| 994 |
+
packed_sequence_[packed_und_token_indexes] = packed_sequence_[packed_und_token_indexes].detach()
|
| 995 |
+
packed_sequence_[packed_gen_token_indexes] = self.norm_moe_gen(packed_sequence[packed_gen_token_indexes])
|
| 996 |
+
return packed_sequence_
|
| 997 |
+
else:
|
| 998 |
+
return self.norm(packed_sequence)
|
| 999 |
+
|
| 1000 |
+
def forward_inference(
|
| 1001 |
+
self,
|
| 1002 |
+
packed_query_sequence: torch.Tensor,
|
| 1003 |
+
query_lens: torch.Tensor,
|
| 1004 |
+
packed_query_position_ids: torch.Tensor,
|
| 1005 |
+
packed_query_indexes: torch.Tensor,
|
| 1006 |
+
past_key_values: Optional[NaiveCache] = None,
|
| 1007 |
+
key_values_lens: Optional[torch.Tensor] = None,
|
| 1008 |
+
packed_key_value_indexes: Optional[torch.Tensor] = None,
|
| 1009 |
+
update_past_key_values=True,
|
| 1010 |
+
is_causal=True,
|
| 1011 |
+
mode="und",
|
| 1012 |
+
packed_vae_token_indexes=None,
|
| 1013 |
+
packed_text_indexes=None,
|
| 1014 |
+
) -> BaseNavitOutputWithPast:
|
| 1015 |
+
|
| 1016 |
+
# create position embeddings to be shared across the decoder layers
|
| 1017 |
+
cos, sin = self.rotary_emb(packed_query_sequence, packed_query_position_ids.unsqueeze(0))
|
| 1018 |
+
cos = cos.squeeze(0)
|
| 1019 |
+
sin = sin.squeeze(0)
|
| 1020 |
+
packed_query_position_embeddings = (cos, sin)
|
| 1021 |
+
|
| 1022 |
+
extra_inputs = {}
|
| 1023 |
+
if self.use_moe:
|
| 1024 |
+
extra_inputs.update(mode=mode)
|
| 1025 |
+
if mode == 'gen':
|
| 1026 |
+
assert packed_vae_token_indexes is not None
|
| 1027 |
+
assert packed_text_indexes is not None
|
| 1028 |
+
extra_inputs.update(
|
| 1029 |
+
packed_vae_token_indexes=packed_vae_token_indexes,
|
| 1030 |
+
packed_text_indexes=packed_text_indexes,
|
| 1031 |
+
)
|
| 1032 |
+
|
| 1033 |
+
for decoder_layer in self.layers:
|
| 1034 |
+
packed_query_sequence, past_key_values = decoder_layer(
|
| 1035 |
+
packed_query_sequence=packed_query_sequence,
|
| 1036 |
+
query_lens=query_lens,
|
| 1037 |
+
packed_query_position_embeddings=packed_query_position_embeddings,
|
| 1038 |
+
packed_query_indexes=packed_query_indexes,
|
| 1039 |
+
past_key_values=past_key_values,
|
| 1040 |
+
key_values_lens=key_values_lens,
|
| 1041 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 1042 |
+
update_past_key_values=update_past_key_values,
|
| 1043 |
+
is_causal=is_causal,
|
| 1044 |
+
**extra_inputs,
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
if self.use_moe:
|
| 1048 |
+
if mode == "und":
|
| 1049 |
+
packed_query_sequence = self.norm(packed_query_sequence)
|
| 1050 |
+
elif mode == "gen":
|
| 1051 |
+
packed_query_sequence_ = torch.zeros_like(packed_query_sequence)
|
| 1052 |
+
packed_query_sequence_[packed_text_indexes] = self.norm(packed_query_sequence[packed_text_indexes])
|
| 1053 |
+
packed_query_sequence_[packed_vae_token_indexes] = self.norm_moe_gen(packed_query_sequence[packed_vae_token_indexes])
|
| 1054 |
+
packed_query_sequence = packed_query_sequence_
|
| 1055 |
+
else:
|
| 1056 |
+
packed_query_sequence = self.norm(packed_query_sequence)
|
| 1057 |
+
|
| 1058 |
+
return BaseNavitOutputWithPast(
|
| 1059 |
+
packed_query_sequence=packed_query_sequence,
|
| 1060 |
+
past_key_values=past_key_values,
|
| 1061 |
+
)
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
class Qwen2ForCausalLM(Qwen2PreTrainedModel):
|
| 1065 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1066 |
+
|
| 1067 |
+
def __init__(self, config):
|
| 1068 |
+
super().__init__(config)
|
| 1069 |
+
self.model = Qwen2Model(config)
|
| 1070 |
+
self.vocab_size = config.vocab_size
|
| 1071 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1072 |
+
|
| 1073 |
+
# Initialize weights and apply final processing
|
| 1074 |
+
self.post_init()
|
| 1075 |
+
|
| 1076 |
+
def init_moe(self):
|
| 1077 |
+
for name, param in self.named_parameters():
|
| 1078 |
+
if "moe_gen" in name:
|
| 1079 |
+
original_name = name.replace("_moe_gen", "")
|
| 1080 |
+
param.data.copy_(self.state_dict()[original_name].data)
|
| 1081 |
+
|
| 1082 |
+
def get_input_embeddings(self):
|
| 1083 |
+
return self.model.embed_tokens
|
| 1084 |
+
|
| 1085 |
+
def set_input_embeddings(self, value):
|
| 1086 |
+
self.model.embed_tokens = value
|
| 1087 |
+
|
| 1088 |
+
def get_output_embeddings(self):
|
| 1089 |
+
return self.lm_head
|
| 1090 |
+
|
| 1091 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1092 |
+
self.lm_head = new_embeddings
|
| 1093 |
+
|
| 1094 |
+
def set_decoder(self, decoder):
|
| 1095 |
+
self.model = decoder
|
| 1096 |
+
|
| 1097 |
+
def get_decoder(self):
|
| 1098 |
+
return self.model
|
| 1099 |
+
|
| 1100 |
+
def forward(self, *args, **kwargs):
|
| 1101 |
+
if self.training:
|
| 1102 |
+
return self.forward_train(*args, **kwargs)
|
| 1103 |
+
else:
|
| 1104 |
+
return self.forward_inference(*args, **kwargs)
|
| 1105 |
+
|
| 1106 |
+
def forward_train(
|
| 1107 |
+
self,
|
| 1108 |
+
packed_sequence: torch.Tensor,
|
| 1109 |
+
sample_lens: List[int],
|
| 1110 |
+
attention_mask,
|
| 1111 |
+
packed_position_ids: torch.Tensor,
|
| 1112 |
+
packed_und_token_indexes: Optional[torch.LongTensor] = None,
|
| 1113 |
+
packed_gen_token_indexes: Optional[torch.LongTensor] = None,
|
| 1114 |
+
) -> torch.Tensor:
|
| 1115 |
+
|
| 1116 |
+
outputs = self.model(
|
| 1117 |
+
packed_sequence=packed_sequence,
|
| 1118 |
+
sample_lens=sample_lens,
|
| 1119 |
+
packed_position_ids=packed_position_ids,
|
| 1120 |
+
attention_mask=attention_mask,
|
| 1121 |
+
packed_und_token_indexes=packed_und_token_indexes,
|
| 1122 |
+
packed_gen_token_indexes=packed_gen_token_indexes,
|
| 1123 |
+
)
|
| 1124 |
+
return outputs
|
| 1125 |
+
|
| 1126 |
+
def forward_inference(
|
| 1127 |
+
self,
|
| 1128 |
+
packed_query_sequence: torch.Tensor,
|
| 1129 |
+
query_lens: torch.Tensor,
|
| 1130 |
+
packed_query_position_ids: torch.Tensor,
|
| 1131 |
+
packed_query_indexes: torch.Tensor,
|
| 1132 |
+
past_key_values: Optional[NaiveCache] = None,
|
| 1133 |
+
key_values_lens: Optional[torch.Tensor] = None,
|
| 1134 |
+
packed_key_value_indexes: Optional[torch.Tensor] = None,
|
| 1135 |
+
update_past_key_values=True,
|
| 1136 |
+
is_causal=True,
|
| 1137 |
+
mode="und",
|
| 1138 |
+
packed_vae_token_indexes=None,
|
| 1139 |
+
packed_text_indexes=None,
|
| 1140 |
+
) -> BaseNavitOutputWithPast:
|
| 1141 |
+
|
| 1142 |
+
outputs = self.model(
|
| 1143 |
+
packed_query_sequence=packed_query_sequence,
|
| 1144 |
+
query_lens=query_lens,
|
| 1145 |
+
packed_query_position_ids=packed_query_position_ids,
|
| 1146 |
+
packed_query_indexes=packed_query_indexes,
|
| 1147 |
+
past_key_values=past_key_values,
|
| 1148 |
+
key_values_lens=key_values_lens,
|
| 1149 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
| 1150 |
+
update_past_key_values=update_past_key_values,
|
| 1151 |
+
is_causal=is_causal,
|
| 1152 |
+
mode=mode,
|
| 1153 |
+
packed_vae_token_indexes=packed_vae_token_indexes,
|
| 1154 |
+
packed_text_indexes=packed_text_indexes,
|
| 1155 |
+
)
|
| 1156 |
+
|
| 1157 |
+
return outputs
|
modeling/bagel/siglip_navit.py
ADDED
|
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 The HuggingFace Inc. team.
|
| 2 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
| 3 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 4 |
+
#
|
| 5 |
+
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
| 6 |
+
#
|
| 7 |
+
# Original file was released under Apache-2.0, with the full license text
|
| 8 |
+
# available at https://github.com/huggingface/transformers/blob/main/LICENSE.
|
| 9 |
+
#
|
| 10 |
+
# This modified file is released under the same license.
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from torch import nn
|
| 14 |
+
|
| 15 |
+
from transformers.activations import ACT2FN
|
| 16 |
+
from modeling.siglip.configuration_siglip import SiglipVisionConfig as _SiglipVisionConfig
|
| 17 |
+
from modeling.siglip.modeling_siglip import SiglipAttention, SiglipPreTrainedModel
|
| 18 |
+
from flash_attn import flash_attn_varlen_func
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class SiglipVisionConfig(_SiglipVisionConfig):
|
| 22 |
+
r"""
|
| 23 |
+
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
| 24 |
+
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
| 25 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
| 26 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
| 27 |
+
|
| 28 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 29 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 33 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 34 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 35 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 36 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 37 |
+
Number of hidden layers in the Transformer encoder.
|
| 38 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 39 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 40 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 41 |
+
Number of channels in the input images.
|
| 42 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 43 |
+
The size (resolution) of each image.
|
| 44 |
+
patch_size (`int`, *optional*, defaults to 16):
|
| 45 |
+
The size (resolution) of each patch.
|
| 46 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
| 47 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 48 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
| 49 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 50 |
+
The epsilon used by the layer normalization layers.
|
| 51 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 52 |
+
The dropout ratio for the attention probabilities.
|
| 53 |
+
|
| 54 |
+
Example:
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
| 58 |
+
|
| 59 |
+
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
| 60 |
+
>>> configuration = SiglipVisionConfig()
|
| 61 |
+
|
| 62 |
+
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
| 63 |
+
>>> model = SiglipVisionModel(configuration)
|
| 64 |
+
|
| 65 |
+
>>> # Accessing the model configuration
|
| 66 |
+
>>> configuration = model.config
|
| 67 |
+
```"""
|
| 68 |
+
|
| 69 |
+
model_type = "siglip_vision_model"
|
| 70 |
+
|
| 71 |
+
def __init__(
|
| 72 |
+
self,
|
| 73 |
+
hidden_size=768,
|
| 74 |
+
intermediate_size=3072,
|
| 75 |
+
num_hidden_layers=12,
|
| 76 |
+
num_attention_heads=12,
|
| 77 |
+
num_channels=3,
|
| 78 |
+
image_size=224,
|
| 79 |
+
patch_size=16,
|
| 80 |
+
hidden_act="gelu_pytorch_tanh",
|
| 81 |
+
layer_norm_eps=1e-6,
|
| 82 |
+
attention_dropout=0.0,
|
| 83 |
+
rope=True,
|
| 84 |
+
**kwargs,
|
| 85 |
+
):
|
| 86 |
+
super().__init__(
|
| 87 |
+
hidden_size=hidden_size,
|
| 88 |
+
intermediate_size=intermediate_size,
|
| 89 |
+
num_hidden_layers=num_hidden_layers,
|
| 90 |
+
num_attention_heads=num_attention_heads,
|
| 91 |
+
num_channels=num_channels,
|
| 92 |
+
image_size=image_size,
|
| 93 |
+
patch_size=patch_size,
|
| 94 |
+
hidden_act=hidden_act,
|
| 95 |
+
layer_norm_eps=layer_norm_eps,
|
| 96 |
+
attention_dropout=attention_dropout,
|
| 97 |
+
**kwargs)
|
| 98 |
+
|
| 99 |
+
self.rope = rope
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class RotaryEmbedding2D(torch.nn.Module):
|
| 103 |
+
def __init__(self, dim, max_h, max_w, base=10000):
|
| 104 |
+
super().__init__()
|
| 105 |
+
freq = torch.arange(0, dim, 2, dtype=torch.int64).float() / dim
|
| 106 |
+
inv_freq = 1.0 / (base ** freq)
|
| 107 |
+
|
| 108 |
+
grid_h = torch.arange(0, max_h)
|
| 109 |
+
grid_h = grid_h.to(inv_freq.dtype)
|
| 110 |
+
grid_h = grid_h[:, None].repeat(1, max_w)
|
| 111 |
+
|
| 112 |
+
grid_w = torch.arange(0, max_w)
|
| 113 |
+
grid_w = grid_w.to(inv_freq.dtype)
|
| 114 |
+
grid_w = grid_w[None, :].repeat(max_h, 1)
|
| 115 |
+
|
| 116 |
+
cos_h, sin_h = self._forward_one_side(grid_h, inv_freq)
|
| 117 |
+
cos_w, sin_w = self._forward_one_side(grid_w, inv_freq)
|
| 118 |
+
|
| 119 |
+
self.register_buffer("cos_h", cos_h)
|
| 120 |
+
self.register_buffer("sin_h", sin_h)
|
| 121 |
+
self.register_buffer("cos_w", cos_w)
|
| 122 |
+
self.register_buffer("sin_w", sin_w)
|
| 123 |
+
|
| 124 |
+
def _forward_one_side(self, grid, inv_freq):
|
| 125 |
+
freqs = grid[..., None] * inv_freq[None, None, :]
|
| 126 |
+
emb = torch.cat((freqs, freqs), dim=-1).flatten(0, 1)
|
| 127 |
+
return emb.cos(), emb.sin()
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def rotate_half(x):
|
| 131 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 132 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 133 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
| 137 |
+
# unsqueeze due to the head dimension
|
| 138 |
+
cos = cos.unsqueeze(1)
|
| 139 |
+
sin = sin.unsqueeze(1)
|
| 140 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 141 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 142 |
+
return q_embed, k_embed
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class SiglipVisionEmbeddings(nn.Module):
|
| 146 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 147 |
+
super().__init__()
|
| 148 |
+
self.config = config
|
| 149 |
+
self.embed_dim = config.hidden_size
|
| 150 |
+
self.image_size = config.image_size
|
| 151 |
+
self.patch_size = config.patch_size
|
| 152 |
+
|
| 153 |
+
self.patch_embedding = nn.Conv2d(
|
| 154 |
+
in_channels=config.num_channels,
|
| 155 |
+
out_channels=self.embed_dim,
|
| 156 |
+
kernel_size=self.patch_size,
|
| 157 |
+
stride=self.patch_size,
|
| 158 |
+
padding="valid",
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
self.num_patches_per_side = self.image_size // self.patch_size
|
| 162 |
+
self.num_patches = self.num_patches_per_side**2
|
| 163 |
+
self.num_positions = self.num_patches
|
| 164 |
+
if not config.rope:
|
| 165 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
| 166 |
+
|
| 167 |
+
def convert_conv2d_to_linear(self, config, meta=False):
|
| 168 |
+
if meta:
|
| 169 |
+
linear_patch_embedding = nn.Linear(
|
| 170 |
+
config.num_channels * self.patch_size ** 2, self.embed_dim, bias=True, device='meta'
|
| 171 |
+
)
|
| 172 |
+
else:
|
| 173 |
+
linear_patch_embedding = nn.Linear(
|
| 174 |
+
config.num_channels * self.patch_size ** 2, self.embed_dim, bias=True
|
| 175 |
+
)
|
| 176 |
+
W = self.patch_embedding.weight.permute(0, 2, 3, 1).reshape(
|
| 177 |
+
self.embed_dim, config.num_channels * self.patch_size ** 2
|
| 178 |
+
)
|
| 179 |
+
linear_patch_embedding.weight.data = W
|
| 180 |
+
linear_patch_embedding.bias.data = self.patch_embedding.bias.data
|
| 181 |
+
del self.patch_embedding
|
| 182 |
+
self.patch_embedding = linear_patch_embedding
|
| 183 |
+
|
| 184 |
+
def forward(
|
| 185 |
+
self,
|
| 186 |
+
packed_pixel_values: torch.FloatTensor,
|
| 187 |
+
packed_flattened_position_ids: torch.LongTensor
|
| 188 |
+
) -> torch.Tensor:
|
| 189 |
+
|
| 190 |
+
patch_embeds = self.patch_embedding(packed_pixel_values)
|
| 191 |
+
if not self.config.rope:
|
| 192 |
+
embeddings = patch_embeds + self.position_embedding(packed_flattened_position_ids)
|
| 193 |
+
else:
|
| 194 |
+
embeddings = patch_embeds
|
| 195 |
+
return embeddings
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class SiglipFlashAttention2(SiglipAttention):
|
| 199 |
+
def __init__(self, *args, **kwargs):
|
| 200 |
+
super().__init__(*args, **kwargs)
|
| 201 |
+
|
| 202 |
+
def forward(
|
| 203 |
+
self,
|
| 204 |
+
hidden_states: torch.Tensor,
|
| 205 |
+
cu_seqlens: torch.IntTensor,
|
| 206 |
+
max_seqlen: int,
|
| 207 |
+
cos_h: torch.Tensor = None,
|
| 208 |
+
sin_h: torch.Tensor = None,
|
| 209 |
+
cos_w: torch.Tensor = None,
|
| 210 |
+
sin_w: torch.Tensor = None,
|
| 211 |
+
**kwargs,
|
| 212 |
+
) -> torch.Tensor:
|
| 213 |
+
|
| 214 |
+
total_q_len, _ = hidden_states.size()
|
| 215 |
+
|
| 216 |
+
query_states = self.q_proj(hidden_states)
|
| 217 |
+
key_states = self.k_proj(hidden_states)
|
| 218 |
+
value_states = self.v_proj(hidden_states)
|
| 219 |
+
|
| 220 |
+
query_states = query_states.view(total_q_len, self.num_heads, self.head_dim)
|
| 221 |
+
key_states = key_states.view(total_q_len, self.num_heads, self.head_dim)
|
| 222 |
+
value_states = value_states.view(total_q_len, self.num_heads, self.head_dim)
|
| 223 |
+
|
| 224 |
+
if self.config.rope:
|
| 225 |
+
qh, qw = query_states[:, :, :self.head_dim // 2], query_states[:, :, self.head_dim // 2:]
|
| 226 |
+
kh, kw = key_states[:, :, :self.head_dim // 2], key_states[:, :, self.head_dim // 2:]
|
| 227 |
+
qh, kh = apply_rotary_pos_emb(qh, kh, cos_h, sin_h)
|
| 228 |
+
qw, kw = apply_rotary_pos_emb(qw, kw, cos_w, sin_w)
|
| 229 |
+
query_states = torch.cat([qh, qw], dim=-1)
|
| 230 |
+
key_states = torch.cat([kh, kw], dim=-1)
|
| 231 |
+
|
| 232 |
+
attn_output = flash_attn_varlen_func(
|
| 233 |
+
query_states.to(torch.bfloat16),
|
| 234 |
+
key_states.to(torch.bfloat16),
|
| 235 |
+
value_states.to(torch.bfloat16),
|
| 236 |
+
cu_seqlens_q=cu_seqlens,
|
| 237 |
+
cu_seqlens_k=cu_seqlens,
|
| 238 |
+
max_seqlen_q=max_seqlen,
|
| 239 |
+
max_seqlen_k=max_seqlen,
|
| 240 |
+
causal=False,
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
attn_output = self.out_proj(attn_output.reshape(total_q_len, -1))
|
| 244 |
+
return attn_output
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class SiglipMLP(nn.Module):
|
| 248 |
+
def __init__(self, config):
|
| 249 |
+
super().__init__()
|
| 250 |
+
self.config = config
|
| 251 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 252 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 253 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 254 |
+
|
| 255 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 256 |
+
hidden_states = self.fc1(hidden_states)
|
| 257 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 258 |
+
hidden_states = self.fc2(hidden_states)
|
| 259 |
+
return hidden_states
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class SiglipEncoderLayer(nn.Module):
|
| 263 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 264 |
+
super().__init__()
|
| 265 |
+
self.embed_dim = config.hidden_size
|
| 266 |
+
self.self_attn = SiglipFlashAttention2(config)
|
| 267 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 268 |
+
self.mlp = SiglipMLP(config)
|
| 269 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 270 |
+
|
| 271 |
+
def forward(
|
| 272 |
+
self,
|
| 273 |
+
hidden_states: torch.Tensor,
|
| 274 |
+
cu_seqlens: torch.IntTensor,
|
| 275 |
+
max_seqlen: int,
|
| 276 |
+
cos_h: torch.Tensor = None,
|
| 277 |
+
sin_h: torch.Tensor = None,
|
| 278 |
+
cos_w: torch.Tensor = None,
|
| 279 |
+
sin_w: torch.Tensor = None
|
| 280 |
+
) -> torch.Tensor:
|
| 281 |
+
residual = hidden_states
|
| 282 |
+
|
| 283 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 284 |
+
hidden_states = self.self_attn(
|
| 285 |
+
hidden_states=hidden_states,
|
| 286 |
+
cu_seqlens=cu_seqlens,
|
| 287 |
+
max_seqlen=max_seqlen,
|
| 288 |
+
cos_h=cos_h,
|
| 289 |
+
sin_h=sin_h,
|
| 290 |
+
cos_w=cos_w,
|
| 291 |
+
sin_w=sin_w
|
| 292 |
+
)
|
| 293 |
+
hidden_states = residual + hidden_states
|
| 294 |
+
|
| 295 |
+
residual = hidden_states
|
| 296 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 297 |
+
hidden_states = self.mlp(hidden_states)
|
| 298 |
+
hidden_states = residual + hidden_states
|
| 299 |
+
|
| 300 |
+
return hidden_states
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class SiglipEncoder(nn.Module):
|
| 304 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 305 |
+
super().__init__()
|
| 306 |
+
self.config = config
|
| 307 |
+
self.layers = nn.ModuleList(
|
| 308 |
+
[SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
def forward(
|
| 312 |
+
self,
|
| 313 |
+
inputs_embeds: torch.Tensor,
|
| 314 |
+
cu_seqlens: torch.IntTensor,
|
| 315 |
+
max_seqlen: int,
|
| 316 |
+
cos_h: torch.Tensor = None,
|
| 317 |
+
sin_h: torch.Tensor = None,
|
| 318 |
+
cos_w: torch.Tensor = None,
|
| 319 |
+
sin_w: torch.Tensor = None,
|
| 320 |
+
) -> torch.Tensor:
|
| 321 |
+
|
| 322 |
+
hidden_states = inputs_embeds
|
| 323 |
+
for encoder_layer in self.layers:
|
| 324 |
+
hidden_states = encoder_layer(hidden_states, cu_seqlens, max_seqlen,
|
| 325 |
+
cos_h=cos_h, sin_h=sin_h, cos_w=cos_w, sin_w=sin_w)
|
| 326 |
+
|
| 327 |
+
return hidden_states
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class SiglipVisionTransformer(nn.Module):
|
| 331 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 332 |
+
super().__init__()
|
| 333 |
+
self.config = config
|
| 334 |
+
embed_dim = config.hidden_size
|
| 335 |
+
|
| 336 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
| 337 |
+
if config.rope:
|
| 338 |
+
max_size = config.image_size // config.patch_size
|
| 339 |
+
dim_head = config.hidden_size // config.num_attention_heads
|
| 340 |
+
self.rope = RotaryEmbedding2D(dim_head // 2, max_size, max_size)
|
| 341 |
+
|
| 342 |
+
self.encoder = SiglipEncoder(config)
|
| 343 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 344 |
+
|
| 345 |
+
def forward(
|
| 346 |
+
self,
|
| 347 |
+
packed_pixel_values: torch.Tensor,
|
| 348 |
+
packed_flattened_position_ids: torch.LongTensor,
|
| 349 |
+
cu_seqlens: torch.IntTensor,
|
| 350 |
+
max_seqlen: int,
|
| 351 |
+
) -> torch.Tensor:
|
| 352 |
+
hidden_states = self.embeddings(
|
| 353 |
+
packed_pixel_values=packed_pixel_values,
|
| 354 |
+
packed_flattened_position_ids=packed_flattened_position_ids
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
extra_inputs = {}
|
| 358 |
+
if self.config.rope:
|
| 359 |
+
extra_inputs.update(
|
| 360 |
+
cos_h = self.rope.cos_h[packed_flattened_position_ids],
|
| 361 |
+
sin_h = self.rope.sin_h[packed_flattened_position_ids],
|
| 362 |
+
cos_w = self.rope.cos_w[packed_flattened_position_ids],
|
| 363 |
+
sin_w = self.rope.sin_w[packed_flattened_position_ids]
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
last_hidden_state = self.encoder(
|
| 367 |
+
inputs_embeds=hidden_states, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen,
|
| 368 |
+
**extra_inputs
|
| 369 |
+
)
|
| 370 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
| 371 |
+
return last_hidden_state
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
class SiglipVisionModel(SiglipPreTrainedModel):
|
| 375 |
+
config_class = SiglipVisionConfig
|
| 376 |
+
main_input_name = "packed_pixel_values"
|
| 377 |
+
|
| 378 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 379 |
+
super().__init__(config)
|
| 380 |
+
|
| 381 |
+
self.vision_model = SiglipVisionTransformer(config)
|
| 382 |
+
|
| 383 |
+
# Initialize weights and apply final processing
|
| 384 |
+
self.post_init()
|
| 385 |
+
|
| 386 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 387 |
+
return self.vision_model.embeddings.patch_embedding
|
| 388 |
+
|
| 389 |
+
def forward(
|
| 390 |
+
self,
|
| 391 |
+
packed_pixel_values: torch.Tensor,
|
| 392 |
+
packed_flattened_position_ids: torch.LongTensor,
|
| 393 |
+
cu_seqlens: torch.IntTensor,
|
| 394 |
+
max_seqlen: int,
|
| 395 |
+
) -> torch.Tensor:
|
| 396 |
+
|
| 397 |
+
return self.vision_model(
|
| 398 |
+
packed_pixel_values=packed_pixel_values,
|
| 399 |
+
packed_flattened_position_ids=packed_flattened_position_ids,
|
| 400 |
+
cu_seqlens=cu_seqlens,
|
| 401 |
+
max_seqlen=max_seqlen,
|
| 402 |
+
)
|
modeling/qwen2/__init__.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
from typing import TYPE_CHECKING
|
| 5 |
+
|
| 6 |
+
from transformers.utils import (
|
| 7 |
+
OptionalDependencyNotAvailable,
|
| 8 |
+
_LazyModule,
|
| 9 |
+
is_tokenizers_available,
|
| 10 |
+
is_torch_available,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
_import_structure = {
|
| 15 |
+
"configuration_qwen2": ["Qwen2Config"],
|
| 16 |
+
"tokenization_qwen2": ["Qwen2Tokenizer"],
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
try:
|
| 20 |
+
if not is_tokenizers_available():
|
| 21 |
+
raise OptionalDependencyNotAvailable()
|
| 22 |
+
except OptionalDependencyNotAvailable:
|
| 23 |
+
pass
|
| 24 |
+
else:
|
| 25 |
+
_import_structure["tokenization_qwen2_fast"] = ["Qwen2TokenizerFast"]
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
if not is_torch_available():
|
| 29 |
+
raise OptionalDependencyNotAvailable()
|
| 30 |
+
except OptionalDependencyNotAvailable:
|
| 31 |
+
pass
|
| 32 |
+
else:
|
| 33 |
+
_import_structure["modeling_qwen2"] = [
|
| 34 |
+
"Qwen2ForCausalLM",
|
| 35 |
+
"Qwen2Model",
|
| 36 |
+
"Qwen2PreTrainedModel",
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
if TYPE_CHECKING:
|
| 41 |
+
from .configuration_qwen2 import Qwen2Config
|
| 42 |
+
from .tokenization_qwen2 import Qwen2Tokenizer
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
if not is_tokenizers_available():
|
| 46 |
+
raise OptionalDependencyNotAvailable()
|
| 47 |
+
except OptionalDependencyNotAvailable:
|
| 48 |
+
pass
|
| 49 |
+
else:
|
| 50 |
+
from .tokenization_qwen2_fast import Qwen2TokenizerFast
|
| 51 |
+
|
| 52 |
+
try:
|
| 53 |
+
if not is_torch_available():
|
| 54 |
+
raise OptionalDependencyNotAvailable()
|
| 55 |
+
except OptionalDependencyNotAvailable:
|
| 56 |
+
pass
|
| 57 |
+
else:
|
| 58 |
+
from .modeling_qwen2 import (
|
| 59 |
+
Qwen2ForCausalLM,
|
| 60 |
+
Qwen2Model,
|
| 61 |
+
Qwen2PreTrainedModel,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
else:
|
| 66 |
+
import sys
|
| 67 |
+
|
| 68 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
modeling/qwen2/configuration_qwen2.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
"""Qwen2 model configuration"""
|
| 5 |
+
|
| 6 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 7 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 8 |
+
from transformers.utils import logging
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
logger = logging.get_logger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Qwen2Config(PretrainedConfig):
|
| 15 |
+
r"""
|
| 16 |
+
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
| 17 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 18 |
+
with the defaults will yield a similar configuration to that of
|
| 19 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
| 20 |
+
|
| 21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 22 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
| 27 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
| 28 |
+
`inputs_ids` passed when calling [`Qwen2Model`]
|
| 29 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 30 |
+
Dimension of the hidden representations.
|
| 31 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
| 32 |
+
Dimension of the MLP representations.
|
| 33 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 34 |
+
Number of hidden layers in the Transformer encoder.
|
| 35 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 37 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
| 38 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 39 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 40 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 41 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 42 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 43 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
| 44 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 45 |
+
The non-linear activation function (function or string) in the decoder.
|
| 46 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 47 |
+
The maximum sequence length that this model might ever be used with.
|
| 48 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 49 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 50 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 51 |
+
The epsilon used by the rms normalization layers.
|
| 52 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 53 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 54 |
+
relevant if `config.is_decoder=True`.
|
| 55 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 56 |
+
Whether the model's input and output word embeddings should be tied.
|
| 57 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 58 |
+
The base period of the RoPE embeddings.
|
| 59 |
+
rope_scaling (`Dict`, *optional*):
|
| 60 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 61 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 62 |
+
accordingly.
|
| 63 |
+
Expected contents:
|
| 64 |
+
`rope_type` (`str`):
|
| 65 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 66 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 67 |
+
`factor` (`float`, *optional*):
|
| 68 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 69 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 70 |
+
original maximum pre-trained length.
|
| 71 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 72 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 73 |
+
pretraining.
|
| 74 |
+
`attention_factor` (`float`, *optional*):
|
| 75 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 76 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 77 |
+
`factor` field to infer the suggested value.
|
| 78 |
+
`beta_fast` (`float`, *optional*):
|
| 79 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 80 |
+
ramp function. If unspecified, it defaults to 32.
|
| 81 |
+
`beta_slow` (`float`, *optional*):
|
| 82 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 83 |
+
ramp function. If unspecified, it defaults to 1.
|
| 84 |
+
`short_factor` (`List[float]`, *optional*):
|
| 85 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 86 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 87 |
+
size divided by the number of attention heads divided by 2
|
| 88 |
+
`long_factor` (`List[float]`, *optional*):
|
| 89 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 90 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 91 |
+
size divided by the number of attention heads divided by 2
|
| 92 |
+
`low_freq_factor` (`float`, *optional*):
|
| 93 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 94 |
+
`high_freq_factor` (`float`, *optional*):
|
| 95 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 96 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 97 |
+
Whether to use sliding window attention.
|
| 98 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 99 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 100 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
| 101 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 102 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 103 |
+
The dropout ratio for the attention probabilities.
|
| 104 |
+
|
| 105 |
+
```python
|
| 106 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
| 107 |
+
|
| 108 |
+
>>> # Initializing a Qwen2 style configuration
|
| 109 |
+
>>> configuration = Qwen2Config()
|
| 110 |
+
|
| 111 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
| 112 |
+
>>> model = Qwen2Model(configuration)
|
| 113 |
+
|
| 114 |
+
>>> # Accessing the model configuration
|
| 115 |
+
>>> configuration = model.config
|
| 116 |
+
```"""
|
| 117 |
+
|
| 118 |
+
model_type = "qwen2"
|
| 119 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 120 |
+
|
| 121 |
+
def __init__(
|
| 122 |
+
self,
|
| 123 |
+
vocab_size=151936,
|
| 124 |
+
hidden_size=4096,
|
| 125 |
+
intermediate_size=22016,
|
| 126 |
+
num_hidden_layers=32,
|
| 127 |
+
num_attention_heads=32,
|
| 128 |
+
num_key_value_heads=32,
|
| 129 |
+
hidden_act="silu",
|
| 130 |
+
max_position_embeddings=32768,
|
| 131 |
+
initializer_range=0.02,
|
| 132 |
+
rms_norm_eps=1e-6,
|
| 133 |
+
use_cache=True,
|
| 134 |
+
tie_word_embeddings=False,
|
| 135 |
+
rope_theta=10000.0,
|
| 136 |
+
rope_scaling=None,
|
| 137 |
+
use_sliding_window=False,
|
| 138 |
+
sliding_window=4096,
|
| 139 |
+
max_window_layers=28,
|
| 140 |
+
attention_dropout=0.0,
|
| 141 |
+
is_causal=True,
|
| 142 |
+
_attn_implementation="flash_attention_2",
|
| 143 |
+
**kwargs,
|
| 144 |
+
):
|
| 145 |
+
self.vocab_size = vocab_size
|
| 146 |
+
self.max_position_embeddings = max_position_embeddings
|
| 147 |
+
self.hidden_size = hidden_size
|
| 148 |
+
self.intermediate_size = intermediate_size
|
| 149 |
+
self.num_hidden_layers = num_hidden_layers
|
| 150 |
+
self.num_attention_heads = num_attention_heads
|
| 151 |
+
self.use_sliding_window = use_sliding_window
|
| 152 |
+
self.sliding_window = sliding_window if use_sliding_window else None
|
| 153 |
+
self.max_window_layers = max_window_layers
|
| 154 |
+
|
| 155 |
+
# for backward compatibility
|
| 156 |
+
if num_key_value_heads is None:
|
| 157 |
+
num_key_value_heads = num_attention_heads
|
| 158 |
+
|
| 159 |
+
self.num_key_value_heads = num_key_value_heads
|
| 160 |
+
self.hidden_act = hidden_act
|
| 161 |
+
self.initializer_range = initializer_range
|
| 162 |
+
self.rms_norm_eps = rms_norm_eps
|
| 163 |
+
self.use_cache = use_cache
|
| 164 |
+
self.rope_theta = rope_theta
|
| 165 |
+
self.rope_scaling = rope_scaling
|
| 166 |
+
self.attention_dropout = attention_dropout
|
| 167 |
+
self.is_causal = is_causal
|
| 168 |
+
self._attn_implementation = _attn_implementation
|
| 169 |
+
|
| 170 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 171 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 172 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 173 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 174 |
+
rope_config_validation(self)
|
| 175 |
+
|
| 176 |
+
super().__init__(
|
| 177 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 178 |
+
**kwargs,
|
| 179 |
+
)
|
modeling/qwen2/modeling_qwen2.py
ADDED
|
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
"""PyTorch Qwen2 model."""
|
| 5 |
+
|
| 6 |
+
import math
|
| 7 |
+
from typing import List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from torch import nn
|
| 12 |
+
|
| 13 |
+
from transformers.activations import ACT2FN
|
| 14 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 15 |
+
from transformers.generation import GenerationMixin
|
| 16 |
+
from transformers.modeling_outputs import (
|
| 17 |
+
BaseModelOutputWithPast,
|
| 18 |
+
CausalLMOutputWithPast,
|
| 19 |
+
)
|
| 20 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 21 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 22 |
+
from transformers.utils import (
|
| 23 |
+
add_start_docstrings,
|
| 24 |
+
add_start_docstrings_to_model_forward,
|
| 25 |
+
is_flash_attn_2_available,
|
| 26 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 27 |
+
logging,
|
| 28 |
+
replace_return_docstrings,
|
| 29 |
+
)
|
| 30 |
+
from .configuration_qwen2 import Qwen2Config
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
if is_flash_attn_2_available():
|
| 34 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
logger = logging.get_logger(__name__)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B"
|
| 41 |
+
_CONFIG_FOR_DOC = "Qwen2Config"
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
|
| 45 |
+
class Qwen2RMSNorm(nn.Module):
|
| 46 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 47 |
+
"""
|
| 48 |
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
| 49 |
+
"""
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 52 |
+
self.variance_epsilon = eps
|
| 53 |
+
|
| 54 |
+
def forward(self, hidden_states):
|
| 55 |
+
input_dtype = hidden_states.dtype
|
| 56 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 57 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 58 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 59 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 60 |
+
|
| 61 |
+
def extra_repr(self):
|
| 62 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Qwen2
|
| 66 |
+
class Qwen2RotaryEmbedding(nn.Module):
|
| 67 |
+
def __init__(
|
| 68 |
+
self,
|
| 69 |
+
dim=None,
|
| 70 |
+
max_position_embeddings=2048,
|
| 71 |
+
base=10000,
|
| 72 |
+
device=None,
|
| 73 |
+
scaling_factor=1.0,
|
| 74 |
+
rope_type="default",
|
| 75 |
+
config: Optional[Qwen2Config] = None,
|
| 76 |
+
):
|
| 77 |
+
super().__init__()
|
| 78 |
+
# TODO (joao): remove the `if` below, only used for BC
|
| 79 |
+
self.rope_kwargs = {}
|
| 80 |
+
if config is None:
|
| 81 |
+
logger.warning_once(
|
| 82 |
+
"`Qwen2RotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
| 83 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
| 84 |
+
)
|
| 85 |
+
self.rope_kwargs = {
|
| 86 |
+
"rope_type": rope_type,
|
| 87 |
+
"factor": scaling_factor,
|
| 88 |
+
"dim": dim,
|
| 89 |
+
"base": base,
|
| 90 |
+
"max_position_embeddings": max_position_embeddings,
|
| 91 |
+
}
|
| 92 |
+
self.rope_type = rope_type
|
| 93 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 94 |
+
self.original_max_seq_len = max_position_embeddings
|
| 95 |
+
else:
|
| 96 |
+
# BC: "rope_type" was originally "type"
|
| 97 |
+
if config.rope_scaling is not None:
|
| 98 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 99 |
+
else:
|
| 100 |
+
self.rope_type = "default"
|
| 101 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 102 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 103 |
+
|
| 104 |
+
self.config = config
|
| 105 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 106 |
+
|
| 107 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
| 108 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 109 |
+
self.original_inv_freq = self.inv_freq
|
| 110 |
+
|
| 111 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
| 112 |
+
"""
|
| 113 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 114 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 115 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 116 |
+
"""
|
| 117 |
+
seq_len = torch.max(position_ids) + 1
|
| 118 |
+
if seq_len > self.max_seq_len_cached: # growth
|
| 119 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
| 120 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
| 121 |
+
)
|
| 122 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 123 |
+
self.max_seq_len_cached = seq_len
|
| 124 |
+
|
| 125 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 126 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 127 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
| 128 |
+
|
| 129 |
+
@torch.no_grad()
|
| 130 |
+
def forward(self, x, position_ids):
|
| 131 |
+
if "dynamic" in self.rope_type:
|
| 132 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 133 |
+
|
| 134 |
+
# Core RoPE block
|
| 135 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 136 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 137 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 138 |
+
device_type = x.device.type
|
| 139 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 140 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 141 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 142 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 143 |
+
cos = emb.cos()
|
| 144 |
+
sin = emb.sin()
|
| 145 |
+
|
| 146 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 147 |
+
cos = cos * self.attention_scaling
|
| 148 |
+
sin = sin * self.attention_scaling
|
| 149 |
+
|
| 150 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 154 |
+
def rotate_half(x):
|
| 155 |
+
"""Rotates half the hidden dims of the input."""
|
| 156 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 157 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 158 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 162 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 163 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 164 |
+
|
| 165 |
+
Args:
|
| 166 |
+
q (`torch.Tensor`): The query tensor.
|
| 167 |
+
k (`torch.Tensor`): The key tensor.
|
| 168 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 169 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 170 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 171 |
+
Deprecated and unused.
|
| 172 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 173 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 174 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 175 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 176 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 177 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 178 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 179 |
+
Returns:
|
| 180 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 181 |
+
"""
|
| 182 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 183 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 184 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 185 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 186 |
+
return q_embed, k_embed
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
|
| 190 |
+
class Qwen2MLP(nn.Module):
|
| 191 |
+
def __init__(self, config):
|
| 192 |
+
super().__init__()
|
| 193 |
+
self.hidden_size = config.hidden_size
|
| 194 |
+
self.intermediate_size = config.intermediate_size
|
| 195 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 196 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 197 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 198 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 199 |
+
|
| 200 |
+
def forward(self, hidden_state):
|
| 201 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 205 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 206 |
+
"""
|
| 207 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 208 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 209 |
+
"""
|
| 210 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 211 |
+
if n_rep == 1:
|
| 212 |
+
return hidden_states
|
| 213 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 214 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
class Qwen2Attention(nn.Module):
|
| 218 |
+
"""
|
| 219 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
| 220 |
+
and "Generating Long Sequences with Sparse Transformers".
|
| 221 |
+
"""
|
| 222 |
+
|
| 223 |
+
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
|
| 224 |
+
super().__init__()
|
| 225 |
+
self.config = config
|
| 226 |
+
self.layer_idx = layer_idx
|
| 227 |
+
if layer_idx is None:
|
| 228 |
+
logger.warning_once(
|
| 229 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 230 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 231 |
+
"when creating this class."
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
self.hidden_size = config.hidden_size
|
| 235 |
+
self.num_heads = config.num_attention_heads
|
| 236 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 237 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 238 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 239 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 240 |
+
self.rope_theta = config.rope_theta
|
| 241 |
+
self.is_causal = config.is_causal
|
| 242 |
+
self.attention_dropout = config.attention_dropout
|
| 243 |
+
|
| 244 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 245 |
+
raise ValueError(
|
| 246 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 247 |
+
f" and `num_heads`: {self.num_heads})."
|
| 248 |
+
)
|
| 249 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
| 250 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 251 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 252 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 253 |
+
|
| 254 |
+
def forward(
|
| 255 |
+
self,
|
| 256 |
+
hidden_states: torch.Tensor,
|
| 257 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 258 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 259 |
+
past_key_value: Optional[Cache] = None,
|
| 260 |
+
output_attentions: bool = False,
|
| 261 |
+
use_cache: bool = False,
|
| 262 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 263 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 264 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 265 |
+
bsz, q_len, _ = hidden_states.size()
|
| 266 |
+
|
| 267 |
+
query_states = self.q_proj(hidden_states)
|
| 268 |
+
key_states = self.k_proj(hidden_states)
|
| 269 |
+
value_states = self.v_proj(hidden_states)
|
| 270 |
+
|
| 271 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 272 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 273 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 274 |
+
|
| 275 |
+
if position_embeddings is None:
|
| 276 |
+
logger.warning_once(
|
| 277 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 278 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 279 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 280 |
+
"removed and `position_embeddings` will be mandatory."
|
| 281 |
+
)
|
| 282 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 283 |
+
else:
|
| 284 |
+
cos, sin = position_embeddings
|
| 285 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 286 |
+
|
| 287 |
+
if past_key_value is not None:
|
| 288 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 289 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 290 |
+
|
| 291 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 292 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 293 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 294 |
+
|
| 295 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 296 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 297 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 298 |
+
attn_weights = attn_weights + causal_mask
|
| 299 |
+
|
| 300 |
+
# upcast attention to fp32
|
| 301 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 302 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 303 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 304 |
+
|
| 305 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 306 |
+
raise ValueError(
|
| 307 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 308 |
+
f" {attn_output.size()}"
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 312 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 313 |
+
|
| 314 |
+
attn_output = self.o_proj(attn_output)
|
| 315 |
+
|
| 316 |
+
if not output_attentions:
|
| 317 |
+
attn_weights = None
|
| 318 |
+
|
| 319 |
+
return attn_output, attn_weights, past_key_value
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
class Qwen2FlashAttention2(Qwen2Attention):
|
| 323 |
+
"""
|
| 324 |
+
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
|
| 325 |
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
| 326 |
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
| 327 |
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
| 328 |
+
config.max_window_layers layers.
|
| 329 |
+
"""
|
| 330 |
+
|
| 331 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 332 |
+
def __init__(self, *args, **kwargs):
|
| 333 |
+
super().__init__(*args, **kwargs)
|
| 334 |
+
|
| 335 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 336 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 337 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 338 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 339 |
+
|
| 340 |
+
def forward(
|
| 341 |
+
self,
|
| 342 |
+
hidden_states: torch.Tensor,
|
| 343 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 344 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 345 |
+
past_key_value: Optional[Cache] = None,
|
| 346 |
+
output_attentions: bool = False,
|
| 347 |
+
use_cache: bool = False,
|
| 348 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 349 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 350 |
+
):
|
| 351 |
+
bsz, q_len, _ = hidden_states.size()
|
| 352 |
+
|
| 353 |
+
query_states = self.q_proj(hidden_states)
|
| 354 |
+
key_states = self.k_proj(hidden_states)
|
| 355 |
+
value_states = self.v_proj(hidden_states)
|
| 356 |
+
|
| 357 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 358 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 359 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 360 |
+
|
| 361 |
+
if position_embeddings is None:
|
| 362 |
+
logger.warning_once(
|
| 363 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 364 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 365 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 366 |
+
"removed and `position_embeddings` will be mandatory."
|
| 367 |
+
)
|
| 368 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 369 |
+
else:
|
| 370 |
+
cos, sin = position_embeddings
|
| 371 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 372 |
+
|
| 373 |
+
if past_key_value is not None:
|
| 374 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 375 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 376 |
+
|
| 377 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 378 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 379 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 380 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
| 381 |
+
|
| 382 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 383 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 384 |
+
# cast them back in float16 just to be sure everything works as expected.
|
| 385 |
+
input_dtype = query_states.dtype
|
| 386 |
+
if input_dtype == torch.float32:
|
| 387 |
+
if torch.is_autocast_enabled():
|
| 388 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 389 |
+
# Handle the case where the model is quantized
|
| 390 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 391 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 392 |
+
else:
|
| 393 |
+
target_dtype = self.q_proj.weight.dtype
|
| 394 |
+
|
| 395 |
+
logger.warning_once(
|
| 396 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 397 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 398 |
+
f" {target_dtype}."
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
query_states = query_states.to(target_dtype)
|
| 402 |
+
key_states = key_states.to(target_dtype)
|
| 403 |
+
value_states = value_states.to(target_dtype)
|
| 404 |
+
|
| 405 |
+
# Reashape to the expected shape for Flash Attention
|
| 406 |
+
query_states = query_states.transpose(1, 2)
|
| 407 |
+
key_states = key_states.transpose(1, 2)
|
| 408 |
+
value_states = value_states.transpose(1, 2)
|
| 409 |
+
|
| 410 |
+
if (
|
| 411 |
+
self.config.use_sliding_window
|
| 412 |
+
and getattr(self.config, "sliding_window", None) is not None
|
| 413 |
+
and self.layer_idx >= self.config.max_window_layers
|
| 414 |
+
):
|
| 415 |
+
sliding_window = self.config.sliding_window
|
| 416 |
+
else:
|
| 417 |
+
sliding_window = None
|
| 418 |
+
|
| 419 |
+
attn_output = _flash_attention_forward(
|
| 420 |
+
query_states,
|
| 421 |
+
key_states,
|
| 422 |
+
value_states,
|
| 423 |
+
attention_mask,
|
| 424 |
+
q_len,
|
| 425 |
+
position_ids=position_ids,
|
| 426 |
+
dropout=dropout_rate,
|
| 427 |
+
sliding_window=sliding_window,
|
| 428 |
+
is_causal=self.is_causal,
|
| 429 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 433 |
+
attn_output = self.o_proj(attn_output)
|
| 434 |
+
|
| 435 |
+
if not output_attentions:
|
| 436 |
+
attn_weights = None
|
| 437 |
+
|
| 438 |
+
return attn_output, attn_weights, past_key_value
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
QWEN2_ATTENTION_CLASSES = {
|
| 442 |
+
"eager": Qwen2Attention,
|
| 443 |
+
"flash_attention_2": Qwen2FlashAttention2,
|
| 444 |
+
}
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
class Qwen2DecoderLayer(nn.Module):
|
| 448 |
+
def __init__(self, config: Qwen2Config, layer_idx: int):
|
| 449 |
+
super().__init__()
|
| 450 |
+
self.hidden_size = config.hidden_size
|
| 451 |
+
|
| 452 |
+
if config.sliding_window and config._attn_implementation != "flash_attention_2":
|
| 453 |
+
logger.warning_once(
|
| 454 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
| 455 |
+
"unexpected results may be encountered."
|
| 456 |
+
)
|
| 457 |
+
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
| 458 |
+
|
| 459 |
+
self.mlp = Qwen2MLP(config)
|
| 460 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 461 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 462 |
+
|
| 463 |
+
def forward(
|
| 464 |
+
self,
|
| 465 |
+
hidden_states: torch.Tensor,
|
| 466 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 467 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 468 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 469 |
+
output_attentions: Optional[bool] = False,
|
| 470 |
+
use_cache: Optional[bool] = False,
|
| 471 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 472 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 473 |
+
**kwargs,
|
| 474 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 475 |
+
"""
|
| 476 |
+
Args:
|
| 477 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 478 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 479 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
| 480 |
+
output_attentions (`bool`, *optional*):
|
| 481 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 482 |
+
returned tensors for more detail.
|
| 483 |
+
use_cache (`bool`, *optional*):
|
| 484 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 485 |
+
(see `past_key_values`).
|
| 486 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 487 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 488 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 489 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 490 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 491 |
+
with `head_dim` being the embedding dimension of each attention head.
|
| 492 |
+
kwargs (`dict`, *optional*):
|
| 493 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 494 |
+
into the model
|
| 495 |
+
"""
|
| 496 |
+
|
| 497 |
+
residual = hidden_states
|
| 498 |
+
|
| 499 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 500 |
+
|
| 501 |
+
# Self Attention
|
| 502 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 503 |
+
hidden_states=hidden_states,
|
| 504 |
+
attention_mask=attention_mask,
|
| 505 |
+
position_ids=position_ids,
|
| 506 |
+
past_key_value=past_key_value,
|
| 507 |
+
output_attentions=output_attentions,
|
| 508 |
+
use_cache=use_cache,
|
| 509 |
+
cache_position=cache_position,
|
| 510 |
+
position_embeddings=position_embeddings,
|
| 511 |
+
)
|
| 512 |
+
hidden_states = residual + hidden_states
|
| 513 |
+
|
| 514 |
+
# Fully Connected
|
| 515 |
+
residual = hidden_states
|
| 516 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 517 |
+
hidden_states = self.mlp(hidden_states)
|
| 518 |
+
hidden_states = residual + hidden_states
|
| 519 |
+
|
| 520 |
+
outputs = (hidden_states,)
|
| 521 |
+
|
| 522 |
+
if output_attentions:
|
| 523 |
+
outputs += (self_attn_weights,)
|
| 524 |
+
|
| 525 |
+
if use_cache:
|
| 526 |
+
outputs += (present_key_value,)
|
| 527 |
+
|
| 528 |
+
return outputs
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
QWEN2_START_DOCSTRING = r"""
|
| 532 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 533 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 534 |
+
etc.)
|
| 535 |
+
|
| 536 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 537 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 538 |
+
and behavior.
|
| 539 |
+
|
| 540 |
+
Parameters:
|
| 541 |
+
config ([`Qwen2Config`]):
|
| 542 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 543 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 544 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 545 |
+
"""
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
@add_start_docstrings(
|
| 549 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
| 550 |
+
QWEN2_START_DOCSTRING,
|
| 551 |
+
)
|
| 552 |
+
class Qwen2PreTrainedModel(PreTrainedModel):
|
| 553 |
+
config_class = Qwen2Config
|
| 554 |
+
base_model_prefix = "model"
|
| 555 |
+
supports_gradient_checkpointing = True
|
| 556 |
+
_no_split_modules = ["Qwen2DecoderLayer"]
|
| 557 |
+
_skip_keys_device_placement = "past_key_values"
|
| 558 |
+
_supports_flash_attn_2 = True
|
| 559 |
+
_supports_cache_class = True
|
| 560 |
+
_supports_quantized_cache = True
|
| 561 |
+
_supports_static_cache = True
|
| 562 |
+
|
| 563 |
+
def _init_weights(self, module):
|
| 564 |
+
std = self.config.initializer_range
|
| 565 |
+
if isinstance(module, nn.Linear):
|
| 566 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 567 |
+
if module.bias is not None:
|
| 568 |
+
module.bias.data.zero_()
|
| 569 |
+
elif isinstance(module, nn.Embedding):
|
| 570 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 571 |
+
if module.padding_idx is not None:
|
| 572 |
+
module.weight.data[module.padding_idx].zero_()
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
QWEN2_INPUTS_DOCSTRING = r"""
|
| 576 |
+
Args:
|
| 577 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 578 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 579 |
+
it.
|
| 580 |
+
|
| 581 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 582 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 583 |
+
|
| 584 |
+
[What are input IDs?](../glossary#input-ids)
|
| 585 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 586 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 587 |
+
|
| 588 |
+
- 1 for tokens that are **not masked**,
|
| 589 |
+
- 0 for tokens that are **masked**.
|
| 590 |
+
|
| 591 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 592 |
+
|
| 593 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 594 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 595 |
+
|
| 596 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 597 |
+
`past_key_values`).
|
| 598 |
+
|
| 599 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 600 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 601 |
+
information on the default strategy.
|
| 602 |
+
|
| 603 |
+
- 1 indicates the head is **not masked**,
|
| 604 |
+
- 0 indicates the head is **masked**.
|
| 605 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 606 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 607 |
+
config.n_positions - 1]`.
|
| 608 |
+
|
| 609 |
+
[What are position IDs?](../glossary#position-ids)
|
| 610 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 611 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 612 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 613 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 614 |
+
|
| 615 |
+
Two formats are allowed:
|
| 616 |
+
- a [`~cache_utils.Cache`] instance, see our
|
| 617 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
| 618 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 619 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 620 |
+
cache format.
|
| 621 |
+
|
| 622 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 623 |
+
legacy cache format will be returned.
|
| 624 |
+
|
| 625 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 626 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 627 |
+
of shape `(batch_size, sequence_length)`.
|
| 628 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 629 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 630 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 631 |
+
model's internal embedding lookup matrix.
|
| 632 |
+
use_cache (`bool`, *optional*):
|
| 633 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 634 |
+
`past_key_values`).
|
| 635 |
+
output_attentions (`bool`, *optional*):
|
| 636 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 637 |
+
tensors for more detail.
|
| 638 |
+
output_hidden_states (`bool`, *optional*):
|
| 639 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 640 |
+
more detail.
|
| 641 |
+
return_dict (`bool`, *optional*):
|
| 642 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 643 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 644 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 645 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 646 |
+
the complete sequence length.
|
| 647 |
+
"""
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
@add_start_docstrings(
|
| 651 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
| 652 |
+
QWEN2_START_DOCSTRING,
|
| 653 |
+
)
|
| 654 |
+
class Qwen2Model(Qwen2PreTrainedModel):
|
| 655 |
+
"""
|
| 656 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
| 657 |
+
|
| 658 |
+
Args:
|
| 659 |
+
config: Qwen2Config
|
| 660 |
+
"""
|
| 661 |
+
|
| 662 |
+
def __init__(self, config: Qwen2Config):
|
| 663 |
+
super().__init__(config)
|
| 664 |
+
self.padding_idx = config.pad_token_id
|
| 665 |
+
self.vocab_size = config.vocab_size
|
| 666 |
+
|
| 667 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 668 |
+
self.layers = nn.ModuleList(
|
| 669 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 670 |
+
)
|
| 671 |
+
self._attn_implementation = config._attn_implementation
|
| 672 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 673 |
+
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
| 674 |
+
|
| 675 |
+
self.gradient_checkpointing = False
|
| 676 |
+
# Initialize weights and apply final processing
|
| 677 |
+
self.post_init()
|
| 678 |
+
|
| 679 |
+
def get_input_embeddings(self):
|
| 680 |
+
return self.embed_tokens
|
| 681 |
+
|
| 682 |
+
def set_input_embeddings(self, value):
|
| 683 |
+
self.embed_tokens = value
|
| 684 |
+
|
| 685 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
| 686 |
+
def forward(
|
| 687 |
+
self,
|
| 688 |
+
input_ids: torch.LongTensor = None,
|
| 689 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 690 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 691 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 692 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 693 |
+
use_cache: Optional[bool] = None,
|
| 694 |
+
output_attentions: Optional[bool] = None,
|
| 695 |
+
output_hidden_states: Optional[bool] = None,
|
| 696 |
+
return_dict: Optional[bool] = None,
|
| 697 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 698 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 699 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 700 |
+
output_hidden_states = (
|
| 701 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 702 |
+
)
|
| 703 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 704 |
+
|
| 705 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 706 |
+
|
| 707 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 708 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 709 |
+
|
| 710 |
+
if self.gradient_checkpointing and self.training:
|
| 711 |
+
if use_cache:
|
| 712 |
+
logger.warning_once(
|
| 713 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 714 |
+
)
|
| 715 |
+
use_cache = False
|
| 716 |
+
|
| 717 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
| 718 |
+
return_legacy_cache = False
|
| 719 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
| 720 |
+
return_legacy_cache = True
|
| 721 |
+
if past_key_values is None:
|
| 722 |
+
past_key_values = DynamicCache()
|
| 723 |
+
else:
|
| 724 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 725 |
+
logger.warning_once(
|
| 726 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
| 727 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
| 728 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
if inputs_embeds is None:
|
| 732 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 733 |
+
|
| 734 |
+
if cache_position is None:
|
| 735 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 736 |
+
cache_position = torch.arange(
|
| 737 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 738 |
+
)
|
| 739 |
+
if position_ids is None:
|
| 740 |
+
position_ids = cache_position.unsqueeze(0)
|
| 741 |
+
|
| 742 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 743 |
+
causal_mask = attention_mask
|
| 744 |
+
else:
|
| 745 |
+
causal_mask = None
|
| 746 |
+
|
| 747 |
+
hidden_states = inputs_embeds
|
| 748 |
+
# create position embeddings to be shared across the decoder layers
|
| 749 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 750 |
+
|
| 751 |
+
# decoder layers
|
| 752 |
+
all_hidden_states = () if output_hidden_states else None
|
| 753 |
+
all_self_attns = () if output_attentions else None
|
| 754 |
+
next_decoder_cache = None
|
| 755 |
+
|
| 756 |
+
for decoder_layer in self.layers:
|
| 757 |
+
if output_hidden_states:
|
| 758 |
+
all_hidden_states += (hidden_states,)
|
| 759 |
+
|
| 760 |
+
if self.gradient_checkpointing and self.training:
|
| 761 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 762 |
+
decoder_layer.__call__,
|
| 763 |
+
hidden_states,
|
| 764 |
+
causal_mask,
|
| 765 |
+
position_ids,
|
| 766 |
+
past_key_values,
|
| 767 |
+
output_attentions,
|
| 768 |
+
use_cache,
|
| 769 |
+
cache_position,
|
| 770 |
+
position_embeddings,
|
| 771 |
+
)
|
| 772 |
+
else:
|
| 773 |
+
layer_outputs = decoder_layer(
|
| 774 |
+
hidden_states,
|
| 775 |
+
attention_mask=causal_mask,
|
| 776 |
+
position_ids=position_ids,
|
| 777 |
+
past_key_value=past_key_values,
|
| 778 |
+
output_attentions=output_attentions,
|
| 779 |
+
use_cache=use_cache,
|
| 780 |
+
cache_position=cache_position,
|
| 781 |
+
position_embeddings=position_embeddings,
|
| 782 |
+
)
|
| 783 |
+
|
| 784 |
+
hidden_states = layer_outputs[0]
|
| 785 |
+
|
| 786 |
+
if use_cache:
|
| 787 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 788 |
+
|
| 789 |
+
if output_attentions:
|
| 790 |
+
all_self_attns += (layer_outputs[1],)
|
| 791 |
+
|
| 792 |
+
hidden_states = self.norm(hidden_states)
|
| 793 |
+
|
| 794 |
+
# add hidden states from the last decoder layer
|
| 795 |
+
if output_hidden_states:
|
| 796 |
+
all_hidden_states += (hidden_states,)
|
| 797 |
+
|
| 798 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 799 |
+
if return_legacy_cache:
|
| 800 |
+
next_cache = next_cache.to_legacy_cache()
|
| 801 |
+
|
| 802 |
+
if not return_dict:
|
| 803 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 804 |
+
return BaseModelOutputWithPast(
|
| 805 |
+
last_hidden_state=hidden_states,
|
| 806 |
+
past_key_values=next_cache,
|
| 807 |
+
hidden_states=all_hidden_states,
|
| 808 |
+
attentions=all_self_attns,
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
class Qwen2ForCausalLM(Qwen2PreTrainedModel, GenerationMixin):
|
| 813 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 814 |
+
|
| 815 |
+
def __init__(self, config):
|
| 816 |
+
super().__init__(config)
|
| 817 |
+
self.model = Qwen2Model(config)
|
| 818 |
+
self.vocab_size = config.vocab_size
|
| 819 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 820 |
+
|
| 821 |
+
# Initialize weights and apply final processing
|
| 822 |
+
self.post_init()
|
| 823 |
+
|
| 824 |
+
def get_input_embeddings(self):
|
| 825 |
+
return self.model.embed_tokens
|
| 826 |
+
|
| 827 |
+
def set_input_embeddings(self, value):
|
| 828 |
+
self.model.embed_tokens = value
|
| 829 |
+
|
| 830 |
+
def get_output_embeddings(self):
|
| 831 |
+
return self.lm_head
|
| 832 |
+
|
| 833 |
+
def set_output_embeddings(self, new_embeddings):
|
| 834 |
+
self.lm_head = new_embeddings
|
| 835 |
+
|
| 836 |
+
def set_decoder(self, decoder):
|
| 837 |
+
self.model = decoder
|
| 838 |
+
|
| 839 |
+
def get_decoder(self):
|
| 840 |
+
return self.model
|
| 841 |
+
|
| 842 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
| 843 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 844 |
+
def forward(
|
| 845 |
+
self,
|
| 846 |
+
input_ids: torch.LongTensor = None,
|
| 847 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 848 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 849 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 850 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 851 |
+
labels: Optional[torch.LongTensor] = None,
|
| 852 |
+
use_cache: Optional[bool] = None,
|
| 853 |
+
output_attentions: Optional[bool] = None,
|
| 854 |
+
output_hidden_states: Optional[bool] = None,
|
| 855 |
+
return_dict: Optional[bool] = None,
|
| 856 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 857 |
+
num_logits_to_keep: int = 0,
|
| 858 |
+
**loss_kwargs,
|
| 859 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 860 |
+
r"""
|
| 861 |
+
Args:
|
| 862 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 863 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 864 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 865 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 866 |
+
|
| 867 |
+
num_logits_to_keep (`int`, *optional*):
|
| 868 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
| 869 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
| 870 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 871 |
+
|
| 872 |
+
Returns:
|
| 873 |
+
|
| 874 |
+
Example:
|
| 875 |
+
|
| 876 |
+
```python
|
| 877 |
+
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
|
| 878 |
+
|
| 879 |
+
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 880 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 881 |
+
|
| 882 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 883 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 884 |
+
|
| 885 |
+
>>> # Generate
|
| 886 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 887 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 888 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 889 |
+
```"""
|
| 890 |
+
|
| 891 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 892 |
+
output_hidden_states = (
|
| 893 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 894 |
+
)
|
| 895 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 896 |
+
|
| 897 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 898 |
+
outputs = self.model(
|
| 899 |
+
input_ids=input_ids,
|
| 900 |
+
attention_mask=attention_mask,
|
| 901 |
+
position_ids=position_ids,
|
| 902 |
+
past_key_values=past_key_values,
|
| 903 |
+
inputs_embeds=inputs_embeds,
|
| 904 |
+
use_cache=use_cache,
|
| 905 |
+
output_attentions=output_attentions,
|
| 906 |
+
output_hidden_states=output_hidden_states,
|
| 907 |
+
return_dict=return_dict,
|
| 908 |
+
cache_position=cache_position,
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
hidden_states = outputs[0]
|
| 912 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 913 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
| 914 |
+
|
| 915 |
+
loss = None
|
| 916 |
+
if labels is not None:
|
| 917 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
| 918 |
+
|
| 919 |
+
if not return_dict:
|
| 920 |
+
output = (logits,) + outputs[1:]
|
| 921 |
+
return (loss,) + output if loss is not None else output
|
| 922 |
+
|
| 923 |
+
return CausalLMOutputWithPast(
|
| 924 |
+
loss=loss,
|
| 925 |
+
logits=logits,
|
| 926 |
+
past_key_values=outputs.past_key_values,
|
| 927 |
+
hidden_states=outputs.hidden_states,
|
| 928 |
+
attentions=outputs.attentions,
|
| 929 |
+
)
|
modeling/qwen2/tokenization_qwen2.py
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
"""Tokenization classes for Qwen2."""
|
| 5 |
+
|
| 6 |
+
import json
|
| 7 |
+
import os
|
| 8 |
+
import unicodedata
|
| 9 |
+
from functools import lru_cache
|
| 10 |
+
from typing import Optional, Tuple
|
| 11 |
+
|
| 12 |
+
import regex as re
|
| 13 |
+
|
| 14 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 15 |
+
from transformers.utils import logging
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
logger = logging.get_logger(__name__)
|
| 19 |
+
|
| 20 |
+
VOCAB_FILES_NAMES = {
|
| 21 |
+
"vocab_file": "vocab.json",
|
| 22 |
+
"merges_file": "merges.txt",
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
|
| 27 |
+
|
| 28 |
+
PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@lru_cache()
|
| 32 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
| 33 |
+
def bytes_to_unicode():
|
| 34 |
+
"""
|
| 35 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
| 36 |
+
characters the bpe code barfs on.
|
| 37 |
+
|
| 38 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
| 39 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
| 40 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
| 41 |
+
tables between utf-8 bytes and unicode strings.
|
| 42 |
+
"""
|
| 43 |
+
bs = (
|
| 44 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
| 45 |
+
)
|
| 46 |
+
cs = bs[:]
|
| 47 |
+
n = 0
|
| 48 |
+
for b in range(2**8):
|
| 49 |
+
if b not in bs:
|
| 50 |
+
bs.append(b)
|
| 51 |
+
cs.append(2**8 + n)
|
| 52 |
+
n += 1
|
| 53 |
+
cs = [chr(n) for n in cs]
|
| 54 |
+
return dict(zip(bs, cs))
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
| 58 |
+
def get_pairs(word):
|
| 59 |
+
"""
|
| 60 |
+
Return set of symbol pairs in a word.
|
| 61 |
+
|
| 62 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 63 |
+
"""
|
| 64 |
+
pairs = set()
|
| 65 |
+
prev_char = word[0]
|
| 66 |
+
for char in word[1:]:
|
| 67 |
+
pairs.add((prev_char, char))
|
| 68 |
+
prev_char = char
|
| 69 |
+
return pairs
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class Qwen2Tokenizer(PreTrainedTokenizer):
|
| 73 |
+
"""
|
| 74 |
+
Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 75 |
+
|
| 76 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
| 77 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
| 78 |
+
|
| 79 |
+
```python
|
| 80 |
+
>>> from transformers import Qwen2Tokenizer
|
| 81 |
+
|
| 82 |
+
>>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
|
| 83 |
+
>>> tokenizer("Hello world")["input_ids"]
|
| 84 |
+
[9707, 1879]
|
| 85 |
+
|
| 86 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
| 87 |
+
[21927, 1879]
|
| 88 |
+
```
|
| 89 |
+
This is expected.
|
| 90 |
+
|
| 91 |
+
You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
|
| 92 |
+
|
| 93 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 94 |
+
this superclass for more information regarding those methods.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
vocab_file (`str`):
|
| 98 |
+
Path to the vocabulary file.
|
| 99 |
+
merges_file (`str`):
|
| 100 |
+
Path to the merges file.
|
| 101 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
| 102 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
| 103 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
| 104 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 105 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 106 |
+
token instead.
|
| 107 |
+
bos_token (`str`, *optional*):
|
| 108 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
| 109 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 110 |
+
The end of sequence token.
|
| 111 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 112 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 113 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
| 114 |
+
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
| 115 |
+
tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
|
| 116 |
+
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 117 |
+
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
| 118 |
+
to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
|
| 119 |
+
['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
|
| 120 |
+
'|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 124 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 125 |
+
|
| 126 |
+
def __init__(
|
| 127 |
+
self,
|
| 128 |
+
vocab_file,
|
| 129 |
+
merges_file,
|
| 130 |
+
errors="replace",
|
| 131 |
+
unk_token="<|endoftext|>",
|
| 132 |
+
bos_token=None,
|
| 133 |
+
eos_token="<|endoftext|>",
|
| 134 |
+
pad_token="<|endoftext|>",
|
| 135 |
+
clean_up_tokenization_spaces=False,
|
| 136 |
+
split_special_tokens=False,
|
| 137 |
+
**kwargs,
|
| 138 |
+
):
|
| 139 |
+
# Qwen vocab does not contain control tokens; added tokens need to be special
|
| 140 |
+
bos_token = (
|
| 141 |
+
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 142 |
+
if isinstance(bos_token, str)
|
| 143 |
+
else bos_token
|
| 144 |
+
)
|
| 145 |
+
eos_token = (
|
| 146 |
+
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 147 |
+
if isinstance(eos_token, str)
|
| 148 |
+
else eos_token
|
| 149 |
+
)
|
| 150 |
+
unk_token = (
|
| 151 |
+
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 152 |
+
if isinstance(unk_token, str)
|
| 153 |
+
else unk_token
|
| 154 |
+
)
|
| 155 |
+
pad_token = (
|
| 156 |
+
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 157 |
+
if isinstance(pad_token, str)
|
| 158 |
+
else pad_token
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
| 162 |
+
self.encoder = json.load(vocab_handle)
|
| 163 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 164 |
+
self.errors = errors # how to handle errors in decoding
|
| 165 |
+
self.byte_encoder = bytes_to_unicode()
|
| 166 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 167 |
+
bpe_merges = []
|
| 168 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
| 169 |
+
for i, line in enumerate(merges_handle):
|
| 170 |
+
line = line.strip()
|
| 171 |
+
if (i == 0 and line.startswith("#version:")) or not line:
|
| 172 |
+
continue
|
| 173 |
+
bpe_merges.append(tuple(line.split()))
|
| 174 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
| 175 |
+
# NOTE: the cache can grow without bound and will get really large for long running processes
|
| 176 |
+
# (esp. for texts of language that do not use space between word, e.g. Chinese); technically
|
| 177 |
+
# not a memory leak but appears as one.
|
| 178 |
+
# GPT2Tokenizer has the same problem, so let's be consistent.
|
| 179 |
+
self.cache = {}
|
| 180 |
+
|
| 181 |
+
self.pat = re.compile(PRETOKENIZE_REGEX)
|
| 182 |
+
|
| 183 |
+
if kwargs.get("add_prefix_space", False):
|
| 184 |
+
logger.warning_once(
|
| 185 |
+
f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
super().__init__(
|
| 189 |
+
errors=errors,
|
| 190 |
+
bos_token=bos_token,
|
| 191 |
+
eos_token=eos_token,
|
| 192 |
+
pad_token=pad_token,
|
| 193 |
+
unk_token=unk_token,
|
| 194 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 195 |
+
split_special_tokens=split_special_tokens,
|
| 196 |
+
**kwargs,
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
@property
|
| 200 |
+
def vocab_size(self) -> int:
|
| 201 |
+
return len(self.encoder)
|
| 202 |
+
|
| 203 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
|
| 204 |
+
def get_vocab(self):
|
| 205 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
| 206 |
+
|
| 207 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
| 208 |
+
def bpe(self, token):
|
| 209 |
+
if token in self.cache:
|
| 210 |
+
return self.cache[token]
|
| 211 |
+
word = tuple(token)
|
| 212 |
+
pairs = get_pairs(word)
|
| 213 |
+
|
| 214 |
+
if not pairs:
|
| 215 |
+
return token
|
| 216 |
+
|
| 217 |
+
while True:
|
| 218 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
| 219 |
+
if bigram not in self.bpe_ranks:
|
| 220 |
+
break
|
| 221 |
+
first, second = bigram
|
| 222 |
+
new_word = []
|
| 223 |
+
i = 0
|
| 224 |
+
while i < len(word):
|
| 225 |
+
try:
|
| 226 |
+
j = word.index(first, i)
|
| 227 |
+
except ValueError:
|
| 228 |
+
new_word.extend(word[i:])
|
| 229 |
+
break
|
| 230 |
+
else:
|
| 231 |
+
new_word.extend(word[i:j])
|
| 232 |
+
i = j
|
| 233 |
+
|
| 234 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
| 235 |
+
new_word.append(first + second)
|
| 236 |
+
i += 2
|
| 237 |
+
else:
|
| 238 |
+
new_word.append(word[i])
|
| 239 |
+
i += 1
|
| 240 |
+
new_word = tuple(new_word)
|
| 241 |
+
word = new_word
|
| 242 |
+
if len(word) == 1:
|
| 243 |
+
break
|
| 244 |
+
else:
|
| 245 |
+
pairs = get_pairs(word)
|
| 246 |
+
word = " ".join(word)
|
| 247 |
+
self.cache[token] = word
|
| 248 |
+
return word
|
| 249 |
+
|
| 250 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
|
| 251 |
+
def _tokenize(self, text):
|
| 252 |
+
"""Tokenize a string."""
|
| 253 |
+
bpe_tokens = []
|
| 254 |
+
for token in re.findall(self.pat, text):
|
| 255 |
+
token = "".join(
|
| 256 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
| 257 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
| 258 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
| 259 |
+
return bpe_tokens
|
| 260 |
+
|
| 261 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
| 262 |
+
def _convert_token_to_id(self, token):
|
| 263 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 264 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
| 265 |
+
|
| 266 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
| 267 |
+
def _convert_id_to_token(self, index):
|
| 268 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 269 |
+
return self.decoder.get(index)
|
| 270 |
+
|
| 271 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
| 272 |
+
def convert_tokens_to_string(self, tokens):
|
| 273 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 274 |
+
text = "".join(tokens)
|
| 275 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
| 276 |
+
return text
|
| 277 |
+
|
| 278 |
+
def decode(
|
| 279 |
+
self,
|
| 280 |
+
token_ids,
|
| 281 |
+
skip_special_tokens: bool = False,
|
| 282 |
+
clean_up_tokenization_spaces: Optional[bool] = False,
|
| 283 |
+
spaces_between_special_tokens: bool = False,
|
| 284 |
+
**kwargs,
|
| 285 |
+
) -> str:
|
| 286 |
+
# `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
|
| 287 |
+
# and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer
|
| 288 |
+
return super().decode(
|
| 289 |
+
token_ids,
|
| 290 |
+
skip_special_tokens=skip_special_tokens,
|
| 291 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 292 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
| 293 |
+
**kwargs,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
| 297 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 298 |
+
if not os.path.isdir(save_directory):
|
| 299 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 300 |
+
return
|
| 301 |
+
vocab_file = os.path.join(
|
| 302 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 303 |
+
)
|
| 304 |
+
merge_file = os.path.join(
|
| 305 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
| 309 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
| 310 |
+
|
| 311 |
+
index = 0
|
| 312 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
| 313 |
+
writer.write("#version: 0.2\n")
|
| 314 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
| 315 |
+
if index != token_index:
|
| 316 |
+
logger.warning(
|
| 317 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
| 318 |
+
" Please check that the tokenizer is not corrupted!"
|
| 319 |
+
)
|
| 320 |
+
index = token_index
|
| 321 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
| 322 |
+
index += 1
|
| 323 |
+
|
| 324 |
+
return vocab_file, merge_file
|
| 325 |
+
|
| 326 |
+
def prepare_for_tokenization(self, text, **kwargs):
|
| 327 |
+
text = unicodedata.normalize("NFC", text)
|
| 328 |
+
return (text, kwargs)
|
modeling/qwen2/tokenization_qwen2_fast.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
"""Tokenization classes for Qwen2."""
|
| 5 |
+
|
| 6 |
+
from typing import Optional, Tuple
|
| 7 |
+
|
| 8 |
+
from transformers.tokenization_utils import AddedToken
|
| 9 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
| 10 |
+
from transformers.utils import logging
|
| 11 |
+
from .tokenization_qwen2 import Qwen2Tokenizer
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
logger = logging.get_logger(__name__)
|
| 15 |
+
|
| 16 |
+
VOCAB_FILES_NAMES = {
|
| 17 |
+
"vocab_file": "vocab.json",
|
| 18 |
+
"merges_file": "merges.txt",
|
| 19 |
+
"tokenizer_file": "tokenizer.json",
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class Qwen2TokenizerFast(PreTrainedTokenizerFast):
|
| 27 |
+
"""
|
| 28 |
+
Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
| 29 |
+
Byte-Pair-Encoding.
|
| 30 |
+
|
| 31 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
| 32 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
>>> from transformers import Qwen2TokenizerFast
|
| 36 |
+
|
| 37 |
+
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
|
| 38 |
+
>>> tokenizer("Hello world")["input_ids"]
|
| 39 |
+
[9707, 1879]
|
| 40 |
+
|
| 41 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
| 42 |
+
[21927, 1879]
|
| 43 |
+
```
|
| 44 |
+
This is expected.
|
| 45 |
+
|
| 46 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
| 47 |
+
refer to this superclass for more information regarding those methods.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
vocab_file (`str`, *optional*):
|
| 51 |
+
Path to the vocabulary file.
|
| 52 |
+
merges_file (`str`, *optional*):
|
| 53 |
+
Path to the merges file.
|
| 54 |
+
tokenizer_file (`str`, *optional*):
|
| 55 |
+
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
| 56 |
+
contains everything needed to load the tokenizer.
|
| 57 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 58 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 59 |
+
token instead. Not applicable to this tokenizer.
|
| 60 |
+
bos_token (`str`, *optional*):
|
| 61 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
| 62 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 63 |
+
The end of sequence token.
|
| 64 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 65 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 69 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 70 |
+
slow_tokenizer_class = Qwen2Tokenizer
|
| 71 |
+
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
vocab_file=None,
|
| 75 |
+
merges_file=None,
|
| 76 |
+
tokenizer_file=None,
|
| 77 |
+
unk_token="<|endoftext|>",
|
| 78 |
+
bos_token=None,
|
| 79 |
+
eos_token="<|endoftext|>",
|
| 80 |
+
pad_token="<|endoftext|>",
|
| 81 |
+
**kwargs,
|
| 82 |
+
):
|
| 83 |
+
# We need to at least pass vocab_file and merges_file to base class
|
| 84 |
+
# in case a slow tokenizer needs to be initialized; other can be
|
| 85 |
+
# configured through files.
|
| 86 |
+
# following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token
|
| 87 |
+
|
| 88 |
+
bos_token = (
|
| 89 |
+
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 90 |
+
if isinstance(bos_token, str)
|
| 91 |
+
else bos_token
|
| 92 |
+
)
|
| 93 |
+
eos_token = (
|
| 94 |
+
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 95 |
+
if isinstance(eos_token, str)
|
| 96 |
+
else eos_token
|
| 97 |
+
)
|
| 98 |
+
unk_token = (
|
| 99 |
+
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 100 |
+
if isinstance(unk_token, str)
|
| 101 |
+
else unk_token
|
| 102 |
+
)
|
| 103 |
+
pad_token = (
|
| 104 |
+
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 105 |
+
if isinstance(pad_token, str)
|
| 106 |
+
else pad_token
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
super().__init__(
|
| 110 |
+
vocab_file=vocab_file,
|
| 111 |
+
merges_file=merges_file,
|
| 112 |
+
tokenizer_file=tokenizer_file,
|
| 113 |
+
unk_token=unk_token,
|
| 114 |
+
bos_token=bos_token,
|
| 115 |
+
eos_token=eos_token,
|
| 116 |
+
pad_token=pad_token,
|
| 117 |
+
**kwargs,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
|
| 121 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 122 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
| 123 |
+
return tuple(files)
|
modeling/siglip/__init__.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
from typing import TYPE_CHECKING
|
| 5 |
+
|
| 6 |
+
from transformers.utils import (
|
| 7 |
+
OptionalDependencyNotAvailable,
|
| 8 |
+
_LazyModule,
|
| 9 |
+
is_sentencepiece_available,
|
| 10 |
+
is_torch_available,
|
| 11 |
+
is_vision_available,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
_import_structure = {
|
| 16 |
+
"configuration_siglip": [
|
| 17 |
+
"SiglipConfig",
|
| 18 |
+
"SiglipTextConfig",
|
| 19 |
+
"SiglipVisionConfig",
|
| 20 |
+
],
|
| 21 |
+
"processing_siglip": ["SiglipProcessor"],
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
if not is_sentencepiece_available():
|
| 26 |
+
raise OptionalDependencyNotAvailable()
|
| 27 |
+
except OptionalDependencyNotAvailable:
|
| 28 |
+
pass
|
| 29 |
+
else:
|
| 30 |
+
_import_structure["tokenization_siglip"] = ["SiglipTokenizer"]
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
try:
|
| 34 |
+
if not is_vision_available():
|
| 35 |
+
raise OptionalDependencyNotAvailable()
|
| 36 |
+
except OptionalDependencyNotAvailable:
|
| 37 |
+
pass
|
| 38 |
+
else:
|
| 39 |
+
_import_structure["image_processing_siglip"] = ["SiglipImageProcessor"]
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
if not is_torch_available():
|
| 43 |
+
raise OptionalDependencyNotAvailable()
|
| 44 |
+
except OptionalDependencyNotAvailable:
|
| 45 |
+
pass
|
| 46 |
+
else:
|
| 47 |
+
_import_structure["modeling_siglip"] = [
|
| 48 |
+
"SiglipModel",
|
| 49 |
+
"SiglipPreTrainedModel",
|
| 50 |
+
"SiglipTextModel",
|
| 51 |
+
"SiglipVisionModel",
|
| 52 |
+
"SiglipForImageClassification",
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
if TYPE_CHECKING:
|
| 57 |
+
from .configuration_siglip import (
|
| 58 |
+
SiglipConfig,
|
| 59 |
+
SiglipTextConfig,
|
| 60 |
+
SiglipVisionConfig,
|
| 61 |
+
)
|
| 62 |
+
from .processing_siglip import SiglipProcessor
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
if not is_sentencepiece_available():
|
| 66 |
+
raise OptionalDependencyNotAvailable()
|
| 67 |
+
except OptionalDependencyNotAvailable:
|
| 68 |
+
pass
|
| 69 |
+
else:
|
| 70 |
+
from .tokenization_siglip import SiglipTokenizer
|
| 71 |
+
|
| 72 |
+
try:
|
| 73 |
+
if not is_vision_available():
|
| 74 |
+
raise OptionalDependencyNotAvailable()
|
| 75 |
+
except OptionalDependencyNotAvailable:
|
| 76 |
+
pass
|
| 77 |
+
else:
|
| 78 |
+
from .image_processing_siglip import SiglipImageProcessor
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
if not is_torch_available():
|
| 82 |
+
raise OptionalDependencyNotAvailable()
|
| 83 |
+
except OptionalDependencyNotAvailable:
|
| 84 |
+
pass
|
| 85 |
+
else:
|
| 86 |
+
from .modeling_siglip import (
|
| 87 |
+
SiglipForImageClassification,
|
| 88 |
+
SiglipModel,
|
| 89 |
+
SiglipPreTrainedModel,
|
| 90 |
+
SiglipTextModel,
|
| 91 |
+
SiglipVisionModel,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
else:
|
| 96 |
+
import sys
|
| 97 |
+
|
| 98 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
modeling/siglip/configuration_siglip.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
"""Siglip model configuration"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from typing import Union
|
| 8 |
+
|
| 9 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 10 |
+
from transformers.utils import logging
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
logger = logging.get_logger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class SiglipTextConfig(PretrainedConfig):
|
| 17 |
+
r"""
|
| 18 |
+
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
|
| 19 |
+
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
| 20 |
+
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
|
| 21 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
| 22 |
+
|
| 23 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 24 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 28 |
+
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
| 29 |
+
the `inputs_ids` passed when calling [`SiglipModel`].
|
| 30 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 31 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 32 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 33 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 34 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 35 |
+
Number of hidden layers in the Transformer encoder.
|
| 36 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 37 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 38 |
+
max_position_embeddings (`int`, *optional*, defaults to 64):
|
| 39 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 40 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 41 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
| 42 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 43 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
| 44 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 45 |
+
The epsilon used by the layer normalization layers.
|
| 46 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 47 |
+
The dropout ratio for the attention probabilities.
|
| 48 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
| 49 |
+
The id of the padding token in the vocabulary.
|
| 50 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
| 51 |
+
The id of the beginning-of-sequence token in the vocabulary.
|
| 52 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
| 53 |
+
The id of the end-of-sequence token in the vocabulary.
|
| 54 |
+
|
| 55 |
+
Example:
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
>>> from transformers import SiglipTextConfig, SiglipTextModel
|
| 59 |
+
|
| 60 |
+
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
|
| 61 |
+
>>> configuration = SiglipTextConfig()
|
| 62 |
+
|
| 63 |
+
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
| 64 |
+
>>> model = SiglipTextModel(configuration)
|
| 65 |
+
|
| 66 |
+
>>> # Accessing the model configuration
|
| 67 |
+
>>> configuration = model.config
|
| 68 |
+
```"""
|
| 69 |
+
|
| 70 |
+
model_type = "siglip_text_model"
|
| 71 |
+
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
vocab_size=32000,
|
| 75 |
+
hidden_size=768,
|
| 76 |
+
intermediate_size=3072,
|
| 77 |
+
num_hidden_layers=12,
|
| 78 |
+
num_attention_heads=12,
|
| 79 |
+
max_position_embeddings=64,
|
| 80 |
+
hidden_act="gelu_pytorch_tanh",
|
| 81 |
+
layer_norm_eps=1e-6,
|
| 82 |
+
attention_dropout=0.0,
|
| 83 |
+
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
| 84 |
+
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
| 85 |
+
pad_token_id=1,
|
| 86 |
+
bos_token_id=49406,
|
| 87 |
+
eos_token_id=49407,
|
| 88 |
+
**kwargs,
|
| 89 |
+
):
|
| 90 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
| 91 |
+
|
| 92 |
+
self.vocab_size = vocab_size
|
| 93 |
+
self.hidden_size = hidden_size
|
| 94 |
+
self.intermediate_size = intermediate_size
|
| 95 |
+
self.num_hidden_layers = num_hidden_layers
|
| 96 |
+
self.num_attention_heads = num_attention_heads
|
| 97 |
+
self.max_position_embeddings = max_position_embeddings
|
| 98 |
+
self.layer_norm_eps = layer_norm_eps
|
| 99 |
+
self.hidden_act = hidden_act
|
| 100 |
+
self.attention_dropout = attention_dropout
|
| 101 |
+
|
| 102 |
+
@classmethod
|
| 103 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 104 |
+
cls._set_token_in_kwargs(kwargs)
|
| 105 |
+
|
| 106 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 107 |
+
|
| 108 |
+
# get the text config dict if we are loading from SiglipConfig
|
| 109 |
+
if config_dict.get("model_type") == "siglip":
|
| 110 |
+
config_dict = config_dict["text_config"]
|
| 111 |
+
|
| 112 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 113 |
+
logger.warning(
|
| 114 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 115 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class SiglipVisionConfig(PretrainedConfig):
|
| 122 |
+
r"""
|
| 123 |
+
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
| 124 |
+
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
| 125 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
| 126 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
| 127 |
+
|
| 128 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 129 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 133 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 134 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 135 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 136 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 137 |
+
Number of hidden layers in the Transformer encoder.
|
| 138 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 139 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 140 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 141 |
+
Number of channels in the input images.
|
| 142 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 143 |
+
The size (resolution) of each image.
|
| 144 |
+
patch_size (`int`, *optional*, defaults to 16):
|
| 145 |
+
The size (resolution) of each patch.
|
| 146 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
| 147 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 148 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
| 149 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 150 |
+
The epsilon used by the layer normalization layers.
|
| 151 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 152 |
+
The dropout ratio for the attention probabilities.
|
| 153 |
+
|
| 154 |
+
Example:
|
| 155 |
+
|
| 156 |
+
```python
|
| 157 |
+
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
| 158 |
+
|
| 159 |
+
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
| 160 |
+
>>> configuration = SiglipVisionConfig()
|
| 161 |
+
|
| 162 |
+
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
| 163 |
+
>>> model = SiglipVisionModel(configuration)
|
| 164 |
+
|
| 165 |
+
>>> # Accessing the model configuration
|
| 166 |
+
>>> configuration = model.config
|
| 167 |
+
```"""
|
| 168 |
+
|
| 169 |
+
model_type = "siglip_vision_model"
|
| 170 |
+
|
| 171 |
+
def __init__(
|
| 172 |
+
self,
|
| 173 |
+
hidden_size=768,
|
| 174 |
+
intermediate_size=3072,
|
| 175 |
+
num_hidden_layers=12,
|
| 176 |
+
num_attention_heads=12,
|
| 177 |
+
num_channels=3,
|
| 178 |
+
image_size=224,
|
| 179 |
+
patch_size=16,
|
| 180 |
+
hidden_act="gelu_pytorch_tanh",
|
| 181 |
+
layer_norm_eps=1e-6,
|
| 182 |
+
attention_dropout=0.0,
|
| 183 |
+
**kwargs,
|
| 184 |
+
):
|
| 185 |
+
super().__init__(**kwargs)
|
| 186 |
+
|
| 187 |
+
self.hidden_size = hidden_size
|
| 188 |
+
self.intermediate_size = intermediate_size
|
| 189 |
+
self.num_hidden_layers = num_hidden_layers
|
| 190 |
+
self.num_attention_heads = num_attention_heads
|
| 191 |
+
self.num_channels = num_channels
|
| 192 |
+
self.patch_size = patch_size
|
| 193 |
+
self.image_size = image_size
|
| 194 |
+
self.attention_dropout = attention_dropout
|
| 195 |
+
self.layer_norm_eps = layer_norm_eps
|
| 196 |
+
self.hidden_act = hidden_act
|
| 197 |
+
|
| 198 |
+
@classmethod
|
| 199 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 200 |
+
cls._set_token_in_kwargs(kwargs)
|
| 201 |
+
|
| 202 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 203 |
+
|
| 204 |
+
# get the vision config dict if we are loading from SiglipConfig
|
| 205 |
+
if config_dict.get("model_type") == "siglip":
|
| 206 |
+
config_dict = config_dict["vision_config"]
|
| 207 |
+
|
| 208 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 209 |
+
logger.warning(
|
| 210 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 211 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
class SiglipConfig(PretrainedConfig):
|
| 218 |
+
r"""
|
| 219 |
+
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
|
| 220 |
+
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
|
| 221 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
|
| 222 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
| 223 |
+
|
| 224 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 225 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 226 |
+
|
| 227 |
+
Args:
|
| 228 |
+
text_config (`dict`, *optional*):
|
| 229 |
+
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
| 230 |
+
vision_config (`dict`, *optional*):
|
| 231 |
+
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
| 232 |
+
kwargs (*optional*):
|
| 233 |
+
Dictionary of keyword arguments.
|
| 234 |
+
|
| 235 |
+
Example:
|
| 236 |
+
|
| 237 |
+
```python
|
| 238 |
+
>>> from transformers import SiglipConfig, SiglipModel
|
| 239 |
+
|
| 240 |
+
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
|
| 241 |
+
>>> configuration = SiglipConfig()
|
| 242 |
+
|
| 243 |
+
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
| 244 |
+
>>> model = SiglipModel(configuration)
|
| 245 |
+
|
| 246 |
+
>>> # Accessing the model configuration
|
| 247 |
+
>>> configuration = model.config
|
| 248 |
+
|
| 249 |
+
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
|
| 250 |
+
>>> from transformers import SiglipTextConfig, SiglipVisionConfig
|
| 251 |
+
|
| 252 |
+
>>> # Initializing a SiglipText and SiglipVision configuration
|
| 253 |
+
>>> config_text = SiglipTextConfig()
|
| 254 |
+
>>> config_vision = SiglipVisionConfig()
|
| 255 |
+
|
| 256 |
+
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
|
| 257 |
+
```"""
|
| 258 |
+
|
| 259 |
+
model_type = "siglip"
|
| 260 |
+
|
| 261 |
+
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
| 262 |
+
super().__init__(**kwargs)
|
| 263 |
+
|
| 264 |
+
if text_config is None:
|
| 265 |
+
text_config = {}
|
| 266 |
+
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
| 267 |
+
|
| 268 |
+
if vision_config is None:
|
| 269 |
+
vision_config = {}
|
| 270 |
+
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")
|
| 271 |
+
|
| 272 |
+
self.text_config = SiglipTextConfig(**text_config)
|
| 273 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
| 274 |
+
|
| 275 |
+
self.initializer_factor = 1.0
|
| 276 |
+
|
| 277 |
+
@classmethod
|
| 278 |
+
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
|
| 279 |
+
r"""
|
| 280 |
+
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
|
| 281 |
+
model configuration.
|
| 282 |
+
|
| 283 |
+
Returns:
|
| 284 |
+
[`SiglipConfig`]: An instance of a configuration object
|
| 285 |
+
"""
|
| 286 |
+
|
| 287 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
modeling/siglip/convert_siglip_to_hf.py
ADDED
|
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
"""Convert SigLIP checkpoints from the original repository.
|
| 5 |
+
|
| 6 |
+
URL: https://github.com/google-research/big_vision/tree/main
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import argparse
|
| 10 |
+
import collections
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
import requests
|
| 15 |
+
import torch
|
| 16 |
+
from huggingface_hub import hf_hub_download
|
| 17 |
+
from numpy import load
|
| 18 |
+
from PIL import Image
|
| 19 |
+
|
| 20 |
+
from transformers import SiglipConfig, SiglipImageProcessor, SiglipModel, SiglipProcessor, SiglipTokenizer
|
| 21 |
+
from transformers.utils import logging
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
logging.set_verbosity_info()
|
| 25 |
+
logger = logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
model_name_to_checkpoint = {
|
| 29 |
+
# base checkpoints
|
| 30 |
+
"siglip-base-patch16-224": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_224_63724782.npz",
|
| 31 |
+
"siglip-base-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_256_60500360.npz",
|
| 32 |
+
"siglip-base-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_384_68578854.npz",
|
| 33 |
+
"siglip-base-patch16-512": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_512_68580893.npz",
|
| 34 |
+
# large checkpoints
|
| 35 |
+
"siglip-large-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_256_60552751.npz",
|
| 36 |
+
"siglip-large-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_384_63634585.npz",
|
| 37 |
+
# multilingual checkpoint
|
| 38 |
+
"siglip-base-patch16-256-i18n": "/Users/nielsrogge/Documents/SigLIP/webli_i18n_b16_256_66117334.npz",
|
| 39 |
+
# so400m checkpoints
|
| 40 |
+
"siglip-so400m-patch14-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_so400m_384_58765454.npz",
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
model_name_to_image_size = {
|
| 44 |
+
"siglip-base-patch16-224": 224,
|
| 45 |
+
"siglip-base-patch16-256": 256,
|
| 46 |
+
"siglip-base-patch16-384": 384,
|
| 47 |
+
"siglip-base-patch16-512": 512,
|
| 48 |
+
"siglip-large-patch16-256": 256,
|
| 49 |
+
"siglip-large-patch16-384": 384,
|
| 50 |
+
"siglip-base-patch16-256-i18n": 256,
|
| 51 |
+
"siglip-so400m-patch14-384": 384,
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_siglip_config(model_name):
|
| 56 |
+
config = SiglipConfig()
|
| 57 |
+
|
| 58 |
+
vocab_size = 250000 if "i18n" in model_name else 32000
|
| 59 |
+
image_size = model_name_to_image_size[model_name]
|
| 60 |
+
patch_size = 16 if "patch16" in model_name else 14
|
| 61 |
+
|
| 62 |
+
# size of the architecture
|
| 63 |
+
config.vision_config.image_size = image_size
|
| 64 |
+
config.vision_config.patch_size = patch_size
|
| 65 |
+
config.text_config.vocab_size = vocab_size
|
| 66 |
+
|
| 67 |
+
if "base" in model_name:
|
| 68 |
+
pass
|
| 69 |
+
elif "large" in model_name:
|
| 70 |
+
config.text_config.hidden_size = 1024
|
| 71 |
+
config.text_config.intermediate_size = 4096
|
| 72 |
+
config.text_config.num_hidden_layers = 24
|
| 73 |
+
config.text_config.num_attention_heads = 16
|
| 74 |
+
config.vision_config.hidden_size = 1024
|
| 75 |
+
config.vision_config.intermediate_size = 4096
|
| 76 |
+
config.vision_config.num_hidden_layers = 24
|
| 77 |
+
config.vision_config.num_attention_heads = 16
|
| 78 |
+
elif "so400m" in model_name:
|
| 79 |
+
config.text_config.hidden_size = 1152
|
| 80 |
+
config.text_config.intermediate_size = 4304
|
| 81 |
+
config.text_config.num_hidden_layers = 27
|
| 82 |
+
config.text_config.num_attention_heads = 16
|
| 83 |
+
config.vision_config.hidden_size = 1152
|
| 84 |
+
config.vision_config.intermediate_size = 4304
|
| 85 |
+
config.vision_config.num_hidden_layers = 27
|
| 86 |
+
config.vision_config.num_attention_heads = 16
|
| 87 |
+
else:
|
| 88 |
+
raise ValueError("Model not supported")
|
| 89 |
+
|
| 90 |
+
return config
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def create_rename_keys(config):
|
| 94 |
+
rename_keys = []
|
| 95 |
+
# fmt: off
|
| 96 |
+
|
| 97 |
+
# vision encoder
|
| 98 |
+
|
| 99 |
+
rename_keys.append(("params/img/embedding/kernel", "vision_model.embeddings.patch_embedding.weight"))
|
| 100 |
+
rename_keys.append(("params/img/embedding/bias", "vision_model.embeddings.patch_embedding.bias"))
|
| 101 |
+
rename_keys.append(("params/img/pos_embedding", "vision_model.embeddings.position_embedding.weight"))
|
| 102 |
+
|
| 103 |
+
for i in range(config.vision_config.num_hidden_layers):
|
| 104 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/scale", f"vision_model.encoder.layers.{i}.layer_norm1.weight"))
|
| 105 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias"))
|
| 106 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/scale", f"vision_model.encoder.layers.{i}.layer_norm2.weight"))
|
| 107 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias"))
|
| 108 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"vision_model.encoder.layers.{i}.mlp.fc1.weight"))
|
| 109 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias"))
|
| 110 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"vision_model.encoder.layers.{i}.mlp.fc2.weight"))
|
| 111 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias"))
|
| 112 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"vision_model.encoder.layers.{i}.self_attn.k_proj.weight"))
|
| 113 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"vision_model.encoder.layers.{i}.self_attn.k_proj.bias"))
|
| 114 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"vision_model.encoder.layers.{i}.self_attn.v_proj.weight"))
|
| 115 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"vision_model.encoder.layers.{i}.self_attn.v_proj.bias"))
|
| 116 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"vision_model.encoder.layers.{i}.self_attn.q_proj.weight"))
|
| 117 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"vision_model.encoder.layers.{i}.self_attn.q_proj.bias"))
|
| 118 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"vision_model.encoder.layers.{i}.self_attn.out_proj.weight"))
|
| 119 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"vision_model.encoder.layers.{i}.self_attn.out_proj.bias"))
|
| 120 |
+
|
| 121 |
+
rename_keys.append(("params/img/Transformer/encoder_norm/scale", "vision_model.post_layernorm.weight"))
|
| 122 |
+
rename_keys.append(("params/img/Transformer/encoder_norm/bias", "vision_model.post_layernorm.bias"))
|
| 123 |
+
|
| 124 |
+
rename_keys.append(("params/img/MAPHead_0/probe", "vision_model.head.probe"))
|
| 125 |
+
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/scale", "vision_model.head.layernorm.weight"))
|
| 126 |
+
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/bias", "vision_model.head.layernorm.bias"))
|
| 127 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/kernel", "vision_model.head.mlp.fc1.weight"))
|
| 128 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/bias", "vision_model.head.mlp.fc1.bias"))
|
| 129 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/kernel", "vision_model.head.mlp.fc2.weight"))
|
| 130 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/bias", "vision_model.head.mlp.fc2.bias"))
|
| 131 |
+
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/kernel", "vision_model.head.attention.out_proj.weight"))
|
| 132 |
+
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/bias", "vision_model.head.attention.out_proj.bias"))
|
| 133 |
+
|
| 134 |
+
# text encoder
|
| 135 |
+
|
| 136 |
+
rename_keys.append(("params/txt/Embed_0/embedding", "text_model.embeddings.token_embedding.weight"))
|
| 137 |
+
rename_keys.append(("params/txt/pos_embedding", "text_model.embeddings.position_embedding.weight"))
|
| 138 |
+
|
| 139 |
+
for i in range(config.text_config.num_hidden_layers):
|
| 140 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/scale", f"text_model.encoder.layers.{i}.layer_norm1.weight"))
|
| 141 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/bias", f"text_model.encoder.layers.{i}.layer_norm1.bias"))
|
| 142 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/scale", f"text_model.encoder.layers.{i}.layer_norm2.weight"))
|
| 143 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/bias", f"text_model.encoder.layers.{i}.layer_norm2.bias"))
|
| 144 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"text_model.encoder.layers.{i}.mlp.fc1.weight"))
|
| 145 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"text_model.encoder.layers.{i}.mlp.fc1.bias"))
|
| 146 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"text_model.encoder.layers.{i}.mlp.fc2.weight"))
|
| 147 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"text_model.encoder.layers.{i}.mlp.fc2.bias"))
|
| 148 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"text_model.encoder.layers.{i}.self_attn.k_proj.weight"))
|
| 149 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"text_model.encoder.layers.{i}.self_attn.k_proj.bias"))
|
| 150 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"text_model.encoder.layers.{i}.self_attn.v_proj.weight"))
|
| 151 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"text_model.encoder.layers.{i}.self_attn.v_proj.bias"))
|
| 152 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"text_model.encoder.layers.{i}.self_attn.q_proj.weight"))
|
| 153 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"text_model.encoder.layers.{i}.self_attn.q_proj.bias"))
|
| 154 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"text_model.encoder.layers.{i}.self_attn.out_proj.weight"))
|
| 155 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"text_model.encoder.layers.{i}.self_attn.out_proj.bias"))
|
| 156 |
+
|
| 157 |
+
rename_keys.append(("params/txt/Encoder_0/encoder_norm/scale", "text_model.final_layer_norm.weight"))
|
| 158 |
+
rename_keys.append(("params/txt/Encoder_0/encoder_norm/bias", "text_model.final_layer_norm.bias"))
|
| 159 |
+
rename_keys.append(("params/txt/head/kernel", "text_model.head.weight"))
|
| 160 |
+
rename_keys.append(("params/txt/head/bias", "text_model.head.bias"))
|
| 161 |
+
|
| 162 |
+
# learned temperature and bias
|
| 163 |
+
rename_keys.append(("params/t", "logit_scale"))
|
| 164 |
+
rename_keys.append(("params/b", "logit_bias"))
|
| 165 |
+
|
| 166 |
+
# fmt: on
|
| 167 |
+
return rename_keys
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def rename_key(dct, old, new, config):
|
| 171 |
+
val = dct.pop(old)
|
| 172 |
+
|
| 173 |
+
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "vision" in new:
|
| 174 |
+
val = val.reshape(-1, config.vision_config.hidden_size)
|
| 175 |
+
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "text" in new:
|
| 176 |
+
val = val.reshape(-1, config.text_config.hidden_size)
|
| 177 |
+
|
| 178 |
+
if "patch_embedding.weight" in new:
|
| 179 |
+
val = val.transpose(3, 2, 0, 1)
|
| 180 |
+
elif new.endswith("weight") and "position_embedding" not in new and "token_embedding" not in new:
|
| 181 |
+
val = val.T
|
| 182 |
+
|
| 183 |
+
if "position_embedding" in new and "vision" in new:
|
| 184 |
+
val = val.reshape(-1, config.vision_config.hidden_size)
|
| 185 |
+
if "position_embedding" in new and "text" in new:
|
| 186 |
+
val = val.reshape(-1, config.text_config.hidden_size)
|
| 187 |
+
|
| 188 |
+
if new.endswith("bias"):
|
| 189 |
+
val = val.reshape(-1)
|
| 190 |
+
|
| 191 |
+
dct[new] = torch.from_numpy(val)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def read_in_q_k_v_head(state_dict, config):
|
| 195 |
+
# read in individual input projection layers
|
| 196 |
+
key_proj_weight = (
|
| 197 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/kernel")
|
| 198 |
+
.reshape(-1, config.vision_config.hidden_size)
|
| 199 |
+
.T
|
| 200 |
+
)
|
| 201 |
+
key_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/bias").reshape(-1)
|
| 202 |
+
value_proj_weight = (
|
| 203 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/kernel")
|
| 204 |
+
.reshape(-1, config.vision_config.hidden_size)
|
| 205 |
+
.T
|
| 206 |
+
)
|
| 207 |
+
value_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/bias").reshape(-1)
|
| 208 |
+
query_proj_weight = (
|
| 209 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/kernel")
|
| 210 |
+
.reshape(-1, config.vision_config.hidden_size)
|
| 211 |
+
.T
|
| 212 |
+
)
|
| 213 |
+
query_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/bias").reshape(-1)
|
| 214 |
+
|
| 215 |
+
# next, add them to the state dict as a single matrix + vector
|
| 216 |
+
state_dict["vision_model.head.attention.in_proj_weight"] = torch.from_numpy(
|
| 217 |
+
np.concatenate([query_proj_weight, key_proj_weight, value_proj_weight], axis=0)
|
| 218 |
+
)
|
| 219 |
+
state_dict["vision_model.head.attention.in_proj_bias"] = torch.from_numpy(
|
| 220 |
+
np.concatenate([query_proj_bias, key_proj_bias, value_proj_bias], axis=0)
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
# We will verify our results on an image of cute cats
|
| 225 |
+
def prepare_img():
|
| 226 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 227 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 228 |
+
return image
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def flatten_nested_dict(params, parent_key="", sep="/"):
|
| 232 |
+
items = []
|
| 233 |
+
|
| 234 |
+
for k, v in params.items():
|
| 235 |
+
new_key = parent_key + sep + k if parent_key else k
|
| 236 |
+
|
| 237 |
+
if isinstance(v, collections.abc.MutableMapping):
|
| 238 |
+
items.extend(flatten_nested_dict(v, new_key, sep=sep).items())
|
| 239 |
+
else:
|
| 240 |
+
items.append((new_key, v))
|
| 241 |
+
return dict(items)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
@torch.no_grad()
|
| 245 |
+
def convert_siglip_checkpoint(model_name, pytorch_dump_folder_path, verify_logits=True, push_to_hub=False):
|
| 246 |
+
"""
|
| 247 |
+
Copy/paste/tweak model's weights to our SigLIP structure.
|
| 248 |
+
"""
|
| 249 |
+
|
| 250 |
+
# define default SigLIP configuration
|
| 251 |
+
config = get_siglip_config(model_name)
|
| 252 |
+
|
| 253 |
+
# get checkpoint
|
| 254 |
+
checkpoint = model_name_to_checkpoint[model_name]
|
| 255 |
+
|
| 256 |
+
# get vocab file
|
| 257 |
+
if "i18n" in model_name:
|
| 258 |
+
vocab_file = "/Users/nielsrogge/Documents/SigLIP/multilingual_vocab/sentencepiece.model"
|
| 259 |
+
else:
|
| 260 |
+
vocab_file = "/Users/nielsrogge/Documents/SigLIP/english_vocab/sentencepiece.model"
|
| 261 |
+
|
| 262 |
+
# load original state dict
|
| 263 |
+
data = load(checkpoint)
|
| 264 |
+
state_dict = flatten_nested_dict(data)
|
| 265 |
+
|
| 266 |
+
# remove and rename some keys
|
| 267 |
+
rename_keys = create_rename_keys(config)
|
| 268 |
+
for src, dest in rename_keys:
|
| 269 |
+
rename_key(state_dict, src, dest, config)
|
| 270 |
+
|
| 271 |
+
# qkv matrices of attention pooling head need special treatment
|
| 272 |
+
read_in_q_k_v_head(state_dict, config)
|
| 273 |
+
|
| 274 |
+
# load HuggingFace model
|
| 275 |
+
model = SiglipModel(config).eval()
|
| 276 |
+
model.load_state_dict(state_dict)
|
| 277 |
+
|
| 278 |
+
# create processor
|
| 279 |
+
# important: make tokenizer not return attention_mask since original one doesn't require it
|
| 280 |
+
image_size = config.vision_config.image_size
|
| 281 |
+
size = {"height": image_size, "width": image_size}
|
| 282 |
+
image_processor = SiglipImageProcessor(size=size)
|
| 283 |
+
tokenizer = SiglipTokenizer(vocab_file=vocab_file, model_input_names=["input_ids"])
|
| 284 |
+
processor = SiglipProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
| 285 |
+
|
| 286 |
+
# verify on dummy images and texts
|
| 287 |
+
url_1 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-ipod.jpg"
|
| 288 |
+
image_1 = Image.open(requests.get(url_1, stream=True).raw).convert("RGB")
|
| 289 |
+
url_2 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-blank.jpg"
|
| 290 |
+
image_2 = Image.open(requests.get(url_2, stream=True).raw).convert("RGB")
|
| 291 |
+
texts = ["an apple", "a picture of an apple"]
|
| 292 |
+
|
| 293 |
+
inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", padding="max_length")
|
| 294 |
+
|
| 295 |
+
# verify input_ids against original ones
|
| 296 |
+
if image_size == 224:
|
| 297 |
+
filename = "siglip_pixel_values.pt"
|
| 298 |
+
elif image_size == 256:
|
| 299 |
+
filename = "siglip_pixel_values_256.pt"
|
| 300 |
+
elif image_size == 384:
|
| 301 |
+
filename = "siglip_pixel_values_384.pt"
|
| 302 |
+
elif image_size == 512:
|
| 303 |
+
filename = "siglip_pixel_values_512.pt"
|
| 304 |
+
else:
|
| 305 |
+
raise ValueError("Image size not supported")
|
| 306 |
+
|
| 307 |
+
filepath = hf_hub_download(repo_id="nielsr/test-image", filename=filename, repo_type="dataset")
|
| 308 |
+
original_pixel_values = torch.load(filepath)
|
| 309 |
+
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="siglip_input_ids.pt", repo_type="dataset")
|
| 310 |
+
original_input_ids = torch.load(filepath)
|
| 311 |
+
|
| 312 |
+
if "i18n" not in model_name:
|
| 313 |
+
assert inputs.input_ids.tolist() == original_input_ids.tolist()
|
| 314 |
+
|
| 315 |
+
print("Mean of original pixel values:", original_pixel_values.mean())
|
| 316 |
+
print("Mean of new pixel values:", inputs.pixel_values.mean())
|
| 317 |
+
|
| 318 |
+
# note: we're testing with original pixel values here since we don't have exact pixel values
|
| 319 |
+
with torch.no_grad():
|
| 320 |
+
outputs = model(input_ids=inputs.input_ids, pixel_values=original_pixel_values)
|
| 321 |
+
|
| 322 |
+
# with torch.no_grad():
|
| 323 |
+
# outputs = model(input_ids=inputs.input_ids, pixel_values=inputs.pixel_values)
|
| 324 |
+
|
| 325 |
+
print(outputs.logits_per_image[:3, :3])
|
| 326 |
+
|
| 327 |
+
probs = torch.sigmoid(outputs.logits_per_image) # these are the probabilities
|
| 328 |
+
print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
| 329 |
+
print(f"{probs[0][1]:.1%} that image 0 is '{texts[1]}'")
|
| 330 |
+
|
| 331 |
+
if verify_logits:
|
| 332 |
+
if model_name == "siglip-base-patch16-224":
|
| 333 |
+
expected_slice = torch.tensor(
|
| 334 |
+
[[-2.9621, -2.1672], [-0.2713, 0.2910]],
|
| 335 |
+
)
|
| 336 |
+
elif model_name == "siglip-base-patch16-256":
|
| 337 |
+
expected_slice = torch.tensor(
|
| 338 |
+
[[-3.1146, -1.9894], [-0.7312, 0.6387]],
|
| 339 |
+
)
|
| 340 |
+
elif model_name == "siglip-base-patch16-384":
|
| 341 |
+
expected_slice = torch.tensor(
|
| 342 |
+
[[-2.8098, -2.1891], [-0.4242, 0.4102]],
|
| 343 |
+
)
|
| 344 |
+
elif model_name == "siglip-base-patch16-512":
|
| 345 |
+
expected_slice = torch.tensor(
|
| 346 |
+
[[-2.7899, -2.2668], [-0.4295, -0.0735]],
|
| 347 |
+
)
|
| 348 |
+
elif model_name == "siglip-large-patch16-256":
|
| 349 |
+
expected_slice = torch.tensor(
|
| 350 |
+
[[-1.5827, -0.5801], [-0.9153, 0.1363]],
|
| 351 |
+
)
|
| 352 |
+
elif model_name == "siglip-large-patch16-384":
|
| 353 |
+
expected_slice = torch.tensor(
|
| 354 |
+
[[-2.1523, -0.2899], [-0.2959, 0.7884]],
|
| 355 |
+
)
|
| 356 |
+
elif model_name == "siglip-so400m-patch14-384":
|
| 357 |
+
expected_slice = torch.tensor([[-1.2441, -0.6649], [-0.7060, 0.7374]])
|
| 358 |
+
elif model_name == "siglip-base-patch16-256-i18n":
|
| 359 |
+
expected_slice = torch.tensor(
|
| 360 |
+
[[-0.9064, 0.1073], [-0.0299, 0.5304]],
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
assert torch.allclose(outputs.logits_per_image[:3, :3], expected_slice, atol=1e-4)
|
| 364 |
+
print("Looks ok!")
|
| 365 |
+
|
| 366 |
+
if pytorch_dump_folder_path is not None:
|
| 367 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
| 368 |
+
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
|
| 369 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
| 370 |
+
print(f"Saving processor to {pytorch_dump_folder_path}")
|
| 371 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
| 372 |
+
|
| 373 |
+
if push_to_hub:
|
| 374 |
+
model.push_to_hub(f"nielsr/{model_name}")
|
| 375 |
+
processor.push_to_hub(f"nielsr/{model_name}")
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
if __name__ == "__main__":
|
| 379 |
+
parser = argparse.ArgumentParser()
|
| 380 |
+
# Required parameters
|
| 381 |
+
parser.add_argument(
|
| 382 |
+
"--model_name",
|
| 383 |
+
default="siglip-base-patch16-224",
|
| 384 |
+
type=str,
|
| 385 |
+
choices=model_name_to_checkpoint.keys(),
|
| 386 |
+
help="Name of the model you'd like to convert.",
|
| 387 |
+
)
|
| 388 |
+
parser.add_argument(
|
| 389 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
| 390 |
+
)
|
| 391 |
+
parser.add_argument(
|
| 392 |
+
"--verify_logits",
|
| 393 |
+
action="store_false",
|
| 394 |
+
help="Whether to verify logits against the original implementation.",
|
| 395 |
+
)
|
| 396 |
+
parser.add_argument(
|
| 397 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
args = parser.parse_args()
|
| 401 |
+
convert_siglip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.verify_logits, args.push_to_hub)
|
modeling/siglip/image_processing_siglip.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
"""Image processor class for SigLIP."""
|
| 5 |
+
|
| 6 |
+
from typing import Dict, List, Optional, Union
|
| 7 |
+
|
| 8 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
| 9 |
+
from transformers.image_transforms import (
|
| 10 |
+
convert_to_rgb,
|
| 11 |
+
resize,
|
| 12 |
+
to_channel_dimension_format,
|
| 13 |
+
)
|
| 14 |
+
from transformers.image_utils import (
|
| 15 |
+
IMAGENET_STANDARD_MEAN,
|
| 16 |
+
IMAGENET_STANDARD_STD,
|
| 17 |
+
ChannelDimension,
|
| 18 |
+
ImageInput,
|
| 19 |
+
PILImageResampling,
|
| 20 |
+
infer_channel_dimension_format,
|
| 21 |
+
is_scaled_image,
|
| 22 |
+
make_list_of_images,
|
| 23 |
+
to_numpy_array,
|
| 24 |
+
valid_images,
|
| 25 |
+
validate_preprocess_arguments,
|
| 26 |
+
)
|
| 27 |
+
from transformers.utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
if is_vision_available():
|
| 34 |
+
import PIL
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class SiglipImageProcessor(BaseImageProcessor):
|
| 38 |
+
r"""
|
| 39 |
+
Constructs a SigLIP image processor.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 43 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
| 44 |
+
`do_resize` in the `preprocess` method.
|
| 45 |
+
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
| 46 |
+
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
|
| 47 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 48 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
| 49 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 50 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
| 51 |
+
the `preprocess` method.
|
| 52 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 53 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
| 54 |
+
method.
|
| 55 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 56 |
+
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
|
| 57 |
+
`do_normalize` in the `preprocess` method.
|
| 58 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
| 59 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
| 60 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
| 61 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
| 62 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
| 63 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 64 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 65 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 66 |
+
Whether to convert the image to RGB.
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
model_input_names = ["pixel_values"]
|
| 70 |
+
|
| 71 |
+
def __init__(
|
| 72 |
+
self,
|
| 73 |
+
do_resize: bool = True,
|
| 74 |
+
size: Dict[str, int] = None,
|
| 75 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 76 |
+
do_rescale: bool = True,
|
| 77 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 78 |
+
do_normalize: bool = True,
|
| 79 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 80 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 81 |
+
do_convert_rgb: bool = None,
|
| 82 |
+
**kwargs,
|
| 83 |
+
) -> None:
|
| 84 |
+
super().__init__(**kwargs)
|
| 85 |
+
size = size if size is not None else {"height": 224, "width": 224}
|
| 86 |
+
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
| 87 |
+
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
| 88 |
+
|
| 89 |
+
self.do_resize = do_resize
|
| 90 |
+
self.size = size
|
| 91 |
+
self.resample = resample
|
| 92 |
+
self.do_rescale = do_rescale
|
| 93 |
+
self.rescale_factor = rescale_factor
|
| 94 |
+
self.do_normalize = do_normalize
|
| 95 |
+
self.image_mean = image_mean
|
| 96 |
+
self.image_std = image_std
|
| 97 |
+
self.do_convert_rgb = do_convert_rgb
|
| 98 |
+
|
| 99 |
+
@filter_out_non_signature_kwargs()
|
| 100 |
+
def preprocess(
|
| 101 |
+
self,
|
| 102 |
+
images: ImageInput,
|
| 103 |
+
do_resize: bool = None,
|
| 104 |
+
size: Dict[str, int] = None,
|
| 105 |
+
resample: PILImageResampling = None,
|
| 106 |
+
do_rescale: bool = None,
|
| 107 |
+
rescale_factor: float = None,
|
| 108 |
+
do_normalize: bool = None,
|
| 109 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 110 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 111 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 112 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 113 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 114 |
+
do_convert_rgb: bool = None,
|
| 115 |
+
) -> PIL.Image.Image:
|
| 116 |
+
"""
|
| 117 |
+
Preprocess an image or batch of images.
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
images (`ImageInput`):
|
| 121 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 122 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 123 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 124 |
+
Whether to resize the image.
|
| 125 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 126 |
+
Size of the image after resizing.
|
| 127 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 128 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 129 |
+
has an effect if `do_resize` is set to `True`.
|
| 130 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 131 |
+
Whether to rescale the image.
|
| 132 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 133 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 134 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 135 |
+
Whether to normalize the image.
|
| 136 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 137 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 138 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 139 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 140 |
+
`True`.
|
| 141 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 142 |
+
The type of tensors to return. Can be one of:
|
| 143 |
+
- Unset: Return a list of `np.ndarray`.
|
| 144 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 145 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 146 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 147 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 148 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 149 |
+
The channel dimension format for the output image. Can be one of:
|
| 150 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 151 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 152 |
+
- Unset: Use the channel dimension format of the input image.
|
| 153 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 154 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 155 |
+
from the input image. Can be one of:
|
| 156 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 157 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 158 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 159 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 160 |
+
Whether to convert the image to RGB.
|
| 161 |
+
"""
|
| 162 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 163 |
+
size = size if size is not None else self.size
|
| 164 |
+
size = get_size_dict(size, param_name="size", default_to_square=False)
|
| 165 |
+
resample = resample if resample is not None else self.resample
|
| 166 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 167 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 168 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 169 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 170 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 171 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 172 |
+
|
| 173 |
+
images = make_list_of_images(images)
|
| 174 |
+
|
| 175 |
+
if not valid_images(images):
|
| 176 |
+
raise ValueError(
|
| 177 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 178 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 179 |
+
)
|
| 180 |
+
validate_preprocess_arguments(
|
| 181 |
+
do_rescale=do_rescale,
|
| 182 |
+
rescale_factor=rescale_factor,
|
| 183 |
+
do_normalize=do_normalize,
|
| 184 |
+
image_mean=image_mean,
|
| 185 |
+
image_std=image_std,
|
| 186 |
+
do_resize=do_resize,
|
| 187 |
+
size=size,
|
| 188 |
+
resample=resample,
|
| 189 |
+
)
|
| 190 |
+
# All transformations expect numpy arrays.
|
| 191 |
+
images = [to_numpy_array(image) for image in images]
|
| 192 |
+
|
| 193 |
+
if do_convert_rgb:
|
| 194 |
+
images = [convert_to_rgb(image) for image in images]
|
| 195 |
+
|
| 196 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 197 |
+
logger.warning_once(
|
| 198 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 199 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
if input_data_format is None:
|
| 203 |
+
# We assume that all images have the same channel dimension format.
|
| 204 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 205 |
+
|
| 206 |
+
if do_resize:
|
| 207 |
+
height, width = size["height"], size["width"]
|
| 208 |
+
images = [
|
| 209 |
+
resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format)
|
| 210 |
+
for image in images
|
| 211 |
+
]
|
| 212 |
+
|
| 213 |
+
if do_rescale:
|
| 214 |
+
images = [
|
| 215 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
| 216 |
+
for image in images
|
| 217 |
+
]
|
| 218 |
+
|
| 219 |
+
if do_normalize:
|
| 220 |
+
images = [
|
| 221 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
| 222 |
+
for image in images
|
| 223 |
+
]
|
| 224 |
+
|
| 225 |
+
images = [
|
| 226 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
| 227 |
+
]
|
| 228 |
+
|
| 229 |
+
data = {"pixel_values": images}
|
| 230 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
modeling/siglip/modeling_siglip.py
ADDED
|
@@ -0,0 +1,1557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
"""PyTorch Siglip model."""
|
| 5 |
+
|
| 6 |
+
import math
|
| 7 |
+
import warnings
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from typing import Any, Optional, Tuple, Union
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
import torch.utils.checkpoint
|
| 14 |
+
from torch import nn
|
| 15 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 16 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
| 17 |
+
|
| 18 |
+
from transformers.activations import ACT2FN
|
| 19 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
| 20 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
|
| 21 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 22 |
+
from transformers.utils import (
|
| 23 |
+
ModelOutput,
|
| 24 |
+
add_start_docstrings,
|
| 25 |
+
add_start_docstrings_to_model_forward,
|
| 26 |
+
is_flash_attn_2_available,
|
| 27 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 28 |
+
logging,
|
| 29 |
+
replace_return_docstrings,
|
| 30 |
+
torch_int,
|
| 31 |
+
)
|
| 32 |
+
from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
if is_flash_attn_2_available():
|
| 36 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
logger = logging.get_logger(__name__)
|
| 40 |
+
|
| 41 |
+
# General docstring
|
| 42 |
+
_CONFIG_FOR_DOC = "SiglipConfig"
|
| 43 |
+
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
| 47 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 48 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 49 |
+
def norm_cdf(x):
|
| 50 |
+
# Computes standard normal cumulative distribution function
|
| 51 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
| 52 |
+
|
| 53 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 54 |
+
warnings.warn(
|
| 55 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 56 |
+
"The distribution of values may be incorrect.",
|
| 57 |
+
stacklevel=2,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Values are generated by using a truncated uniform distribution and
|
| 61 |
+
# then using the inverse CDF for the normal distribution.
|
| 62 |
+
# Get upper and lower cdf values
|
| 63 |
+
l = norm_cdf((a - mean) / std)
|
| 64 |
+
u = norm_cdf((b - mean) / std)
|
| 65 |
+
|
| 66 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 67 |
+
# [2l-1, 2u-1].
|
| 68 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 69 |
+
|
| 70 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 71 |
+
# standard normal
|
| 72 |
+
tensor.erfinv_()
|
| 73 |
+
|
| 74 |
+
# Transform to proper mean, std
|
| 75 |
+
tensor.mul_(std * math.sqrt(2.0))
|
| 76 |
+
tensor.add_(mean)
|
| 77 |
+
|
| 78 |
+
# Clamp to ensure it's in the proper range
|
| 79 |
+
tensor.clamp_(min=a, max=b)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def trunc_normal_tf_(
|
| 83 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
| 84 |
+
) -> torch.Tensor:
|
| 85 |
+
"""Fills the input Tensor with values drawn from a truncated
|
| 86 |
+
normal distribution. The values are effectively drawn from the
|
| 87 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 88 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 89 |
+
the bounds. The method used for generating the random values works
|
| 90 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
| 91 |
+
|
| 92 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
| 93 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
| 94 |
+
and the result is subsequently scaled and shifted by the mean and std args.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 98 |
+
mean: the mean of the normal distribution
|
| 99 |
+
std: the standard deviation of the normal distribution
|
| 100 |
+
a: the minimum cutoff value
|
| 101 |
+
b: the maximum cutoff value
|
| 102 |
+
"""
|
| 103 |
+
with torch.no_grad():
|
| 104 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
| 105 |
+
tensor.mul_(std).add_(mean)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
| 109 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
| 110 |
+
if mode == "fan_in":
|
| 111 |
+
denom = fan_in
|
| 112 |
+
elif mode == "fan_out":
|
| 113 |
+
denom = fan_out
|
| 114 |
+
elif mode == "fan_avg":
|
| 115 |
+
denom = (fan_in + fan_out) / 2
|
| 116 |
+
|
| 117 |
+
variance = scale / denom
|
| 118 |
+
|
| 119 |
+
if distribution == "truncated_normal":
|
| 120 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
| 121 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
| 122 |
+
elif distribution == "normal":
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
tensor.normal_(std=math.sqrt(variance))
|
| 125 |
+
elif distribution == "uniform":
|
| 126 |
+
bound = math.sqrt(3 * variance)
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
tensor.uniform_(-bound, bound)
|
| 129 |
+
else:
|
| 130 |
+
raise ValueError(f"invalid distribution {distribution}")
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def lecun_normal_(tensor):
|
| 134 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def default_flax_embed_init(tensor):
|
| 138 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
@dataclass
|
| 142 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
| 143 |
+
class SiglipVisionModelOutput(ModelOutput):
|
| 144 |
+
"""
|
| 145 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
| 149 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
| 150 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 151 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 152 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 153 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 154 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 155 |
+
|
| 156 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 157 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 158 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 159 |
+
sequence_length)`.
|
| 160 |
+
|
| 161 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 162 |
+
heads.
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
| 166 |
+
last_hidden_state: torch.FloatTensor = None
|
| 167 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 168 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
@dataclass
|
| 172 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip
|
| 173 |
+
class SiglipTextModelOutput(ModelOutput):
|
| 174 |
+
"""
|
| 175 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
| 179 |
+
The text embeddings obtained by applying the projection layer to the pooler_output.
|
| 180 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 181 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 182 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 183 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 184 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 185 |
+
|
| 186 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 187 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 188 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 189 |
+
sequence_length)`.
|
| 190 |
+
|
| 191 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 192 |
+
heads.
|
| 193 |
+
"""
|
| 194 |
+
|
| 195 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
| 196 |
+
last_hidden_state: torch.FloatTensor = None
|
| 197 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 198 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
@dataclass
|
| 202 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip
|
| 203 |
+
class SiglipOutput(ModelOutput):
|
| 204 |
+
"""
|
| 205 |
+
Args:
|
| 206 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
| 207 |
+
Contrastive loss for image-text similarity.
|
| 208 |
+
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
| 209 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
| 210 |
+
similarity scores.
|
| 211 |
+
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
| 212 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
| 213 |
+
similarity scores.
|
| 214 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 215 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
| 216 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 217 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
| 218 |
+
text_model_output (`BaseModelOutputWithPooling`):
|
| 219 |
+
The output of the [`SiglipTextModel`].
|
| 220 |
+
vision_model_output (`BaseModelOutputWithPooling`):
|
| 221 |
+
The output of the [`SiglipVisionModel`].
|
| 222 |
+
"""
|
| 223 |
+
|
| 224 |
+
loss: Optional[torch.FloatTensor] = None
|
| 225 |
+
logits_per_image: torch.FloatTensor = None
|
| 226 |
+
logits_per_text: torch.FloatTensor = None
|
| 227 |
+
text_embeds: torch.FloatTensor = None
|
| 228 |
+
image_embeds: torch.FloatTensor = None
|
| 229 |
+
text_model_output: BaseModelOutputWithPooling = None
|
| 230 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
| 231 |
+
|
| 232 |
+
def to_tuple(self) -> Tuple[Any]:
|
| 233 |
+
return tuple(
|
| 234 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
| 235 |
+
for k in self.keys()
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
class SiglipVisionEmbeddings(nn.Module):
|
| 240 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 241 |
+
super().__init__()
|
| 242 |
+
self.config = config
|
| 243 |
+
self.embed_dim = config.hidden_size
|
| 244 |
+
self.image_size = config.image_size
|
| 245 |
+
self.patch_size = config.patch_size
|
| 246 |
+
|
| 247 |
+
self.patch_embedding = nn.Conv2d(
|
| 248 |
+
in_channels=config.num_channels,
|
| 249 |
+
out_channels=self.embed_dim,
|
| 250 |
+
kernel_size=self.patch_size,
|
| 251 |
+
stride=self.patch_size,
|
| 252 |
+
padding="valid",
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 256 |
+
self.num_positions = self.num_patches
|
| 257 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
| 258 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
| 259 |
+
|
| 260 |
+
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
| 261 |
+
"""
|
| 262 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
|
| 263 |
+
images. This method is also adapted to support torch.jit tracing and no class embeddings.
|
| 264 |
+
|
| 265 |
+
Adapted from:
|
| 266 |
+
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
|
| 267 |
+
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
|
| 268 |
+
"""
|
| 269 |
+
|
| 270 |
+
num_patches = embeddings.shape[1]
|
| 271 |
+
num_positions = self.position_embedding.weight.shape[0]
|
| 272 |
+
|
| 273 |
+
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
|
| 274 |
+
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
|
| 275 |
+
return self.position_embedding(self.position_ids)
|
| 276 |
+
|
| 277 |
+
patch_pos_embed = self.position_embedding.weight.unsqueeze(0)
|
| 278 |
+
|
| 279 |
+
dim = embeddings.shape[-1]
|
| 280 |
+
|
| 281 |
+
new_height = height // self.patch_size
|
| 282 |
+
new_width = width // self.patch_size
|
| 283 |
+
|
| 284 |
+
sqrt_num_positions = torch_int(num_positions**0.5)
|
| 285 |
+
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
|
| 286 |
+
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
| 287 |
+
|
| 288 |
+
patch_pos_embed = nn.functional.interpolate(
|
| 289 |
+
patch_pos_embed,
|
| 290 |
+
size=(new_height, new_width),
|
| 291 |
+
mode="bicubic",
|
| 292 |
+
align_corners=False,
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
| 296 |
+
return patch_pos_embed
|
| 297 |
+
|
| 298 |
+
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor:
|
| 299 |
+
_, _, height, width = pixel_values.shape
|
| 300 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
| 301 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
| 302 |
+
|
| 303 |
+
if interpolate_pos_encoding:
|
| 304 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
| 305 |
+
else:
|
| 306 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
| 307 |
+
return embeddings
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip
|
| 311 |
+
class SiglipTextEmbeddings(nn.Module):
|
| 312 |
+
def __init__(self, config: SiglipTextConfig):
|
| 313 |
+
super().__init__()
|
| 314 |
+
embed_dim = config.hidden_size
|
| 315 |
+
|
| 316 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
| 317 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
| 318 |
+
|
| 319 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 320 |
+
self.register_buffer(
|
| 321 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
def forward(
|
| 325 |
+
self,
|
| 326 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 327 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 328 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 329 |
+
) -> torch.Tensor:
|
| 330 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
| 331 |
+
|
| 332 |
+
if position_ids is None:
|
| 333 |
+
position_ids = self.position_ids[:, :seq_length]
|
| 334 |
+
|
| 335 |
+
if inputs_embeds is None:
|
| 336 |
+
inputs_embeds = self.token_embedding(input_ids)
|
| 337 |
+
|
| 338 |
+
position_embeddings = self.position_embedding(position_ids)
|
| 339 |
+
embeddings = inputs_embeds + position_embeddings
|
| 340 |
+
|
| 341 |
+
return embeddings
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
class SiglipAttention(nn.Module):
|
| 345 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 346 |
+
|
| 347 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
| 348 |
+
def __init__(self, config):
|
| 349 |
+
super().__init__()
|
| 350 |
+
self.config = config
|
| 351 |
+
self.embed_dim = config.hidden_size
|
| 352 |
+
self.num_heads = config.num_attention_heads
|
| 353 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 354 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 355 |
+
raise ValueError(
|
| 356 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 357 |
+
f" {self.num_heads})."
|
| 358 |
+
)
|
| 359 |
+
self.scale = self.head_dim**-0.5
|
| 360 |
+
self.dropout = config.attention_dropout
|
| 361 |
+
|
| 362 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 363 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 364 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 365 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 366 |
+
|
| 367 |
+
def forward(
|
| 368 |
+
self,
|
| 369 |
+
hidden_states: torch.Tensor,
|
| 370 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 371 |
+
output_attentions: Optional[bool] = False,
|
| 372 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 373 |
+
"""Input shape: Batch x Time x Channel"""
|
| 374 |
+
|
| 375 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 376 |
+
|
| 377 |
+
query_states = self.q_proj(hidden_states)
|
| 378 |
+
key_states = self.k_proj(hidden_states)
|
| 379 |
+
value_states = self.v_proj(hidden_states)
|
| 380 |
+
|
| 381 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 382 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 383 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 384 |
+
|
| 385 |
+
k_v_seq_len = key_states.shape[-2]
|
| 386 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
| 387 |
+
|
| 388 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
| 389 |
+
raise ValueError(
|
| 390 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
| 391 |
+
f" {attn_weights.size()}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
if attention_mask is not None:
|
| 395 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
| 396 |
+
raise ValueError(
|
| 397 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
| 398 |
+
)
|
| 399 |
+
attn_weights = attn_weights + attention_mask
|
| 400 |
+
|
| 401 |
+
# upcast attention to fp32
|
| 402 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 403 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 404 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 405 |
+
|
| 406 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
| 407 |
+
raise ValueError(
|
| 408 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
| 409 |
+
f" {attn_output.size()}"
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 413 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
| 414 |
+
|
| 415 |
+
attn_output = self.out_proj(attn_output)
|
| 416 |
+
|
| 417 |
+
return attn_output, attn_weights
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
class SiglipFlashAttention2(SiglipAttention):
|
| 421 |
+
"""
|
| 422 |
+
SiglipAttention flash attention module. This module inherits from `SiglipAttention` as the weights of the module stays
|
| 423 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 424 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 425 |
+
"""
|
| 426 |
+
|
| 427 |
+
is_causal = False
|
| 428 |
+
|
| 429 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 430 |
+
def __init__(self, *args, **kwargs):
|
| 431 |
+
super().__init__(*args, **kwargs)
|
| 432 |
+
|
| 433 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 434 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 435 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 436 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 437 |
+
|
| 438 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
|
| 439 |
+
def forward(
|
| 440 |
+
self,
|
| 441 |
+
hidden_states: torch.Tensor,
|
| 442 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 443 |
+
output_attentions: bool = False,
|
| 444 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 445 |
+
output_attentions = False
|
| 446 |
+
|
| 447 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 448 |
+
|
| 449 |
+
query_states = self.q_proj(hidden_states)
|
| 450 |
+
key_states = self.k_proj(hidden_states)
|
| 451 |
+
value_states = self.v_proj(hidden_states)
|
| 452 |
+
|
| 453 |
+
# Flash attention requires the input to have the shape
|
| 454 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 455 |
+
# therefore we just need to keep the original shape
|
| 456 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 457 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 458 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 459 |
+
|
| 460 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 461 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 462 |
+
query_states = query_states.transpose(1, 2)
|
| 463 |
+
key_states = key_states.transpose(1, 2)
|
| 464 |
+
value_states = value_states.transpose(1, 2)
|
| 465 |
+
|
| 466 |
+
dropout_rate = self.dropout if self.training else 0.0
|
| 467 |
+
|
| 468 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 469 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 470 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 471 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 472 |
+
# in fp32.
|
| 473 |
+
|
| 474 |
+
input_dtype = query_states.dtype
|
| 475 |
+
if input_dtype == torch.float32:
|
| 476 |
+
if torch.is_autocast_enabled():
|
| 477 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 478 |
+
# Handle the case where the model is quantized
|
| 479 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 480 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 481 |
+
else:
|
| 482 |
+
target_dtype = self.q_proj.weight.dtype
|
| 483 |
+
|
| 484 |
+
logger.warning_once(
|
| 485 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 486 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 487 |
+
f" {target_dtype}."
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
query_states = query_states.to(target_dtype)
|
| 491 |
+
key_states = key_states.to(target_dtype)
|
| 492 |
+
value_states = value_states.to(target_dtype)
|
| 493 |
+
|
| 494 |
+
attn_output = _flash_attention_forward(
|
| 495 |
+
query_states,
|
| 496 |
+
key_states,
|
| 497 |
+
value_states,
|
| 498 |
+
attention_mask,
|
| 499 |
+
q_len,
|
| 500 |
+
dropout=dropout_rate,
|
| 501 |
+
is_causal=self.is_causal,
|
| 502 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous()
|
| 506 |
+
attn_output = self.out_proj(attn_output)
|
| 507 |
+
|
| 508 |
+
if not output_attentions:
|
| 509 |
+
attn_weights = None
|
| 510 |
+
|
| 511 |
+
return attn_output, attn_weights
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
class SiglipSdpaAttention(SiglipAttention):
|
| 515 |
+
"""
|
| 516 |
+
Siglip attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 517 |
+
`SiglipAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 518 |
+
SDPA API.
|
| 519 |
+
"""
|
| 520 |
+
|
| 521 |
+
is_causal = False
|
| 522 |
+
|
| 523 |
+
# Adapted from SiglipAttention.forward and transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward
|
| 524 |
+
def forward(
|
| 525 |
+
self,
|
| 526 |
+
hidden_states: torch.Tensor,
|
| 527 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 528 |
+
output_attentions: Optional[bool] = False,
|
| 529 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 530 |
+
if output_attentions:
|
| 531 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 532 |
+
logger.warning_once(
|
| 533 |
+
"SiglipModel is using SiglipSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 534 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 535 |
+
)
|
| 536 |
+
return super().forward(
|
| 537 |
+
hidden_states=hidden_states,
|
| 538 |
+
attention_mask=attention_mask,
|
| 539 |
+
output_attentions=output_attentions,
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 543 |
+
|
| 544 |
+
query_states = self.q_proj(hidden_states)
|
| 545 |
+
key_states = self.k_proj(hidden_states)
|
| 546 |
+
value_states = self.v_proj(hidden_states)
|
| 547 |
+
|
| 548 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 549 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 550 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 551 |
+
|
| 552 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 553 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 554 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 555 |
+
query_states = query_states.contiguous()
|
| 556 |
+
key_states = key_states.contiguous()
|
| 557 |
+
value_states = value_states.contiguous()
|
| 558 |
+
|
| 559 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 560 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 561 |
+
is_causal = True if self.is_causal and q_len > 1 else False
|
| 562 |
+
|
| 563 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 564 |
+
query_states,
|
| 565 |
+
key_states,
|
| 566 |
+
value_states,
|
| 567 |
+
attn_mask=attention_mask,
|
| 568 |
+
dropout_p=self.dropout if self.training else 0.0,
|
| 569 |
+
is_causal=is_causal,
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 573 |
+
attn_output = attn_output.view(batch_size, q_len, self.embed_dim)
|
| 574 |
+
|
| 575 |
+
attn_output = self.out_proj(attn_output)
|
| 576 |
+
|
| 577 |
+
return attn_output, None
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
SIGLIP_ATTENTION_CLASSES = {
|
| 581 |
+
"eager": SiglipAttention,
|
| 582 |
+
"flash_attention_2": SiglipFlashAttention2,
|
| 583 |
+
"sdpa": SiglipSdpaAttention,
|
| 584 |
+
}
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
| 588 |
+
class SiglipMLP(nn.Module):
|
| 589 |
+
def __init__(self, config):
|
| 590 |
+
super().__init__()
|
| 591 |
+
self.config = config
|
| 592 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 593 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 594 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 595 |
+
|
| 596 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 597 |
+
hidden_states = self.fc1(hidden_states)
|
| 598 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 599 |
+
hidden_states = self.fc2(hidden_states)
|
| 600 |
+
return hidden_states
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
class SiglipEncoderLayer(nn.Module):
|
| 604 |
+
def __init__(self, config: SiglipConfig):
|
| 605 |
+
super().__init__()
|
| 606 |
+
self.embed_dim = config.hidden_size
|
| 607 |
+
self.self_attn = SIGLIP_ATTENTION_CLASSES[config._attn_implementation](config=config)
|
| 608 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 609 |
+
self.mlp = SiglipMLP(config)
|
| 610 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 611 |
+
|
| 612 |
+
# Ignore copy
|
| 613 |
+
def forward(
|
| 614 |
+
self,
|
| 615 |
+
hidden_states: torch.Tensor,
|
| 616 |
+
attention_mask: torch.Tensor,
|
| 617 |
+
output_attentions: Optional[bool] = False,
|
| 618 |
+
) -> Tuple[torch.FloatTensor]:
|
| 619 |
+
"""
|
| 620 |
+
Args:
|
| 621 |
+
hidden_states (`torch.FloatTensor`):
|
| 622 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
| 623 |
+
attention_mask (`torch.FloatTensor`):
|
| 624 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
| 625 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
| 626 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 627 |
+
returned tensors for more detail.
|
| 628 |
+
"""
|
| 629 |
+
residual = hidden_states
|
| 630 |
+
|
| 631 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 632 |
+
hidden_states, attn_weights = self.self_attn(
|
| 633 |
+
hidden_states=hidden_states,
|
| 634 |
+
attention_mask=attention_mask,
|
| 635 |
+
output_attentions=output_attentions,
|
| 636 |
+
)
|
| 637 |
+
hidden_states = residual + hidden_states
|
| 638 |
+
|
| 639 |
+
residual = hidden_states
|
| 640 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 641 |
+
hidden_states = self.mlp(hidden_states)
|
| 642 |
+
hidden_states = residual + hidden_states
|
| 643 |
+
|
| 644 |
+
outputs = (hidden_states,)
|
| 645 |
+
|
| 646 |
+
if output_attentions:
|
| 647 |
+
outputs += (attn_weights,)
|
| 648 |
+
|
| 649 |
+
return outputs
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
class SiglipPreTrainedModel(PreTrainedModel):
|
| 653 |
+
"""
|
| 654 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 655 |
+
models.
|
| 656 |
+
"""
|
| 657 |
+
|
| 658 |
+
config_class = SiglipConfig
|
| 659 |
+
base_model_prefix = "siglip"
|
| 660 |
+
supports_gradient_checkpointing = True
|
| 661 |
+
|
| 662 |
+
_no_split_modules = [
|
| 663 |
+
"SiglipTextEmbeddings",
|
| 664 |
+
"SiglipEncoderLayer",
|
| 665 |
+
"SiglipVisionEmbeddings",
|
| 666 |
+
"SiglipEncoderLayer",
|
| 667 |
+
"SiglipMultiheadAttentionPoolingHead",
|
| 668 |
+
]
|
| 669 |
+
_supports_flash_attn_2 = True
|
| 670 |
+
_supports_sdpa = True
|
| 671 |
+
|
| 672 |
+
def _init_weights(self, module):
|
| 673 |
+
"""Initialize the weights"""
|
| 674 |
+
if isinstance(module, SiglipVisionEmbeddings):
|
| 675 |
+
width = (
|
| 676 |
+
self.config.vision_config.hidden_size
|
| 677 |
+
if isinstance(self.config, SiglipConfig)
|
| 678 |
+
else self.config.hidden_size
|
| 679 |
+
)
|
| 680 |
+
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
| 681 |
+
elif isinstance(module, nn.Embedding):
|
| 682 |
+
default_flax_embed_init(module.weight)
|
| 683 |
+
elif isinstance(module, SiglipAttention):
|
| 684 |
+
nn.init.xavier_uniform_(module.q_proj.weight)
|
| 685 |
+
nn.init.xavier_uniform_(module.k_proj.weight)
|
| 686 |
+
nn.init.xavier_uniform_(module.v_proj.weight)
|
| 687 |
+
nn.init.xavier_uniform_(module.out_proj.weight)
|
| 688 |
+
nn.init.zeros_(module.q_proj.bias)
|
| 689 |
+
nn.init.zeros_(module.k_proj.bias)
|
| 690 |
+
nn.init.zeros_(module.v_proj.bias)
|
| 691 |
+
nn.init.zeros_(module.out_proj.bias)
|
| 692 |
+
elif isinstance(module, SiglipMLP):
|
| 693 |
+
nn.init.xavier_uniform_(module.fc1.weight)
|
| 694 |
+
nn.init.xavier_uniform_(module.fc2.weight)
|
| 695 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
| 696 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
| 697 |
+
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
|
| 698 |
+
nn.init.xavier_uniform_(module.probe.data)
|
| 699 |
+
nn.init.xavier_uniform_(module.attention.in_proj_weight.data)
|
| 700 |
+
nn.init.zeros_(module.attention.in_proj_bias.data)
|
| 701 |
+
elif isinstance(module, SiglipModel):
|
| 702 |
+
logit_scale_init = torch.log(torch.tensor(1.0))
|
| 703 |
+
module.logit_scale.data.fill_(logit_scale_init)
|
| 704 |
+
module.logit_bias.data.zero_()
|
| 705 |
+
elif isinstance(module, SiglipForImageClassification):
|
| 706 |
+
nn.init.normal_(
|
| 707 |
+
module.classifier.weight,
|
| 708 |
+
std=self.config.vision_config.hidden_size**-0.5 * self.config.initializer_factor,
|
| 709 |
+
)
|
| 710 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 711 |
+
lecun_normal_(module.weight)
|
| 712 |
+
if module.bias is not None:
|
| 713 |
+
nn.init.zeros_(module.bias)
|
| 714 |
+
elif isinstance(module, nn.LayerNorm):
|
| 715 |
+
module.bias.data.zero_()
|
| 716 |
+
module.weight.data.fill_(1.0)
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
SIGLIP_START_DOCSTRING = r"""
|
| 720 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 721 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 722 |
+
etc.)
|
| 723 |
+
|
| 724 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 725 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 726 |
+
and behavior.
|
| 727 |
+
|
| 728 |
+
Parameters:
|
| 729 |
+
config ([`SiglipConfig`]): Model configuration class with all the parameters of the model.
|
| 730 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 731 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 732 |
+
"""
|
| 733 |
+
|
| 734 |
+
SIGLIP_TEXT_INPUTS_DOCSTRING = r"""
|
| 735 |
+
Args:
|
| 736 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 737 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 738 |
+
it.
|
| 739 |
+
|
| 740 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 741 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 742 |
+
|
| 743 |
+
[What are input IDs?](../glossary#input-ids)
|
| 744 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 745 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 746 |
+
|
| 747 |
+
- 1 for tokens that are **not masked**,
|
| 748 |
+
- 0 for tokens that are **masked**.
|
| 749 |
+
|
| 750 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 751 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 752 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 753 |
+
config.max_position_embeddings - 1]`.
|
| 754 |
+
|
| 755 |
+
[What are position IDs?](../glossary#position-ids)
|
| 756 |
+
output_attentions (`bool`, *optional*):
|
| 757 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 758 |
+
tensors for more detail.
|
| 759 |
+
output_hidden_states (`bool`, *optional*):
|
| 760 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 761 |
+
more detail.
|
| 762 |
+
return_dict (`bool`, *optional*):
|
| 763 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 764 |
+
"""
|
| 765 |
+
|
| 766 |
+
SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
| 767 |
+
Args:
|
| 768 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 769 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 770 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
| 771 |
+
output_attentions (`bool`, *optional*):
|
| 772 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 773 |
+
tensors for more detail.
|
| 774 |
+
output_hidden_states (`bool`, *optional*):
|
| 775 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 776 |
+
more detail.
|
| 777 |
+
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
|
| 778 |
+
Whether to interpolate the pre-trained position encodings.
|
| 779 |
+
return_dict (`bool`, *optional*):
|
| 780 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 781 |
+
"""
|
| 782 |
+
|
| 783 |
+
SIGLIP_INPUTS_DOCSTRING = r"""
|
| 784 |
+
Args:
|
| 785 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 786 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 787 |
+
it.
|
| 788 |
+
|
| 789 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 790 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 791 |
+
|
| 792 |
+
[What are input IDs?](../glossary#input-ids)
|
| 793 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 794 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 795 |
+
|
| 796 |
+
- 1 for tokens that are **not masked**,
|
| 797 |
+
- 0 for tokens that are **masked**.
|
| 798 |
+
|
| 799 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 800 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 801 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 802 |
+
config.max_position_embeddings - 1]`.
|
| 803 |
+
|
| 804 |
+
[What are position IDs?](../glossary#position-ids)
|
| 805 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 806 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 807 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
| 808 |
+
return_loss (`bool`, *optional*):
|
| 809 |
+
Whether or not to return the contrastive loss.
|
| 810 |
+
output_attentions (`bool`, *optional*):
|
| 811 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 812 |
+
tensors for more detail.
|
| 813 |
+
output_hidden_states (`bool`, *optional*):
|
| 814 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 815 |
+
more detail.
|
| 816 |
+
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
|
| 817 |
+
Whether to interpolate the pre-trained position encodings.
|
| 818 |
+
return_dict (`bool`, *optional*):
|
| 819 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 820 |
+
"""
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Siglip
|
| 824 |
+
class SiglipEncoder(nn.Module):
|
| 825 |
+
"""
|
| 826 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 827 |
+
[`SiglipEncoderLayer`].
|
| 828 |
+
|
| 829 |
+
Args:
|
| 830 |
+
config: SiglipConfig
|
| 831 |
+
"""
|
| 832 |
+
|
| 833 |
+
def __init__(self, config: SiglipConfig):
|
| 834 |
+
super().__init__()
|
| 835 |
+
self.config = config
|
| 836 |
+
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 837 |
+
self.gradient_checkpointing = False
|
| 838 |
+
|
| 839 |
+
# Ignore copy
|
| 840 |
+
def forward(
|
| 841 |
+
self,
|
| 842 |
+
inputs_embeds,
|
| 843 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 844 |
+
output_attentions: Optional[bool] = None,
|
| 845 |
+
output_hidden_states: Optional[bool] = None,
|
| 846 |
+
return_dict: Optional[bool] = None,
|
| 847 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 848 |
+
r"""
|
| 849 |
+
Args:
|
| 850 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 851 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 852 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
| 853 |
+
than the model's internal embedding lookup matrix.
|
| 854 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 855 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 856 |
+
|
| 857 |
+
- 1 for tokens that are **not masked**,
|
| 858 |
+
- 0 for tokens that are **masked**.
|
| 859 |
+
|
| 860 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 861 |
+
output_attentions (`bool`, *optional*):
|
| 862 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 863 |
+
returned tensors for more detail.
|
| 864 |
+
output_hidden_states (`bool`, *optional*):
|
| 865 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 866 |
+
for more detail.
|
| 867 |
+
return_dict (`bool`, *optional*):
|
| 868 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 869 |
+
"""
|
| 870 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 871 |
+
output_hidden_states = (
|
| 872 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 873 |
+
)
|
| 874 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 875 |
+
|
| 876 |
+
encoder_states = () if output_hidden_states else None
|
| 877 |
+
all_attentions = () if output_attentions else None
|
| 878 |
+
|
| 879 |
+
hidden_states = inputs_embeds
|
| 880 |
+
for encoder_layer in self.layers:
|
| 881 |
+
if output_hidden_states:
|
| 882 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 883 |
+
if self.gradient_checkpointing and self.training:
|
| 884 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 885 |
+
encoder_layer.__call__,
|
| 886 |
+
hidden_states,
|
| 887 |
+
attention_mask,
|
| 888 |
+
output_attentions,
|
| 889 |
+
)
|
| 890 |
+
else:
|
| 891 |
+
layer_outputs = encoder_layer(
|
| 892 |
+
hidden_states,
|
| 893 |
+
attention_mask,
|
| 894 |
+
output_attentions=output_attentions,
|
| 895 |
+
)
|
| 896 |
+
|
| 897 |
+
hidden_states = layer_outputs[0]
|
| 898 |
+
|
| 899 |
+
if output_attentions:
|
| 900 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 901 |
+
|
| 902 |
+
if output_hidden_states:
|
| 903 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 904 |
+
|
| 905 |
+
if not return_dict:
|
| 906 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
| 907 |
+
return BaseModelOutput(
|
| 908 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
class SiglipTextTransformer(nn.Module):
|
| 913 |
+
def __init__(self, config: SiglipTextConfig):
|
| 914 |
+
super().__init__()
|
| 915 |
+
self.config = config
|
| 916 |
+
embed_dim = config.hidden_size
|
| 917 |
+
self.embeddings = SiglipTextEmbeddings(config)
|
| 918 |
+
self.encoder = SiglipEncoder(config)
|
| 919 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 920 |
+
|
| 921 |
+
self.head = nn.Linear(embed_dim, embed_dim)
|
| 922 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 923 |
+
|
| 924 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
| 925 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
| 926 |
+
def forward(
|
| 927 |
+
self,
|
| 928 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 929 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 930 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 931 |
+
output_attentions: Optional[bool] = None,
|
| 932 |
+
output_hidden_states: Optional[bool] = None,
|
| 933 |
+
return_dict: Optional[bool] = None,
|
| 934 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 935 |
+
r"""
|
| 936 |
+
Returns:
|
| 937 |
+
|
| 938 |
+
"""
|
| 939 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 940 |
+
output_hidden_states = (
|
| 941 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 942 |
+
)
|
| 943 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 944 |
+
|
| 945 |
+
if input_ids is None:
|
| 946 |
+
raise ValueError("You have to specify input_ids")
|
| 947 |
+
|
| 948 |
+
input_shape = input_ids.size()
|
| 949 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 950 |
+
|
| 951 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
| 952 |
+
|
| 953 |
+
# note: SigLIP's text model does not use a causal mask, unlike the original CLIP model.
|
| 954 |
+
# expand attention_mask
|
| 955 |
+
if attention_mask is not None and not self._use_flash_attention_2:
|
| 956 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
| 957 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
| 958 |
+
|
| 959 |
+
encoder_outputs = self.encoder(
|
| 960 |
+
inputs_embeds=hidden_states,
|
| 961 |
+
attention_mask=attention_mask,
|
| 962 |
+
output_attentions=output_attentions,
|
| 963 |
+
output_hidden_states=output_hidden_states,
|
| 964 |
+
return_dict=return_dict,
|
| 965 |
+
)
|
| 966 |
+
|
| 967 |
+
last_hidden_state = encoder_outputs[0]
|
| 968 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
| 969 |
+
|
| 970 |
+
# Assuming "sticky" EOS tokenization, last token is always EOS.
|
| 971 |
+
pooled_output = last_hidden_state[:, -1, :]
|
| 972 |
+
pooled_output = self.head(pooled_output)
|
| 973 |
+
|
| 974 |
+
if not return_dict:
|
| 975 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 976 |
+
|
| 977 |
+
return BaseModelOutputWithPooling(
|
| 978 |
+
last_hidden_state=last_hidden_state,
|
| 979 |
+
pooler_output=pooled_output,
|
| 980 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 981 |
+
attentions=encoder_outputs.attentions,
|
| 982 |
+
)
|
| 983 |
+
|
| 984 |
+
|
| 985 |
+
@add_start_docstrings(
|
| 986 |
+
"""The text model from SigLIP without any head or projection on top.""",
|
| 987 |
+
SIGLIP_START_DOCSTRING,
|
| 988 |
+
)
|
| 989 |
+
class SiglipTextModel(SiglipPreTrainedModel):
|
| 990 |
+
config_class = SiglipTextConfig
|
| 991 |
+
|
| 992 |
+
def __init__(self, config: SiglipTextConfig):
|
| 993 |
+
super().__init__(config)
|
| 994 |
+
self.text_model = SiglipTextTransformer(config)
|
| 995 |
+
# Initialize weights and apply final processing
|
| 996 |
+
self.post_init()
|
| 997 |
+
|
| 998 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 999 |
+
return self.text_model.embeddings.token_embedding
|
| 1000 |
+
|
| 1001 |
+
def set_input_embeddings(self, value):
|
| 1002 |
+
self.text_model.embeddings.token_embedding = value
|
| 1003 |
+
|
| 1004 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
| 1005 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
| 1006 |
+
def forward(
|
| 1007 |
+
self,
|
| 1008 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1009 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1010 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1011 |
+
output_attentions: Optional[bool] = None,
|
| 1012 |
+
output_hidden_states: Optional[bool] = None,
|
| 1013 |
+
return_dict: Optional[bool] = None,
|
| 1014 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1015 |
+
r"""
|
| 1016 |
+
Returns:
|
| 1017 |
+
|
| 1018 |
+
Examples:
|
| 1019 |
+
|
| 1020 |
+
```python
|
| 1021 |
+
>>> from transformers import AutoTokenizer, SiglipTextModel
|
| 1022 |
+
|
| 1023 |
+
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1024 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
| 1025 |
+
|
| 1026 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
| 1027 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
| 1028 |
+
|
| 1029 |
+
>>> outputs = model(**inputs)
|
| 1030 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
| 1031 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
| 1032 |
+
```"""
|
| 1033 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1034 |
+
|
| 1035 |
+
return self.text_model(
|
| 1036 |
+
input_ids=input_ids,
|
| 1037 |
+
attention_mask=attention_mask,
|
| 1038 |
+
position_ids=position_ids,
|
| 1039 |
+
output_attentions=output_attentions,
|
| 1040 |
+
output_hidden_states=output_hidden_states,
|
| 1041 |
+
return_dict=return_dict,
|
| 1042 |
+
)
|
| 1043 |
+
|
| 1044 |
+
|
| 1045 |
+
class SiglipVisionTransformer(nn.Module):
|
| 1046 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 1047 |
+
super().__init__()
|
| 1048 |
+
self.config = config
|
| 1049 |
+
embed_dim = config.hidden_size
|
| 1050 |
+
|
| 1051 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
| 1052 |
+
self.encoder = SiglipEncoder(config)
|
| 1053 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 1054 |
+
self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head
|
| 1055 |
+
if self.use_head:
|
| 1056 |
+
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
| 1057 |
+
|
| 1058 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
| 1059 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
| 1060 |
+
def forward(
|
| 1061 |
+
self,
|
| 1062 |
+
pixel_values,
|
| 1063 |
+
output_attentions: Optional[bool] = None,
|
| 1064 |
+
output_hidden_states: Optional[bool] = None,
|
| 1065 |
+
return_dict: Optional[bool] = None,
|
| 1066 |
+
interpolate_pos_encoding: Optional[bool] = False,
|
| 1067 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1068 |
+
r"""
|
| 1069 |
+
Returns:
|
| 1070 |
+
|
| 1071 |
+
"""
|
| 1072 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1073 |
+
output_hidden_states = (
|
| 1074 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1075 |
+
)
|
| 1076 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1077 |
+
|
| 1078 |
+
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
|
| 1079 |
+
|
| 1080 |
+
encoder_outputs = self.encoder(
|
| 1081 |
+
inputs_embeds=hidden_states,
|
| 1082 |
+
output_attentions=output_attentions,
|
| 1083 |
+
output_hidden_states=output_hidden_states,
|
| 1084 |
+
return_dict=return_dict,
|
| 1085 |
+
)
|
| 1086 |
+
|
| 1087 |
+
last_hidden_state = encoder_outputs[0]
|
| 1088 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
| 1089 |
+
|
| 1090 |
+
pooler_output = self.head(last_hidden_state) if self.use_head else None
|
| 1091 |
+
if not return_dict:
|
| 1092 |
+
return (last_hidden_state, pooler_output) + encoder_outputs[1:]
|
| 1093 |
+
|
| 1094 |
+
return BaseModelOutputWithPooling(
|
| 1095 |
+
last_hidden_state=last_hidden_state,
|
| 1096 |
+
pooler_output=pooler_output,
|
| 1097 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1098 |
+
attentions=encoder_outputs.attentions,
|
| 1099 |
+
)
|
| 1100 |
+
|
| 1101 |
+
|
| 1102 |
+
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
| 1103 |
+
"""Multihead Attention Pooling."""
|
| 1104 |
+
|
| 1105 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 1106 |
+
super().__init__()
|
| 1107 |
+
|
| 1108 |
+
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
| 1109 |
+
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
| 1110 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 1111 |
+
self.mlp = SiglipMLP(config)
|
| 1112 |
+
|
| 1113 |
+
def forward(self, hidden_state):
|
| 1114 |
+
batch_size = hidden_state.shape[0]
|
| 1115 |
+
probe = self.probe.repeat(batch_size, 1, 1)
|
| 1116 |
+
|
| 1117 |
+
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
| 1118 |
+
|
| 1119 |
+
residual = hidden_state
|
| 1120 |
+
hidden_state = self.layernorm(hidden_state)
|
| 1121 |
+
hidden_state = residual + self.mlp(hidden_state)
|
| 1122 |
+
|
| 1123 |
+
return hidden_state[:, 0]
|
| 1124 |
+
|
| 1125 |
+
|
| 1126 |
+
@add_start_docstrings(
|
| 1127 |
+
"""The vision model from SigLIP without any head or projection on top.""",
|
| 1128 |
+
SIGLIP_START_DOCSTRING,
|
| 1129 |
+
)
|
| 1130 |
+
class SiglipVisionModel(SiglipPreTrainedModel):
|
| 1131 |
+
config_class = SiglipVisionConfig
|
| 1132 |
+
main_input_name = "pixel_values"
|
| 1133 |
+
|
| 1134 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 1135 |
+
super().__init__(config)
|
| 1136 |
+
|
| 1137 |
+
self.vision_model = SiglipVisionTransformer(config)
|
| 1138 |
+
|
| 1139 |
+
# Initialize weights and apply final processing
|
| 1140 |
+
self.post_init()
|
| 1141 |
+
|
| 1142 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 1143 |
+
return self.vision_model.embeddings.patch_embedding
|
| 1144 |
+
|
| 1145 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
| 1146 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
| 1147 |
+
def forward(
|
| 1148 |
+
self,
|
| 1149 |
+
pixel_values,
|
| 1150 |
+
output_attentions: Optional[bool] = None,
|
| 1151 |
+
output_hidden_states: Optional[bool] = None,
|
| 1152 |
+
return_dict: Optional[bool] = None,
|
| 1153 |
+
interpolate_pos_encoding: bool = False,
|
| 1154 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1155 |
+
r"""
|
| 1156 |
+
Returns:
|
| 1157 |
+
|
| 1158 |
+
Examples:
|
| 1159 |
+
|
| 1160 |
+
```python
|
| 1161 |
+
>>> from PIL import Image
|
| 1162 |
+
>>> import requests
|
| 1163 |
+
>>> from transformers import AutoProcessor, SiglipVisionModel
|
| 1164 |
+
|
| 1165 |
+
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1166 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 1167 |
+
|
| 1168 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1169 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1170 |
+
|
| 1171 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
| 1172 |
+
|
| 1173 |
+
>>> outputs = model(**inputs)
|
| 1174 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
| 1175 |
+
>>> pooled_output = outputs.pooler_output # pooled features
|
| 1176 |
+
```"""
|
| 1177 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1178 |
+
|
| 1179 |
+
return self.vision_model(
|
| 1180 |
+
pixel_values=pixel_values,
|
| 1181 |
+
output_attentions=output_attentions,
|
| 1182 |
+
output_hidden_states=output_hidden_states,
|
| 1183 |
+
return_dict=return_dict,
|
| 1184 |
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
| 1185 |
+
)
|
| 1186 |
+
|
| 1187 |
+
|
| 1188 |
+
@add_start_docstrings(SIGLIP_START_DOCSTRING)
|
| 1189 |
+
class SiglipModel(SiglipPreTrainedModel):
|
| 1190 |
+
config_class = SiglipConfig
|
| 1191 |
+
|
| 1192 |
+
def __init__(self, config: SiglipConfig):
|
| 1193 |
+
super().__init__(config)
|
| 1194 |
+
|
| 1195 |
+
if not isinstance(config.text_config, SiglipTextConfig):
|
| 1196 |
+
raise TypeError(
|
| 1197 |
+
"config.text_config is expected to be of type SiglipTextConfig but is of type"
|
| 1198 |
+
f" {type(config.text_config)}."
|
| 1199 |
+
)
|
| 1200 |
+
|
| 1201 |
+
if not isinstance(config.vision_config, SiglipVisionConfig):
|
| 1202 |
+
raise TypeError(
|
| 1203 |
+
"config.vision_config is expected to be of type SiglipVisionConfig but is of type"
|
| 1204 |
+
f" {type(config.vision_config)}."
|
| 1205 |
+
)
|
| 1206 |
+
|
| 1207 |
+
text_config = config.text_config
|
| 1208 |
+
vision_config = config.vision_config
|
| 1209 |
+
|
| 1210 |
+
# First, initialize the text and vision models with proper attention implementation
|
| 1211 |
+
text_model = SiglipTextModel._from_config(text_config)
|
| 1212 |
+
vision_model = SiglipVisionModel._from_config(vision_config)
|
| 1213 |
+
|
| 1214 |
+
# Second, get the text and vision submodules (for backward compatibility)
|
| 1215 |
+
self.text_model = text_model.text_model
|
| 1216 |
+
self.vision_model = vision_model.vision_model
|
| 1217 |
+
|
| 1218 |
+
self.logit_scale = nn.Parameter(torch.randn(1))
|
| 1219 |
+
self.logit_bias = nn.Parameter(torch.randn(1))
|
| 1220 |
+
|
| 1221 |
+
# Initialize weights and apply final processing
|
| 1222 |
+
self.post_init()
|
| 1223 |
+
|
| 1224 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
| 1225 |
+
def get_text_features(
|
| 1226 |
+
self,
|
| 1227 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1228 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1229 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1230 |
+
output_attentions: Optional[bool] = None,
|
| 1231 |
+
output_hidden_states: Optional[bool] = None,
|
| 1232 |
+
return_dict: Optional[bool] = None,
|
| 1233 |
+
) -> torch.FloatTensor:
|
| 1234 |
+
r"""
|
| 1235 |
+
Returns:
|
| 1236 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
| 1237 |
+
applying the projection layer to the pooled output of [`SiglipTextModel`].
|
| 1238 |
+
|
| 1239 |
+
Examples:
|
| 1240 |
+
|
| 1241 |
+
```python
|
| 1242 |
+
>>> from transformers import AutoTokenizer, AutoModel
|
| 1243 |
+
>>> import torch
|
| 1244 |
+
|
| 1245 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1246 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
| 1247 |
+
|
| 1248 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
| 1249 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
| 1250 |
+
>>> with torch.no_grad():
|
| 1251 |
+
... text_features = model.get_text_features(**inputs)
|
| 1252 |
+
```"""
|
| 1253 |
+
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1254 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1255 |
+
output_hidden_states = (
|
| 1256 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1257 |
+
)
|
| 1258 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1259 |
+
|
| 1260 |
+
text_outputs = self.text_model(
|
| 1261 |
+
input_ids=input_ids,
|
| 1262 |
+
attention_mask=attention_mask,
|
| 1263 |
+
position_ids=position_ids,
|
| 1264 |
+
output_attentions=output_attentions,
|
| 1265 |
+
output_hidden_states=output_hidden_states,
|
| 1266 |
+
return_dict=return_dict,
|
| 1267 |
+
)
|
| 1268 |
+
|
| 1269 |
+
pooled_output = text_outputs[1]
|
| 1270 |
+
|
| 1271 |
+
return pooled_output
|
| 1272 |
+
|
| 1273 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
| 1274 |
+
def get_image_features(
|
| 1275 |
+
self,
|
| 1276 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1277 |
+
output_attentions: Optional[bool] = None,
|
| 1278 |
+
output_hidden_states: Optional[bool] = None,
|
| 1279 |
+
return_dict: Optional[bool] = None,
|
| 1280 |
+
interpolate_pos_encoding: bool = False,
|
| 1281 |
+
) -> torch.FloatTensor:
|
| 1282 |
+
r"""
|
| 1283 |
+
Returns:
|
| 1284 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
| 1285 |
+
applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
| 1286 |
+
|
| 1287 |
+
Examples:
|
| 1288 |
+
|
| 1289 |
+
```python
|
| 1290 |
+
>>> from PIL import Image
|
| 1291 |
+
>>> import requests
|
| 1292 |
+
>>> from transformers import AutoProcessor, AutoModel
|
| 1293 |
+
>>> import torch
|
| 1294 |
+
|
| 1295 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1296 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 1297 |
+
|
| 1298 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1299 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1300 |
+
|
| 1301 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
| 1302 |
+
|
| 1303 |
+
>>> with torch.no_grad():
|
| 1304 |
+
... image_features = model.get_image_features(**inputs)
|
| 1305 |
+
```"""
|
| 1306 |
+
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
| 1307 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1308 |
+
output_hidden_states = (
|
| 1309 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1310 |
+
)
|
| 1311 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1312 |
+
|
| 1313 |
+
vision_outputs = self.vision_model(
|
| 1314 |
+
pixel_values=pixel_values,
|
| 1315 |
+
output_attentions=output_attentions,
|
| 1316 |
+
output_hidden_states=output_hidden_states,
|
| 1317 |
+
return_dict=return_dict,
|
| 1318 |
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
| 1319 |
+
)
|
| 1320 |
+
|
| 1321 |
+
pooled_output = vision_outputs[1]
|
| 1322 |
+
|
| 1323 |
+
return pooled_output
|
| 1324 |
+
|
| 1325 |
+
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
|
| 1326 |
+
@replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig)
|
| 1327 |
+
def forward(
|
| 1328 |
+
self,
|
| 1329 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1330 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1331 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1332 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1333 |
+
return_loss: Optional[bool] = None,
|
| 1334 |
+
output_attentions: Optional[bool] = None,
|
| 1335 |
+
output_hidden_states: Optional[bool] = None,
|
| 1336 |
+
return_dict: Optional[bool] = None,
|
| 1337 |
+
interpolate_pos_encoding: bool = False,
|
| 1338 |
+
) -> Union[Tuple, SiglipOutput]:
|
| 1339 |
+
r"""
|
| 1340 |
+
Returns:
|
| 1341 |
+
|
| 1342 |
+
Examples:
|
| 1343 |
+
|
| 1344 |
+
```python
|
| 1345 |
+
>>> from PIL import Image
|
| 1346 |
+
>>> import requests
|
| 1347 |
+
>>> from transformers import AutoProcessor, AutoModel
|
| 1348 |
+
>>> import torch
|
| 1349 |
+
|
| 1350 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1351 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 1352 |
+
|
| 1353 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1354 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1355 |
+
|
| 1356 |
+
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
|
| 1357 |
+
>>> # important: we pass `padding=max_length` since the model was trained with this
|
| 1358 |
+
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
|
| 1359 |
+
|
| 1360 |
+
>>> with torch.no_grad():
|
| 1361 |
+
... outputs = model(**inputs)
|
| 1362 |
+
|
| 1363 |
+
>>> logits_per_image = outputs.logits_per_image
|
| 1364 |
+
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
|
| 1365 |
+
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
| 1366 |
+
31.9% that image 0 is 'a photo of 2 cats'
|
| 1367 |
+
```"""
|
| 1368 |
+
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1369 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1370 |
+
output_hidden_states = (
|
| 1371 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1372 |
+
)
|
| 1373 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1374 |
+
|
| 1375 |
+
vision_outputs = self.vision_model(
|
| 1376 |
+
pixel_values=pixel_values,
|
| 1377 |
+
output_attentions=output_attentions,
|
| 1378 |
+
output_hidden_states=output_hidden_states,
|
| 1379 |
+
return_dict=return_dict,
|
| 1380 |
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
| 1381 |
+
)
|
| 1382 |
+
|
| 1383 |
+
text_outputs = self.text_model(
|
| 1384 |
+
input_ids=input_ids,
|
| 1385 |
+
attention_mask=attention_mask,
|
| 1386 |
+
position_ids=position_ids,
|
| 1387 |
+
output_attentions=output_attentions,
|
| 1388 |
+
output_hidden_states=output_hidden_states,
|
| 1389 |
+
return_dict=return_dict,
|
| 1390 |
+
)
|
| 1391 |
+
|
| 1392 |
+
image_embeds = vision_outputs[1]
|
| 1393 |
+
text_embeds = text_outputs[1]
|
| 1394 |
+
|
| 1395 |
+
# normalized features
|
| 1396 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 1397 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 1398 |
+
|
| 1399 |
+
# cosine similarity as logits
|
| 1400 |
+
logits_per_text = (
|
| 1401 |
+
torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) * self.logit_scale.exp()
|
| 1402 |
+
+ self.logit_bias
|
| 1403 |
+
)
|
| 1404 |
+
logits_per_image = logits_per_text.t()
|
| 1405 |
+
|
| 1406 |
+
loss = None
|
| 1407 |
+
if return_loss:
|
| 1408 |
+
# Adapted from https://github.com/google-research/big_vision/blob/01edb81a4716f93a48be43b3a4af14e29cdb3a7f/big_vision/trainers/proj/image_text/siglip.py#L287
|
| 1409 |
+
eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device)
|
| 1410 |
+
m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye
|
| 1411 |
+
loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text)
|
| 1412 |
+
nll = -torch.sum(loglik, dim=-1)
|
| 1413 |
+
loss = nll.mean()
|
| 1414 |
+
|
| 1415 |
+
if not return_dict:
|
| 1416 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
| 1417 |
+
return ((loss,) + output) if loss is not None else output
|
| 1418 |
+
|
| 1419 |
+
return SiglipOutput(
|
| 1420 |
+
loss=loss,
|
| 1421 |
+
logits_per_image=logits_per_image,
|
| 1422 |
+
logits_per_text=logits_per_text,
|
| 1423 |
+
text_embeds=text_embeds,
|
| 1424 |
+
image_embeds=image_embeds,
|
| 1425 |
+
text_model_output=text_outputs,
|
| 1426 |
+
vision_model_output=vision_outputs,
|
| 1427 |
+
)
|
| 1428 |
+
|
| 1429 |
+
|
| 1430 |
+
@add_start_docstrings(
|
| 1431 |
+
"""
|
| 1432 |
+
SigLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of
|
| 1433 |
+
the patch tokens) e.g. for ImageNet.
|
| 1434 |
+
""",
|
| 1435 |
+
SIGLIP_START_DOCSTRING,
|
| 1436 |
+
)
|
| 1437 |
+
class SiglipForImageClassification(SiglipPreTrainedModel):
|
| 1438 |
+
main_input_name = "pixel_values"
|
| 1439 |
+
|
| 1440 |
+
def __init__(self, config: SiglipConfig) -> None:
|
| 1441 |
+
super().__init__(config)
|
| 1442 |
+
|
| 1443 |
+
self.num_labels = config.num_labels
|
| 1444 |
+
|
| 1445 |
+
# Create the vision model with proper attention
|
| 1446 |
+
# and take only vision_model submodule (for backward compatibility)
|
| 1447 |
+
vision_model = SiglipVisionModel._from_config(config.vision_config)
|
| 1448 |
+
self.vision_model = vision_model.vision_model
|
| 1449 |
+
|
| 1450 |
+
# Classifier head
|
| 1451 |
+
self.classifier = (
|
| 1452 |
+
nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
| 1453 |
+
)
|
| 1454 |
+
|
| 1455 |
+
# Initialize weights and apply final processing
|
| 1456 |
+
self.post_init()
|
| 1457 |
+
|
| 1458 |
+
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
|
| 1459 |
+
@replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
| 1460 |
+
def forward(
|
| 1461 |
+
self,
|
| 1462 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 1463 |
+
labels: Optional[torch.Tensor] = None,
|
| 1464 |
+
output_attentions: Optional[bool] = None,
|
| 1465 |
+
output_hidden_states: Optional[bool] = None,
|
| 1466 |
+
return_dict: Optional[bool] = None,
|
| 1467 |
+
interpolate_pos_encoding: bool = False,
|
| 1468 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
| 1469 |
+
r"""
|
| 1470 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1471 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
| 1472 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1473 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1474 |
+
|
| 1475 |
+
Returns:
|
| 1476 |
+
|
| 1477 |
+
Examples:
|
| 1478 |
+
|
| 1479 |
+
```python
|
| 1480 |
+
>>> from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 1481 |
+
>>> import torch
|
| 1482 |
+
>>> from PIL import Image
|
| 1483 |
+
>>> import requests
|
| 1484 |
+
|
| 1485 |
+
>>> torch.manual_seed(3) # doctest: +IGNORE_RESULT
|
| 1486 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1487 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1488 |
+
|
| 1489 |
+
>>> # note: we are loading a `SiglipModel` from the hub here,
|
| 1490 |
+
>>> # so the head will be randomly initialized, hence the predictions will be random if seed is not set above.
|
| 1491 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 1492 |
+
>>> model = SiglipForImageClassification.from_pretrained("google/siglip-base-patch16-224")
|
| 1493 |
+
|
| 1494 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
| 1495 |
+
>>> outputs = model(**inputs)
|
| 1496 |
+
>>> logits = outputs.logits
|
| 1497 |
+
>>> # model predicts one of the two classes
|
| 1498 |
+
>>> predicted_class_idx = logits.argmax(-1).item()
|
| 1499 |
+
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
|
| 1500 |
+
Predicted class: LABEL_1
|
| 1501 |
+
```"""
|
| 1502 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1503 |
+
output_hidden_states = (
|
| 1504 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1505 |
+
)
|
| 1506 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1507 |
+
|
| 1508 |
+
outputs = self.vision_model(
|
| 1509 |
+
pixel_values,
|
| 1510 |
+
output_attentions=output_attentions,
|
| 1511 |
+
output_hidden_states=output_hidden_states,
|
| 1512 |
+
return_dict=return_dict,
|
| 1513 |
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
| 1514 |
+
)
|
| 1515 |
+
|
| 1516 |
+
sequence_output = outputs[0]
|
| 1517 |
+
|
| 1518 |
+
# average pool the patch tokens
|
| 1519 |
+
sequence_output = torch.mean(sequence_output, dim=1)
|
| 1520 |
+
# apply classifier
|
| 1521 |
+
logits = self.classifier(sequence_output)
|
| 1522 |
+
|
| 1523 |
+
loss = None
|
| 1524 |
+
if labels is not None:
|
| 1525 |
+
# move labels to correct device to enable model parallelism
|
| 1526 |
+
labels = labels.to(logits.device)
|
| 1527 |
+
if self.config.problem_type is None:
|
| 1528 |
+
if self.num_labels == 1:
|
| 1529 |
+
self.config.problem_type = "regression"
|
| 1530 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1531 |
+
self.config.problem_type = "single_label_classification"
|
| 1532 |
+
else:
|
| 1533 |
+
self.config.problem_type = "multi_label_classification"
|
| 1534 |
+
|
| 1535 |
+
if self.config.problem_type == "regression":
|
| 1536 |
+
loss_fct = MSELoss()
|
| 1537 |
+
if self.num_labels == 1:
|
| 1538 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1539 |
+
else:
|
| 1540 |
+
loss = loss_fct(logits, labels)
|
| 1541 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1542 |
+
loss_fct = CrossEntropyLoss()
|
| 1543 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1544 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1545 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1546 |
+
loss = loss_fct(logits, labels)
|
| 1547 |
+
|
| 1548 |
+
if not return_dict:
|
| 1549 |
+
output = (logits,) + outputs[2:]
|
| 1550 |
+
return ((loss,) + output) if loss is not None else output
|
| 1551 |
+
|
| 1552 |
+
return ImageClassifierOutput(
|
| 1553 |
+
loss=loss,
|
| 1554 |
+
logits=logits,
|
| 1555 |
+
hidden_states=outputs.hidden_states,
|
| 1556 |
+
attentions=outputs.attentions,
|
| 1557 |
+
)
|
modeling/siglip/processing_siglip.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
Image/Text processor class for SigLIP.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import List, Optional, Union
|
| 9 |
+
|
| 10 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 11 |
+
from transformers.image_utils import ImageInput
|
| 12 |
+
from transformers.processing_utils import ProcessorMixin
|
| 13 |
+
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
| 14 |
+
from transformers.utils import TensorType
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class SiglipProcessor(ProcessorMixin):
|
| 18 |
+
r"""
|
| 19 |
+
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
|
| 20 |
+
|
| 21 |
+
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
|
| 22 |
+
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
image_processor ([`SiglipImageProcessor`]):
|
| 26 |
+
The image processor is a required input.
|
| 27 |
+
tokenizer ([`SiglipTokenizer`]):
|
| 28 |
+
The tokenizer is a required input.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
attributes = ["image_processor", "tokenizer"]
|
| 32 |
+
image_processor_class = "SiglipImageProcessor"
|
| 33 |
+
tokenizer_class = "SiglipTokenizer"
|
| 34 |
+
|
| 35 |
+
def __init__(self, image_processor, tokenizer):
|
| 36 |
+
super().__init__(image_processor, tokenizer)
|
| 37 |
+
|
| 38 |
+
def __call__(
|
| 39 |
+
self,
|
| 40 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 41 |
+
images: ImageInput = None,
|
| 42 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
| 43 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
| 44 |
+
max_length: int = None,
|
| 45 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
| 46 |
+
) -> BatchFeature:
|
| 47 |
+
"""
|
| 48 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 49 |
+
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
|
| 50 |
+
the text. To prepare the image(s), this method forwards the `images` argument to
|
| 51 |
+
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
| 52 |
+
of the above two methods for more information.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 56 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 57 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 58 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 59 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 60 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 61 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 62 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
| 63 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
| 64 |
+
index) among:
|
| 65 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 66 |
+
sequence if provided).
|
| 67 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
| 68 |
+
acceptable input length for the model if that argument is not provided.
|
| 69 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
| 70 |
+
lengths).
|
| 71 |
+
max_length (`int`, *optional*):
|
| 72 |
+
Maximum length of the returned list and optionally padding length (see above).
|
| 73 |
+
truncation (`bool`, *optional*):
|
| 74 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
| 75 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 76 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 77 |
+
|
| 78 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 79 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 80 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 81 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 82 |
+
|
| 83 |
+
Returns:
|
| 84 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 85 |
+
|
| 86 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 87 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 88 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 89 |
+
`None`).
|
| 90 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 91 |
+
"""
|
| 92 |
+
|
| 93 |
+
if text is None and images is None:
|
| 94 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
| 95 |
+
|
| 96 |
+
if text is not None:
|
| 97 |
+
encoding = self.tokenizer(
|
| 98 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
if images is not None:
|
| 102 |
+
image_features = self.image_processor(images, return_tensors=return_tensors)
|
| 103 |
+
|
| 104 |
+
if text is not None and images is not None:
|
| 105 |
+
encoding["pixel_values"] = image_features.pixel_values
|
| 106 |
+
return encoding
|
| 107 |
+
elif text is not None:
|
| 108 |
+
return encoding
|
| 109 |
+
else:
|
| 110 |
+
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
|
| 111 |
+
|
| 112 |
+
def decode(self, *args, **kwargs):
|
| 113 |
+
"""
|
| 114 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 115 |
+
the docstring of this method for more information.
|
| 116 |
+
"""
|
| 117 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 118 |
+
|
| 119 |
+
def batch_decode(self, *args, **kwargs):
|
| 120 |
+
"""
|
| 121 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 122 |
+
refer to the docstring of this method for more information.
|
| 123 |
+
"""
|
| 124 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 125 |
+
|
| 126 |
+
@property
|
| 127 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
|
| 128 |
+
def model_input_names(self):
|
| 129 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 130 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 131 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
modeling/siglip/tokenization_siglip.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
"""Tokenization class for SigLIP model."""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import re
|
| 8 |
+
import string
|
| 9 |
+
import warnings
|
| 10 |
+
from shutil import copyfile
|
| 11 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
| 12 |
+
|
| 13 |
+
import sentencepiece as spm
|
| 14 |
+
|
| 15 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
| 16 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 17 |
+
from transformers.tokenization_utils_base import AddedToken
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
if TYPE_CHECKING:
|
| 21 |
+
from transformers.tokenization_utils_base import TextInput
|
| 22 |
+
from transformers.utils import logging, requires_backends
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
SPIECE_UNDERLINE = "▁"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class SiglipTokenizer(PreTrainedTokenizer):
|
| 34 |
+
"""
|
| 35 |
+
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
| 36 |
+
|
| 37 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 38 |
+
this superclass for more information regarding those methods.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
vocab_file (`str`):
|
| 42 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
| 43 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
| 44 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
| 45 |
+
The end of sequence token.
|
| 46 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
| 47 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 48 |
+
token instead.
|
| 49 |
+
pad_token (`str`, *optional*, defaults to `"</s>"`):
|
| 50 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 51 |
+
additional_special_tokens (`List[str]`, *optional*):
|
| 52 |
+
Additional special tokens used by the tokenizer.
|
| 53 |
+
sp_model_kwargs (`dict`, *optional*):
|
| 54 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
| 55 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
| 56 |
+
to set:
|
| 57 |
+
|
| 58 |
+
- `enable_sampling`: Enable subword regularization.
|
| 59 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
| 60 |
+
|
| 61 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
| 62 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
| 63 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
| 64 |
+
using forward-filtering-and-backward-sampling algorithm.
|
| 65 |
+
|
| 66 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
| 67 |
+
BPE-dropout.
|
| 68 |
+
model_max_length (`int`, *optional*, defaults to 64):
|
| 69 |
+
The maximum length (in number of tokens) for model inputs.
|
| 70 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
| 71 |
+
Whether or not to lowercase the input when tokenizing.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 75 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 76 |
+
|
| 77 |
+
def __init__(
|
| 78 |
+
self,
|
| 79 |
+
vocab_file,
|
| 80 |
+
eos_token="</s>",
|
| 81 |
+
unk_token="<unk>",
|
| 82 |
+
pad_token="</s>",
|
| 83 |
+
additional_special_tokens=None,
|
| 84 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 85 |
+
model_max_length=64,
|
| 86 |
+
do_lower_case=True,
|
| 87 |
+
**kwargs,
|
| 88 |
+
) -> None:
|
| 89 |
+
requires_backends(self, "protobuf")
|
| 90 |
+
|
| 91 |
+
pad_token = (
|
| 92 |
+
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
| 93 |
+
if isinstance(pad_token, str)
|
| 94 |
+
else pad_token
|
| 95 |
+
)
|
| 96 |
+
unk_token = (
|
| 97 |
+
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
| 98 |
+
if isinstance(unk_token, str)
|
| 99 |
+
else unk_token
|
| 100 |
+
)
|
| 101 |
+
eos_token = (
|
| 102 |
+
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
| 103 |
+
if isinstance(eos_token, str)
|
| 104 |
+
else eos_token
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 108 |
+
|
| 109 |
+
self.do_lower_case = do_lower_case
|
| 110 |
+
self.vocab_file = vocab_file
|
| 111 |
+
|
| 112 |
+
self.sp_model = self.get_spm_processor()
|
| 113 |
+
self.vocab_file = vocab_file
|
| 114 |
+
|
| 115 |
+
super().__init__(
|
| 116 |
+
eos_token=eos_token,
|
| 117 |
+
unk_token=unk_token,
|
| 118 |
+
pad_token=pad_token,
|
| 119 |
+
additional_special_tokens=additional_special_tokens,
|
| 120 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
| 121 |
+
model_max_length=model_max_length,
|
| 122 |
+
do_lower_case=do_lower_case,
|
| 123 |
+
**kwargs,
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
def get_spm_processor(self):
|
| 127 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 128 |
+
with open(self.vocab_file, "rb") as f:
|
| 129 |
+
sp_model = f.read()
|
| 130 |
+
model_pb2 = import_protobuf()
|
| 131 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
| 132 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
| 133 |
+
normalizer_spec.add_dummy_prefix = False
|
| 134 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
| 135 |
+
sp_model = model.SerializeToString()
|
| 136 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
| 137 |
+
return tokenizer
|
| 138 |
+
|
| 139 |
+
@property
|
| 140 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size
|
| 141 |
+
def vocab_size(self):
|
| 142 |
+
return self.sp_model.get_piece_size()
|
| 143 |
+
|
| 144 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab
|
| 145 |
+
def get_vocab(self):
|
| 146 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 147 |
+
vocab.update(self.added_tokens_encoder)
|
| 148 |
+
return vocab
|
| 149 |
+
|
| 150 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask
|
| 151 |
+
def get_special_tokens_mask(
|
| 152 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 153 |
+
) -> List[int]:
|
| 154 |
+
"""
|
| 155 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 156 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
token_ids_0 (`List[int]`):
|
| 160 |
+
List of IDs.
|
| 161 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 162 |
+
Optional second list of IDs for sequence pairs.
|
| 163 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 164 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 165 |
+
|
| 166 |
+
Returns:
|
| 167 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 168 |
+
"""
|
| 169 |
+
if already_has_special_tokens:
|
| 170 |
+
return super().get_special_tokens_mask(
|
| 171 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# normal case: some special tokens
|
| 175 |
+
if token_ids_1 is None:
|
| 176 |
+
return ([0] * len(token_ids_0)) + [1]
|
| 177 |
+
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
| 178 |
+
|
| 179 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present
|
| 180 |
+
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
| 181 |
+
"""Do not add eos again if user already added it."""
|
| 182 |
+
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
| 183 |
+
warnings.warn(
|
| 184 |
+
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
|
| 185 |
+
" eos tokens being added."
|
| 186 |
+
)
|
| 187 |
+
return token_ids
|
| 188 |
+
else:
|
| 189 |
+
return token_ids + [self.eos_token_id]
|
| 190 |
+
|
| 191 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences
|
| 192 |
+
def create_token_type_ids_from_sequences(
|
| 193 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 194 |
+
) -> List[int]:
|
| 195 |
+
"""
|
| 196 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
| 197 |
+
use of token type ids, therefore a list of zeros is returned.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
token_ids_0 (`List[int]`):
|
| 201 |
+
List of IDs.
|
| 202 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 203 |
+
Optional second list of IDs for sequence pairs.
|
| 204 |
+
|
| 205 |
+
Returns:
|
| 206 |
+
`List[int]`: List of zeros.
|
| 207 |
+
"""
|
| 208 |
+
eos = [self.eos_token_id]
|
| 209 |
+
|
| 210 |
+
if token_ids_1 is None:
|
| 211 |
+
return len(token_ids_0 + eos) * [0]
|
| 212 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
| 213 |
+
|
| 214 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens
|
| 215 |
+
def build_inputs_with_special_tokens(
|
| 216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 217 |
+
) -> List[int]:
|
| 218 |
+
"""
|
| 219 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
| 220 |
+
adding special tokens. A sequence has the following format:
|
| 221 |
+
|
| 222 |
+
- single sequence: `X </s>`
|
| 223 |
+
- pair of sequences: `A </s> B </s>`
|
| 224 |
+
|
| 225 |
+
Args:
|
| 226 |
+
token_ids_0 (`List[int]`):
|
| 227 |
+
List of IDs to which the special tokens will be added.
|
| 228 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 229 |
+
Optional second list of IDs for sequence pairs.
|
| 230 |
+
|
| 231 |
+
Returns:
|
| 232 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
| 233 |
+
"""
|
| 234 |
+
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
| 235 |
+
if token_ids_1 is None:
|
| 236 |
+
return token_ids_0
|
| 237 |
+
else:
|
| 238 |
+
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
| 239 |
+
return token_ids_0 + token_ids_1
|
| 240 |
+
|
| 241 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__
|
| 242 |
+
def __getstate__(self):
|
| 243 |
+
state = self.__dict__.copy()
|
| 244 |
+
state["sp_model"] = None
|
| 245 |
+
return state
|
| 246 |
+
|
| 247 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__
|
| 248 |
+
def __setstate__(self, d):
|
| 249 |
+
self.__dict__ = d
|
| 250 |
+
|
| 251 |
+
# for backward compatibility
|
| 252 |
+
if not hasattr(self, "sp_model_kwargs"):
|
| 253 |
+
self.sp_model_kwargs = {}
|
| 254 |
+
|
| 255 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 256 |
+
self.sp_model.Load(self.vocab_file)
|
| 257 |
+
|
| 258 |
+
def remove_punctuation(self, text: str) -> str:
|
| 259 |
+
return text.translate(str.maketrans("", "", string.punctuation))
|
| 260 |
+
|
| 261 |
+
# source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
|
| 262 |
+
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None):
|
| 263 |
+
"""Returns canonicalized `text` (puncuation removed).
|
| 264 |
+
|
| 265 |
+
Args:
|
| 266 |
+
text (`str`):
|
| 267 |
+
String to be canonicalized.
|
| 268 |
+
keep_punctuation_exact_string (`str`, *optional*):
|
| 269 |
+
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}'
|
| 270 |
+
(but will still remove '{' and '}' that appear separately).
|
| 271 |
+
"""
|
| 272 |
+
if keep_punctuation_exact_string:
|
| 273 |
+
text = keep_punctuation_exact_string.join(
|
| 274 |
+
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string)
|
| 275 |
+
)
|
| 276 |
+
else:
|
| 277 |
+
text = self.remove_punctuation(text)
|
| 278 |
+
text = re.sub(r"\s+", " ", text)
|
| 279 |
+
text = text.strip()
|
| 280 |
+
|
| 281 |
+
return text
|
| 282 |
+
|
| 283 |
+
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
|
| 284 |
+
"""
|
| 285 |
+
Converts a string to a list of tokens.
|
| 286 |
+
"""
|
| 287 |
+
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
|
| 288 |
+
|
| 289 |
+
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
| 290 |
+
tokens = tokens[1:]
|
| 291 |
+
return tokens
|
| 292 |
+
|
| 293 |
+
@property
|
| 294 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length
|
| 295 |
+
def unk_token_length(self):
|
| 296 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
| 297 |
+
|
| 298 |
+
def _tokenize(self, text, **kwargs):
|
| 299 |
+
"""
|
| 300 |
+
Returns a tokenized string.
|
| 301 |
+
|
| 302 |
+
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
| 303 |
+
SPIECE_UNDERLINE.
|
| 304 |
+
|
| 305 |
+
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`.
|
| 306 |
+
|
| 307 |
+
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
| 308 |
+
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
| 309 |
+
"""
|
| 310 |
+
text = self.canonicalize_text(text, keep_punctuation_exact_string=None)
|
| 311 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
| 312 |
+
|
| 313 |
+
# 1. Encode string + prefix ex: "<unk> Hey"
|
| 314 |
+
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
| 315 |
+
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
| 316 |
+
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
| 317 |
+
|
| 318 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id
|
| 319 |
+
def _convert_token_to_id(self, token):
|
| 320 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 321 |
+
return self.sp_model.piece_to_id(token)
|
| 322 |
+
|
| 323 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token
|
| 324 |
+
def _convert_id_to_token(self, index):
|
| 325 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 326 |
+
token = self.sp_model.IdToPiece(index)
|
| 327 |
+
return token
|
| 328 |
+
|
| 329 |
+
def convert_tokens_to_string(self, tokens):
|
| 330 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 331 |
+
current_sub_tokens = []
|
| 332 |
+
out_string = ""
|
| 333 |
+
prev_is_special = False
|
| 334 |
+
for token in tokens:
|
| 335 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
| 336 |
+
if token in self.all_special_tokens:
|
| 337 |
+
if not prev_is_special:
|
| 338 |
+
out_string += " "
|
| 339 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 340 |
+
prev_is_special = True
|
| 341 |
+
current_sub_tokens = []
|
| 342 |
+
else:
|
| 343 |
+
current_sub_tokens.append(token)
|
| 344 |
+
prev_is_special = False
|
| 345 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 346 |
+
return out_string.strip()
|
| 347 |
+
|
| 348 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary
|
| 349 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 350 |
+
if not os.path.isdir(save_directory):
|
| 351 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 352 |
+
return
|
| 353 |
+
out_vocab_file = os.path.join(
|
| 354 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 358 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 359 |
+
elif not os.path.isfile(self.vocab_file):
|
| 360 |
+
with open(out_vocab_file, "wb") as fi:
|
| 361 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 362 |
+
fi.write(content_spiece_model)
|
| 363 |
+
|
| 364 |
+
return (out_vocab_file,)
|
requirements.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
decord==0.6.0
|
| 2 |
+
einops==0.8.1
|
| 3 |
+
huggingface_hub==0.29.1
|
| 4 |
+
matplotlib==3.7.0
|
| 5 |
+
numpy==1.24.4
|
| 6 |
+
opencv_python==4.7.0.72
|
| 7 |
+
pyarrow==11.0.0
|
| 8 |
+
PyYAML==6.0.2
|
| 9 |
+
Requests==2.32.3
|
| 10 |
+
safetensors==0.4.5
|
| 11 |
+
scipy==1.10.1
|
| 12 |
+
sentencepiece==0.1.99
|
| 13 |
+
torch==2.5.1
|
| 14 |
+
torchvision==0.20.1
|
| 15 |
+
transformers==4.49.0
|
| 16 |
+
accelerate>=0.34.0
|
| 17 |
+
wandb
|
test_images/meme.jpg
ADDED
|
test_images/octupusy.jpg
ADDED
|
test_images/women.jpg
ADDED
|