Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
import torch.nn.functional as F
|
|
@@ -14,14 +16,45 @@ import librosa
|
|
| 14 |
from PIL import Image
|
| 15 |
import tempfile
|
| 16 |
import os
|
| 17 |
-
|
|
|
|
| 18 |
import json
|
| 19 |
import warnings
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
class GradientReverseFn(torch.autograd.Function):
|
| 26 |
"""Gradient reversal function for adversarial training"""
|
| 27 |
@staticmethod
|
|
@@ -93,13 +126,13 @@ class MirrorMindModel(nn.Module):
|
|
| 93 |
if any(x in name for x in ['encoder.layers.10', 'encoder.layers.11']):
|
| 94 |
param.requires_grad = True
|
| 95 |
self.audio_pool = nn.AdaptiveAvgPool1d(1)
|
| 96 |
-
|
| 97 |
except Exception as e:
|
| 98 |
-
|
| 99 |
self._create_improved_audio_encoder()
|
| 100 |
else:
|
| 101 |
self._create_improved_audio_encoder()
|
| 102 |
-
|
| 103 |
|
| 104 |
self.audio_proj = nn.Sequential(
|
| 105 |
nn.Linear(self.audio_feat_dim, hidden_dim),
|
|
@@ -231,7 +264,7 @@ class MirrorMindModel(nn.Module):
|
|
| 231 |
vid_feat = self._process_video_temporal_attention(vid_feat_bt, B, T)
|
| 232 |
vid_feat = self.video_proj(vid_feat)
|
| 233 |
except Exception as e:
|
| 234 |
-
|
| 235 |
vid_feat = torch.zeros((B, self.hidden_dim), device=device)
|
| 236 |
try:
|
| 237 |
if audio is None or torch.all(audio == 0):
|
|
@@ -252,7 +285,7 @@ class MirrorMindModel(nn.Module):
|
|
| 252 |
aud_feat = x
|
| 253 |
aud_feat = self.audio_proj(aud_feat)
|
| 254 |
except Exception as e:
|
| 255 |
-
|
| 256 |
aud_feat = torch.zeros((B, self.hidden_dim), device=device)
|
| 257 |
fused = torch.cat([vid_feat, aud_feat], dim=1)
|
| 258 |
fused_final = self.fusion_proj(fused)
|
|
@@ -265,17 +298,16 @@ class MirrorMindModel(nn.Module):
|
|
| 265 |
domain_logits = self.domain_head(rev)
|
| 266 |
return neuroticism_pred, emotion_logits, domain_logits
|
| 267 |
|
| 268 |
-
# Inference wrapper (renamed to avoid conflict)
|
| 269 |
class MirrorMindInference:
|
| 270 |
def __init__(self):
|
| 271 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 272 |
-
|
| 273 |
|
| 274 |
model_path = "mirror_model.pth"
|
| 275 |
-
|
| 276 |
|
| 277 |
if not os.path.exists(model_path):
|
| 278 |
-
|
| 279 |
self.model = None
|
| 280 |
return
|
| 281 |
|
|
@@ -283,132 +315,97 @@ class MirrorMindInference:
|
|
| 283 |
pytorch_version = torch.__version__
|
| 284 |
|
| 285 |
if pytorch_version.startswith(("2.8", "2.9")):
|
| 286 |
-
|
| 287 |
try:
|
| 288 |
-
|
| 289 |
with warnings.catch_warnings():
|
| 290 |
warnings.simplefilter("ignore")
|
| 291 |
checkpoint = torch.load(model_path, map_location=self.device, weights_only=False)
|
| 292 |
-
|
| 293 |
except Exception as e1:
|
| 294 |
-
|
| 295 |
try:
|
| 296 |
-
|
| 297 |
checkpoint = torch.load(model_path, map_location=self.device, weights_only=True)
|
| 298 |
-
|
| 299 |
except Exception as e2:
|
| 300 |
-
|
| 301 |
checkpoint = None
|
| 302 |
else:
|
| 303 |
try:
|
| 304 |
-
|
| 305 |
checkpoint = torch.load(model_path, map_location=self.device)
|
| 306 |
-
|
| 307 |
except Exception as e:
|
| 308 |
-
|
| 309 |
checkpoint = None
|
| 310 |
|
| 311 |
if checkpoint is None:
|
| 312 |
-
|
| 313 |
self.model = None
|
| 314 |
return
|
| 315 |
|
| 316 |
if isinstance(checkpoint, dict):
|
| 317 |
-
|
| 318 |
|
| 319 |
if 'model' in checkpoint and 'state_dict' in checkpoint:
|
| 320 |
self.model = checkpoint['model']
|
| 321 |
self.model.load_state_dict(checkpoint['state_dict'])
|
| 322 |
-
|
| 323 |
|
| 324 |
elif 'state_dict' in checkpoint:
|
| 325 |
-
|
| 326 |
if 'model_config' in checkpoint:
|
| 327 |
self.model = MirrorMindModel(**checkpoint['model_config'])
|
| 328 |
self.model.load_state_dict(checkpoint['state_dict'])
|
| 329 |
-
|
| 330 |
else:
|
| 331 |
-
|
| 332 |
self.model = None
|
| 333 |
return
|
| 334 |
|
| 335 |
elif 'model_state_dict' in checkpoint:
|
| 336 |
-
|
| 337 |
state_dict = checkpoint['model_state_dict']
|
| 338 |
|
| 339 |
if 'model_config' in checkpoint:
|
| 340 |
self.model = MirrorMindModel(**checkpoint['model_config'])
|
| 341 |
self.model.load_state_dict(state_dict)
|
| 342 |
-
|
| 343 |
else:
|
| 344 |
-
|
| 345 |
-
print(f"State dict analysis: {model_info}")
|
| 346 |
-
print("⚠️ No model_config. Using fallback.")
|
| 347 |
self.model = None
|
| 348 |
return
|
| 349 |
|
| 350 |
elif len(checkpoint.keys()) > 0 and all(isinstance(v, torch.Tensor) for v in checkpoint.values()):
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
print(f"Direct state dict analysis: {model_info}")
|
| 354 |
-
print("⚠️ Cannot reconstruct without model_config. Using fallback.")
|
| 355 |
self.model = None
|
| 356 |
return
|
| 357 |
|
| 358 |
else:
|
| 359 |
if hasattr(checkpoint, 'eval') and callable(checkpoint.eval):
|
| 360 |
self.model = checkpoint
|
| 361 |
-
|
| 362 |
else:
|
| 363 |
-
|
| 364 |
self.model = None
|
| 365 |
return
|
| 366 |
else:
|
| 367 |
if hasattr(checkpoint, 'eval') and callable(checkpoint.eval):
|
| 368 |
self.model = checkpoint
|
| 369 |
-
|
| 370 |
else:
|
| 371 |
-
|
| 372 |
self.model = None
|
| 373 |
return
|
| 374 |
|
| 375 |
if self.model is not None:
|
| 376 |
self.model.to(self.device)
|
| 377 |
self.model.eval()
|
| 378 |
-
|
| 379 |
else:
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
def analyze_state_dict(self, state_dict):
|
| 383 |
-
info = {
|
| 384 |
-
'total_params': len(state_dict),
|
| 385 |
-
'layer_types': set(),
|
| 386 |
-
'input_features': None,
|
| 387 |
-
'output_features': None,
|
| 388 |
-
'has_conv': False,
|
| 389 |
-
'has_lstm': False,
|
| 390 |
-
'has_attention': False
|
| 391 |
-
}
|
| 392 |
-
|
| 393 |
-
for key, tensor in state_dict.items():
|
| 394 |
-
if 'conv' in key.lower():
|
| 395 |
-
info['has_conv'] = True
|
| 396 |
-
info['layer_types'].add('conv')
|
| 397 |
-
elif 'lstm' in key.lower() or 'rnn' in key.lower():
|
| 398 |
-
info['has_lstm'] = True
|
| 399 |
-
info['layer_types'].add('lstm')
|
| 400 |
-
elif 'attention' in key.lower() or 'attn' in key.lower():
|
| 401 |
-
info['has_attention'] = True
|
| 402 |
-
info['layer_types'].add('attention')
|
| 403 |
-
elif 'linear' in key.lower() or 'fc' in key.lower():
|
| 404 |
-
info['layer_types'].add('linear')
|
| 405 |
-
if key.endswith('.weight'):
|
| 406 |
-
if info['input_features'] is None:
|
| 407 |
-
info['input_features'] = tensor.shape[-1]
|
| 408 |
-
info['output_features'] = tensor.shape[0]
|
| 409 |
-
|
| 410 |
-
info['layer_types'] = list(info['layer_types'])
|
| 411 |
-
return info
|
| 412 |
|
| 413 |
def extract_video_frames(self, video_path: str, num_frames: int = 8) -> torch.Tensor:
|
| 414 |
try:
|
|
@@ -442,7 +439,7 @@ class MirrorMindInference:
|
|
| 442 |
return video_tensor
|
| 443 |
|
| 444 |
except Exception as e:
|
| 445 |
-
|
| 446 |
dummy_frames = np.random.rand(num_frames, 3, 224, 224).astype(np.float32)
|
| 447 |
return torch.from_numpy(dummy_frames).to(self.device)
|
| 448 |
|
|
@@ -465,7 +462,7 @@ class MirrorMindInference:
|
|
| 465 |
|
| 466 |
return audio_tensor
|
| 467 |
except Exception as e:
|
| 468 |
-
|
| 469 |
return torch.zeros(14).to(self.device)
|
| 470 |
|
| 471 |
def predict(self, video_path: str) -> Dict[str, Any]:
|
|
@@ -485,7 +482,7 @@ class MirrorMindInference:
|
|
| 485 |
emotion_labels = ['Anger', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad']
|
| 486 |
emotion_scores = dict(zip(emotion_labels, emotion_probs))
|
| 487 |
else:
|
| 488 |
-
|
| 489 |
neuroticism_score = np.random.uniform(0.2, 0.8)
|
| 490 |
emotion_scores = {
|
| 491 |
'Happy': np.random.uniform(0.1, 0.4),
|
|
@@ -507,7 +504,7 @@ class MirrorMindInference:
|
|
| 507 |
}
|
| 508 |
|
| 509 |
except Exception as e:
|
| 510 |
-
|
| 511 |
return {
|
| 512 |
'error': str(e),
|
| 513 |
'neuroticism': 0.0,
|
|
@@ -517,17 +514,90 @@ class MirrorMindInference:
|
|
| 517 |
'model_used': 'error'
|
| 518 |
}
|
| 519 |
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
|
| 524 |
try:
|
| 525 |
-
|
| 526 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 527 |
|
| 528 |
if 'error' in results:
|
| 529 |
-
|
| 530 |
|
|
|
|
| 531 |
neuroticism_score = results['neuroticism']
|
| 532 |
|
| 533 |
if neuroticism_score <= 0.3:
|
|
@@ -540,130 +610,106 @@ def analyze_video(video_file) -> Tuple[float, str, str]:
|
|
| 540 |
emotions = results['emotions']
|
| 541 |
dominant_emotion = max(emotions.keys(), key=lambda k: emotions[k])
|
| 542 |
|
| 543 |
-
|
| 544 |
-
emotion_text += "**All Emotions:**\n"
|
| 545 |
-
for emotion, score in sorted(emotions.items(), key=lambda x: x[1], reverse=True):
|
| 546 |
-
emotion_text += f"- {emotion}: {score:.1%}\n"
|
| 547 |
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
- Processing: Multimodal (Video + Audio)
|
| 559 |
-
- Device: {'GPU' if torch.cuda.is_available() else 'CPU'}
|
| 560 |
-
- Confidence: {'High' if results['model_used'] == 'real' else 'Demo Mode'}
|
| 561 |
-
""".strip()
|
| 562 |
-
|
| 563 |
-
return neuroticism_score, emotion_text, detailed_results
|
| 564 |
|
|
|
|
|
|
|
| 565 |
except Exception as e:
|
| 566 |
-
|
| 567 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
.gradio-container {
|
| 572 |
-
font-family: 'Helvetica Neue', Arial, sans-serif;
|
| 573 |
-
}
|
| 574 |
-
.output-class {
|
| 575 |
-
font-size: 16px;
|
| 576 |
-
}
|
| 577 |
"""
|
|
|
|
| 578 |
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 585 |
|
| 586 |
-
|
|
|
|
|
|
|
| 587 |
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
**CUDA Available:** {'Yes' if torch.cuda.is_available() else 'No'}
|
| 591 |
-
""")
|
| 592 |
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
video_input = gr.Video(
|
| 596 |
-
label="Upload Video",
|
| 597 |
-
sources=["upload"],
|
| 598 |
-
)
|
| 599 |
-
|
| 600 |
-
analyze_btn = gr.Button(
|
| 601 |
-
"🔍 Analyze Video",
|
| 602 |
-
variant="primary",
|
| 603 |
-
scale=1
|
| 604 |
-
)
|
| 605 |
-
|
| 606 |
-
gr.Markdown("""
|
| 607 |
-
**Supported formats:** MP4, AVI, MOV, WebM
|
| 608 |
-
**Optimal duration:** 4-10 seconds
|
| 609 |
-
**Requirements:** Clear face, good lighting, audio included
|
| 610 |
-
""")
|
| 611 |
-
|
| 612 |
-
with gr.Column(scale=2):
|
| 613 |
-
neuroticism_output = gr.Number(
|
| 614 |
-
label="🎭 Neuroticism Score (0.0 - 1.0)",
|
| 615 |
-
precision=3
|
| 616 |
-
)
|
| 617 |
-
|
| 618 |
-
emotion_output = gr.Markdown(
|
| 619 |
-
label="😊 Emotion Analysis"
|
| 620 |
-
)
|
| 621 |
-
|
| 622 |
-
details_output = gr.Markdown(
|
| 623 |
-
label="📊 Detailed Results"
|
| 624 |
-
)
|
| 625 |
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
inputs=[video_input],
|
| 629 |
-
outputs=[neuroticism_output, emotion_output, details_output]
|
| 630 |
-
)
|
| 631 |
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
|
|
|
| 637 |
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
### 📋 Understanding Your Results
|
| 641 |
|
| 642 |
-
|
| 643 |
-
- **0.0-0.3:** Low - Emotionally stable, calm under pressure
|
| 644 |
-
- **0.3-0.7:** Medium - Moderate emotional reactivity
|
| 645 |
-
- **0.7-1.0:** High - More emotionally sensitive, reactive
|
| 646 |
|
| 647 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 648 |
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
|
|
|
|
|
|
| 654 |
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
|
|
|
|
|
|
| 659 |
|
| 660 |
if __name__ == "__main__":
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
server_name="0.0.0.0",
|
| 664 |
-
server_port=7860,
|
| 665 |
-
share=False,
|
| 666 |
-
debug=False,
|
| 667 |
-
show_error=True,
|
| 668 |
-
quiet=False
|
| 669 |
-
)
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
| 6 |
import torch.nn.functional as F
|
|
|
|
| 16 |
from PIL import Image
|
| 17 |
import tempfile
|
| 18 |
import os
|
| 19 |
+
import shutil
|
| 20 |
+
from typing import Dict, Any, Optional
|
| 21 |
import json
|
| 22 |
import warnings
|
| 23 |
+
import logging
|
| 24 |
+
import asyncio
|
| 25 |
+
from contextlib import asynccontextmanager
|
| 26 |
|
| 27 |
+
# Configure logging
|
| 28 |
+
logging.basicConfig(level=logging.INFO)
|
| 29 |
+
logger = logging.getLogger(__name__)
|
| 30 |
|
| 31 |
+
# Global model instance
|
| 32 |
+
model_instance = None
|
| 33 |
+
|
| 34 |
+
# Response models
|
| 35 |
+
class EmotionScores(BaseModel):
|
| 36 |
+
Anger: float
|
| 37 |
+
Disgust: float
|
| 38 |
+
Fear: float
|
| 39 |
+
Happy: float
|
| 40 |
+
Neutral: float
|
| 41 |
+
Sad: float
|
| 42 |
+
|
| 43 |
+
class AnalysisResult(BaseModel):
|
| 44 |
+
neuroticism: float
|
| 45 |
+
neuroticism_level: str
|
| 46 |
+
emotions: EmotionScores
|
| 47 |
+
dominant_emotion: str
|
| 48 |
+
frames_processed: int
|
| 49 |
+
audio_features_extracted: bool
|
| 50 |
+
model_used: str
|
| 51 |
+
confidence: str
|
| 52 |
+
|
| 53 |
+
class ErrorResponse(BaseModel):
|
| 54 |
+
error: str
|
| 55 |
+
message: str
|
| 56 |
+
|
| 57 |
+
# MirrorMind Model Architecture (same as your original)
|
| 58 |
class GradientReverseFn(torch.autograd.Function):
|
| 59 |
"""Gradient reversal function for adversarial training"""
|
| 60 |
@staticmethod
|
|
|
|
| 126 |
if any(x in name for x in ['encoder.layers.10', 'encoder.layers.11']):
|
| 127 |
param.requires_grad = True
|
| 128 |
self.audio_pool = nn.AdaptiveAvgPool1d(1)
|
| 129 |
+
logger.info("Using Wav2Vec2 audio encoder")
|
| 130 |
except Exception as e:
|
| 131 |
+
logger.warning(f"Could not load Wav2Vec2, using CNN: {e}")
|
| 132 |
self._create_improved_audio_encoder()
|
| 133 |
else:
|
| 134 |
self._create_improved_audio_encoder()
|
| 135 |
+
logger.info("Using CNN audio encoder")
|
| 136 |
|
| 137 |
self.audio_proj = nn.Sequential(
|
| 138 |
nn.Linear(self.audio_feat_dim, hidden_dim),
|
|
|
|
| 264 |
vid_feat = self._process_video_temporal_attention(vid_feat_bt, B, T)
|
| 265 |
vid_feat = self.video_proj(vid_feat)
|
| 266 |
except Exception as e:
|
| 267 |
+
logger.error(f"Video processing error: {e}")
|
| 268 |
vid_feat = torch.zeros((B, self.hidden_dim), device=device)
|
| 269 |
try:
|
| 270 |
if audio is None or torch.all(audio == 0):
|
|
|
|
| 285 |
aud_feat = x
|
| 286 |
aud_feat = self.audio_proj(aud_feat)
|
| 287 |
except Exception as e:
|
| 288 |
+
logger.error(f"Audio processing error: {e}")
|
| 289 |
aud_feat = torch.zeros((B, self.hidden_dim), device=device)
|
| 290 |
fused = torch.cat([vid_feat, aud_feat], dim=1)
|
| 291 |
fused_final = self.fusion_proj(fused)
|
|
|
|
| 298 |
domain_logits = self.domain_head(rev)
|
| 299 |
return neuroticism_pred, emotion_logits, domain_logits
|
| 300 |
|
|
|
|
| 301 |
class MirrorMindInference:
|
| 302 |
def __init__(self):
|
| 303 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 304 |
+
logger.info(f"Using device: {self.device}")
|
| 305 |
|
| 306 |
model_path = "mirror_model.pth"
|
| 307 |
+
logger.info(f"Loading model from {model_path}...")
|
| 308 |
|
| 309 |
if not os.path.exists(model_path):
|
| 310 |
+
logger.warning(f"Model file {model_path} not found. Using fallback mode.")
|
| 311 |
self.model = None
|
| 312 |
return
|
| 313 |
|
|
|
|
| 315 |
pytorch_version = torch.__version__
|
| 316 |
|
| 317 |
if pytorch_version.startswith(("2.8", "2.9")):
|
| 318 |
+
logger.info(f"Detected PyTorch {pytorch_version} - using version-specific loading...")
|
| 319 |
try:
|
| 320 |
+
logger.info("Loading with weights_only=False...")
|
| 321 |
with warnings.catch_warnings():
|
| 322 |
warnings.simplefilter("ignore")
|
| 323 |
checkpoint = torch.load(model_path, map_location=self.device, weights_only=False)
|
| 324 |
+
logger.info("✓ Successfully loaded complete model")
|
| 325 |
except Exception as e1:
|
| 326 |
+
logger.error(f"✗ Failed: {e1}")
|
| 327 |
try:
|
| 328 |
+
logger.info("Attempting state_dict loading with weights_only=True...")
|
| 329 |
checkpoint = torch.load(model_path, map_location=self.device, weights_only=True)
|
| 330 |
+
logger.info("✓ Loaded as state_dict")
|
| 331 |
except Exception as e2:
|
| 332 |
+
logger.error(f"✗ Failed: {e2}")
|
| 333 |
checkpoint = None
|
| 334 |
else:
|
| 335 |
try:
|
| 336 |
+
logger.info(f"Using standard loading for PyTorch {pytorch_version}...")
|
| 337 |
checkpoint = torch.load(model_path, map_location=self.device)
|
| 338 |
+
logger.info("✓ Loaded with standard method")
|
| 339 |
except Exception as e:
|
| 340 |
+
logger.error(f"✗ Failed: {e}")
|
| 341 |
checkpoint = None
|
| 342 |
|
| 343 |
if checkpoint is None:
|
| 344 |
+
logger.warning("All loading methods failed. Using fallback mode.")
|
| 345 |
self.model = None
|
| 346 |
return
|
| 347 |
|
| 348 |
if isinstance(checkpoint, dict):
|
| 349 |
+
logger.info(f"Checkpoint keys: {list(checkpoint.keys())}")
|
| 350 |
|
| 351 |
if 'model' in checkpoint and 'state_dict' in checkpoint:
|
| 352 |
self.model = checkpoint['model']
|
| 353 |
self.model.load_state_dict(checkpoint['state_dict'])
|
| 354 |
+
logger.info("✓ Loaded model architecture + state dict")
|
| 355 |
|
| 356 |
elif 'state_dict' in checkpoint:
|
| 357 |
+
logger.info("Found 'state_dict' - attempting to reconstruct model...")
|
| 358 |
if 'model_config' in checkpoint:
|
| 359 |
self.model = MirrorMindModel(**checkpoint['model_config'])
|
| 360 |
self.model.load_state_dict(checkpoint['state_dict'])
|
| 361 |
+
logger.info("✓ Loaded using model_config + state_dict")
|
| 362 |
else:
|
| 363 |
+
logger.warning("⚠️ No model_config. Using fallback.")
|
| 364 |
self.model = None
|
| 365 |
return
|
| 366 |
|
| 367 |
elif 'model_state_dict' in checkpoint:
|
| 368 |
+
logger.info("Found 'model_state_dict' - checking for model class info...")
|
| 369 |
state_dict = checkpoint['model_state_dict']
|
| 370 |
|
| 371 |
if 'model_config' in checkpoint:
|
| 372 |
self.model = MirrorMindModel(**checkpoint['model_config'])
|
| 373 |
self.model.load_state_dict(state_dict)
|
| 374 |
+
logger.info("✓ Loaded using model_config + model_state_dict")
|
| 375 |
else:
|
| 376 |
+
logger.warning("⚠️ No model_config. Using fallback.")
|
|
|
|
|
|
|
| 377 |
self.model = None
|
| 378 |
return
|
| 379 |
|
| 380 |
elif len(checkpoint.keys()) > 0 and all(isinstance(v, torch.Tensor) for v in checkpoint.values()):
|
| 381 |
+
logger.info("Checkpoint appears to be a direct state dict")
|
| 382 |
+
logger.warning("⚠️ Cannot reconstruct without model_config. Using fallback.")
|
|
|
|
|
|
|
| 383 |
self.model = None
|
| 384 |
return
|
| 385 |
|
| 386 |
else:
|
| 387 |
if hasattr(checkpoint, 'eval') and callable(checkpoint.eval):
|
| 388 |
self.model = checkpoint
|
| 389 |
+
logger.info("✓ Using checkpoint as complete model")
|
| 390 |
else:
|
| 391 |
+
logger.warning("⚠️ Unrecognized format. Using fallback.")
|
| 392 |
self.model = None
|
| 393 |
return
|
| 394 |
else:
|
| 395 |
if hasattr(checkpoint, 'eval') and callable(checkpoint.eval):
|
| 396 |
self.model = checkpoint
|
| 397 |
+
logger.info("✓ Loaded complete model object")
|
| 398 |
else:
|
| 399 |
+
logger.warning("⚠️ Not a model object. Using fallback.")
|
| 400 |
self.model = None
|
| 401 |
return
|
| 402 |
|
| 403 |
if self.model is not None:
|
| 404 |
self.model.to(self.device)
|
| 405 |
self.model.eval()
|
| 406 |
+
logger.info("Model loaded and ready for inference!")
|
| 407 |
else:
|
| 408 |
+
logger.warning("Model is None after loading. Using fallback.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
|
| 410 |
def extract_video_frames(self, video_path: str, num_frames: int = 8) -> torch.Tensor:
|
| 411 |
try:
|
|
|
|
| 439 |
return video_tensor
|
| 440 |
|
| 441 |
except Exception as e:
|
| 442 |
+
logger.error(f"Video extraction failed: {e}")
|
| 443 |
dummy_frames = np.random.rand(num_frames, 3, 224, 224).astype(np.float32)
|
| 444 |
return torch.from_numpy(dummy_frames).to(self.device)
|
| 445 |
|
|
|
|
| 462 |
|
| 463 |
return audio_tensor
|
| 464 |
except Exception as e:
|
| 465 |
+
logger.error(f"Audio extraction failed: {e}")
|
| 466 |
return torch.zeros(14).to(self.device)
|
| 467 |
|
| 468 |
def predict(self, video_path: str) -> Dict[str, Any]:
|
|
|
|
| 482 |
emotion_labels = ['Anger', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad']
|
| 483 |
emotion_scores = dict(zip(emotion_labels, emotion_probs))
|
| 484 |
else:
|
| 485 |
+
logger.info("Using fallback predictions")
|
| 486 |
neuroticism_score = np.random.uniform(0.2, 0.8)
|
| 487 |
emotion_scores = {
|
| 488 |
'Happy': np.random.uniform(0.1, 0.4),
|
|
|
|
| 504 |
}
|
| 505 |
|
| 506 |
except Exception as e:
|
| 507 |
+
logger.error(f"Prediction error: {e}")
|
| 508 |
return {
|
| 509 |
'error': str(e),
|
| 510 |
'neuroticism': 0.0,
|
|
|
|
| 514 |
'model_used': 'error'
|
| 515 |
}
|
| 516 |
|
| 517 |
+
# Initialize model on startup
|
| 518 |
+
@asynccontextmanager
|
| 519 |
+
async def lifespan(app: FastAPI):
|
| 520 |
+
global model_instance
|
| 521 |
+
logger.info("Starting MirrorMind API service...")
|
| 522 |
+
model_instance = MirrorMindInference()
|
| 523 |
+
logger.info(f"PyTorch version: {torch.__version__}")
|
| 524 |
+
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 525 |
+
yield
|
| 526 |
+
logger.info("Shutting down MirrorMind API service...")
|
| 527 |
+
|
| 528 |
+
# Initialize FastAPI app
|
| 529 |
+
app = FastAPI(
|
| 530 |
+
title="MirrorMind API",
|
| 531 |
+
description="AI Personality & Emotion Analysis API",
|
| 532 |
+
version="1.0.0",
|
| 533 |
+
lifespan=lifespan
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
# Add CORS middleware
|
| 537 |
+
app.add_middleware(
|
| 538 |
+
CORSMiddleware,
|
| 539 |
+
allow_origins=["*"], # Configure this for production
|
| 540 |
+
allow_credentials=True,
|
| 541 |
+
allow_methods=["*"],
|
| 542 |
+
allow_headers=["*"],
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
@app.get("/")
|
| 546 |
+
async def root():
|
| 547 |
+
return {
|
| 548 |
+
"message": "MirrorMind API is running",
|
| 549 |
+
"version": "1.0.0",
|
| 550 |
+
"pytorch_version": torch.__version__,
|
| 551 |
+
"cuda_available": torch.cuda.is_available(),
|
| 552 |
+
"model_loaded": model_instance.model is not None if model_instance else False
|
| 553 |
+
}
|
| 554 |
+
|
| 555 |
+
@app.get("/health")
|
| 556 |
+
async def health_check():
|
| 557 |
+
return {
|
| 558 |
+
"status": "healthy",
|
| 559 |
+
"model_status": "loaded" if model_instance and model_instance.model is not None else "fallback",
|
| 560 |
+
"device": str(model_instance.device) if model_instance else "unknown"
|
| 561 |
+
}
|
| 562 |
+
|
| 563 |
+
@app.post("/analyze", response_model=AnalysisResult)
|
| 564 |
+
async def analyze_video(file: UploadFile = File(...)):
|
| 565 |
+
"""
|
| 566 |
+
Analyze a video file for personality traits and emotions.
|
| 567 |
+
|
| 568 |
+
- **file**: Video file (MP4, AVI, MOV, WebM)
|
| 569 |
+
- Returns neuroticism score and emotion analysis
|
| 570 |
+
"""
|
| 571 |
+
|
| 572 |
+
if not model_instance:
|
| 573 |
+
raise HTTPException(status_code=503, detail="Model not initialized")
|
| 574 |
+
|
| 575 |
+
# Validate file type
|
| 576 |
+
allowed_extensions = {'.mp4', '.avi', '.mov', '.webm', '.mkv'}
|
| 577 |
+
file_extension = os.path.splitext(file.filename.lower())[1]
|
| 578 |
+
|
| 579 |
+
if file_extension not in allowed_extensions:
|
| 580 |
+
raise HTTPException(
|
| 581 |
+
status_code=400,
|
| 582 |
+
detail=f"Unsupported file format. Allowed formats: {', '.join(allowed_extensions)}"
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
# Create temporary file
|
| 586 |
+
temp_dir = tempfile.mkdtemp()
|
| 587 |
+
temp_file_path = os.path.join(temp_dir, f"uploaded_video{file_extension}")
|
| 588 |
|
| 589 |
try:
|
| 590 |
+
# Save uploaded file
|
| 591 |
+
with open(temp_file_path, "wb") as buffer:
|
| 592 |
+
shutil.copyfileobj(file.file, buffer)
|
| 593 |
+
|
| 594 |
+
# Analyze video
|
| 595 |
+
results = model_instance.predict(temp_file_path)
|
| 596 |
|
| 597 |
if 'error' in results:
|
| 598 |
+
raise HTTPException(status_code=500, detail=f"Analysis failed: {results['error']}")
|
| 599 |
|
| 600 |
+
# Process results
|
| 601 |
neuroticism_score = results['neuroticism']
|
| 602 |
|
| 603 |
if neuroticism_score <= 0.3:
|
|
|
|
| 610 |
emotions = results['emotions']
|
| 611 |
dominant_emotion = max(emotions.keys(), key=lambda k: emotions[k])
|
| 612 |
|
| 613 |
+
confidence = "High" if results['model_used'] == 'real' else "Demo Mode"
|
|
|
|
|
|
|
|
|
|
| 614 |
|
| 615 |
+
return AnalysisResult(
|
| 616 |
+
neuroticism=neuroticism_score,
|
| 617 |
+
neuroticism_level=neuroticism_level,
|
| 618 |
+
emotions=EmotionScores(**emotions),
|
| 619 |
+
dominant_emotion=dominant_emotion,
|
| 620 |
+
frames_processed=results['frames_processed'],
|
| 621 |
+
audio_features_extracted=results['audio_features_extracted'],
|
| 622 |
+
model_used=results['model_used'],
|
| 623 |
+
confidence=confidence
|
| 624 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 625 |
|
| 626 |
+
except HTTPException:
|
| 627 |
+
raise
|
| 628 |
except Exception as e:
|
| 629 |
+
logger.error(f"Analysis error: {e}")
|
| 630 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
| 631 |
+
|
| 632 |
+
finally:
|
| 633 |
+
# Clean up temporary files
|
| 634 |
+
try:
|
| 635 |
+
shutil.rmtree(temp_dir)
|
| 636 |
+
except Exception as e:
|
| 637 |
+
logger.warning(f"Failed to clean up temp directory: {e}")
|
| 638 |
|
| 639 |
+
@app.post("/analyze-from-url")
|
| 640 |
+
async def analyze_video_from_url(video_url: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 641 |
"""
|
| 642 |
+
Analyze a video from a URL (Firebase/Supabase storage).
|
| 643 |
|
| 644 |
+
- **video_url**: Direct URL to video file
|
| 645 |
+
- Returns neuroticism score and emotion analysis
|
| 646 |
+
"""
|
| 647 |
+
|
| 648 |
+
if not model_instance:
|
| 649 |
+
raise HTTPException(status_code=503, detail="Model not initialized")
|
| 650 |
+
|
| 651 |
+
import requests
|
| 652 |
+
|
| 653 |
+
# Create temporary file
|
| 654 |
+
temp_dir = tempfile.mkdtemp()
|
| 655 |
+
temp_file_path = os.path.join(temp_dir, "downloaded_video.mp4")
|
| 656 |
+
|
| 657 |
+
try:
|
| 658 |
+
# Download video from URL
|
| 659 |
+
response = requests.get(video_url, stream=True, timeout=30)
|
| 660 |
+
response.raise_for_status()
|
| 661 |
|
| 662 |
+
with open(temp_file_path, "wb") as f:
|
| 663 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 664 |
+
f.write(chunk)
|
| 665 |
|
| 666 |
+
# Analyze video
|
| 667 |
+
results = model_instance.predict(temp_file_path)
|
|
|
|
|
|
|
| 668 |
|
| 669 |
+
if 'error' in results:
|
| 670 |
+
raise HTTPException(status_code=500, detail=f"Analysis failed: {results['error']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 671 |
|
| 672 |
+
# Process results (same as above)
|
| 673 |
+
neuroticism_score = results['neuroticism']
|
|
|
|
|
|
|
|
|
|
| 674 |
|
| 675 |
+
if neuroticism_score <= 0.3:
|
| 676 |
+
neuroticism_level = "Low (Emotionally Stable)"
|
| 677 |
+
elif neuroticism_score <= 0.7:
|
| 678 |
+
neuroticism_level = "Medium (Moderate Reactivity)"
|
| 679 |
+
else:
|
| 680 |
+
neuroticism_level = "High (Emotionally Sensitive)"
|
| 681 |
|
| 682 |
+
emotions = results['emotions']
|
| 683 |
+
dominant_emotion = max(emotions.keys(), key=lambda k: emotions[k])
|
|
|
|
| 684 |
|
| 685 |
+
confidence = "High" if results['model_used'] == 'real' else "Demo Mode"
|
|
|
|
|
|
|
|
|
|
| 686 |
|
| 687 |
+
return AnalysisResult(
|
| 688 |
+
neuroticism=neuroticism_score,
|
| 689 |
+
neuroticism_level=neuroticism_level,
|
| 690 |
+
emotions=EmotionScores(**emotions),
|
| 691 |
+
dominant_emotion=dominant_emotion,
|
| 692 |
+
frames_processed=results['frames_processed'],
|
| 693 |
+
audio_features_extracted=results['audio_features_extracted'],
|
| 694 |
+
model_used=results['model_used'],
|
| 695 |
+
confidence=confidence
|
| 696 |
+
)
|
| 697 |
|
| 698 |
+
except requests.RequestException as e:
|
| 699 |
+
raise HTTPException(status_code=400, detail=f"Failed to download video: {str(e)}")
|
| 700 |
+
except HTTPException:
|
| 701 |
+
raise
|
| 702 |
+
except Exception as e:
|
| 703 |
+
logger.error(f"Analysis error: {e}")
|
| 704 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
| 705 |
|
| 706 |
+
finally:
|
| 707 |
+
# Clean up temporary files
|
| 708 |
+
try:
|
| 709 |
+
shutil.rmtree(temp_dir)
|
| 710 |
+
except Exception as e:
|
| 711 |
+
logger.warning(f"Failed to clean up temp directory: {e}")
|
| 712 |
|
| 713 |
if __name__ == "__main__":
|
| 714 |
+
import uvicorn
|
| 715 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|