Spaces:
Runtime error
Runtime error
Commit
·
cb0113d
1
Parent(s):
85c1a67
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,276 +26,277 @@ import numpy as np
|
|
| 26 |
|
| 27 |
model = whisper.load_model("medium")
|
| 28 |
embedding_model = PretrainedSpeakerEmbedding(
|
| 29 |
-
|
| 30 |
-
|
| 31 |
)
|
| 32 |
|
| 33 |
|
| 34 |
__FILES = set()
|
| 35 |
-
|
| 36 |
|
| 37 |
def CreateFile(filename):
|
| 38 |
-
|
| 39 |
-
|
| 40 |
|
| 41 |
def RemoveFile(filename):
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
def RemoveAllFiles():
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
def Transcribe(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
|
| 151 |
def Transcribe_V2(num_speakers, speaker_names, audio="temp_audio.wav"):
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
|
| 215 |
-
|
| 216 |
|
| 217 |
-
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
|
| 228 |
def AudioTranscribe(NumberOfSpeakers=None, SpeakerNames="", audio="", retries=5):
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
|
| 242 |
def VideoTranscribe(NumberOfSpeakers=None, SpeakerNames="", video="", retries=5):
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
|
| 259 |
def YoutubeTranscribe(NumberOfSpeakers=None, SpeakerNames="", URL="", retries = 5):
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
|
| 285 |
ut = gr.Interface(
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
)
|
| 290 |
vt = gr.Interface(
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
)
|
| 295 |
at = gr.Interface(
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
)
|
| 300 |
|
| 301 |
demo = gr.TabbedInterface([ut, vt, at], ["Youtube URL", "Video", "Audio"])
|
|
|
|
| 26 |
|
| 27 |
model = whisper.load_model("medium")
|
| 28 |
embedding_model = PretrainedSpeakerEmbedding(
|
| 29 |
+
"speechbrain/spkrec-ecapa-voxceleb",
|
| 30 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 31 |
)
|
| 32 |
|
| 33 |
|
| 34 |
__FILES = set()
|
| 35 |
+
|
| 36 |
|
| 37 |
def CreateFile(filename):
|
| 38 |
+
__FILES.add(filename)
|
| 39 |
+
return filename
|
| 40 |
|
| 41 |
def RemoveFile(filename):
|
| 42 |
+
if (os.path.isfile(filename)):
|
| 43 |
+
os.remove(filename)
|
| 44 |
|
| 45 |
def RemoveAllFiles():
|
| 46 |
+
for file in __FILES:
|
| 47 |
+
if (os.path.isfile(file)):
|
| 48 |
+
os.remove(file)
|
| 49 |
+
|
| 50 |
def Transcribe(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
|
| 51 |
+
SPEAKER_DICT = {}
|
| 52 |
+
SPEAKERS = []
|
| 53 |
+
|
| 54 |
+
def GetSpeaker(sp):
|
| 55 |
+
speaker = sp
|
| 56 |
+
if sp not in list(SPEAKER_DICT.keys()):
|
| 57 |
+
if len(SPEAKERS):
|
| 58 |
+
t = SPEAKERS.pop(0)
|
| 59 |
+
SPEAKER_DICT[sp] = t
|
| 60 |
+
speaker = SPEAKER_DICT[sp]
|
| 61 |
+
else:
|
| 62 |
+
speaker = SPEAKER_DICT[sp]
|
| 63 |
+
return speaker
|
| 64 |
+
|
| 65 |
+
def GenerateSpeakerDict(sp):
|
| 66 |
+
global SPEAKERS
|
| 67 |
+
SPEAKERS = [speaker.strip() for speaker in sp.split(',')]
|
| 68 |
+
|
| 69 |
+
def millisec(timeStr):
|
| 70 |
+
spl = timeStr.split(":")
|
| 71 |
+
s = (int)((int(spl[0]) * 60 * 60 + int(spl[1]) * 60 + float(spl[2]) )* 1000)
|
| 72 |
+
return s
|
| 73 |
+
|
| 74 |
+
def preprocess(audio):
|
| 75 |
+
t1 = 0 * 1000
|
| 76 |
+
t2 = 20 * 60 * 1000
|
| 77 |
+
newAudio = AudioSegment.from_wav(audio)
|
| 78 |
+
a = newAudio[t1:t2]
|
| 79 |
+
spacermilli = 2000
|
| 80 |
+
spacer = AudioSegment.silent(duration=spacermilli)
|
| 81 |
+
newAudio = spacer.append(a, crossfade=0)
|
| 82 |
+
newAudio.export(audio, format="wav")
|
| 83 |
+
return spacermilli, spacer
|
| 84 |
+
|
| 85 |
+
def diarization(audio):
|
| 86 |
+
as_audio = AudioSegment.from_wav(audio)
|
| 87 |
+
DEMO_FILE = {'uri': 'blabal', 'audio': audio}
|
| 88 |
+
if NumberOfSpeakers:
|
| 89 |
+
dz = pipeline(DEMO_FILE, num_speakers=NumberOfSpeakers)
|
| 90 |
+
else:
|
| 91 |
+
dz = pipeline(DEMO_FILE)
|
| 92 |
+
with open(CreateFile(f"diarization_{audio}.txt"), "w") as text_file:
|
| 93 |
+
text_file.write(str(dz))
|
| 94 |
+
dz = open(CreateFile(f"diarization_{audio}.txt")).read().splitlines()
|
| 95 |
+
dzList = []
|
| 96 |
+
for l in dz:
|
| 97 |
+
start, end = tuple(re.findall('[0-9]+:[0-9]+:[0-9]+\.[0-9]+', string=l))
|
| 98 |
+
start = millisec(start)
|
| 99 |
+
end = millisec(end)
|
| 100 |
+
lex = GetSpeaker(re.findall('(SPEAKER_[0-9][0-9])', string=l)[0])
|
| 101 |
+
dzList.append([start, end, lex])
|
| 102 |
+
sounds = spacer
|
| 103 |
+
segments = []
|
| 104 |
+
dz = open(CreateFile(f"diarization_{audio}.txt")).read().splitlines()
|
| 105 |
+
for l in dz:
|
| 106 |
+
start, end = tuple(re.findall('[0-9]+:[0-9]+:[0-9]+\.[0-9]+', string=l))
|
| 107 |
+
start = millisec(start)
|
| 108 |
+
end = millisec(end)
|
| 109 |
+
segments.append(len(sounds))
|
| 110 |
+
sounds = sounds.append(as_audio[start:end], crossfade=0)
|
| 111 |
+
sounds = sounds.append(spacer, crossfade=0)
|
| 112 |
+
sounds.export(CreateFile(f"dz_{audio}.wav"), format="wav")
|
| 113 |
+
return f"dz_{audio}.wav", dzList, segments
|
| 114 |
+
|
| 115 |
+
def transcribe(dz_audio):
|
| 116 |
+
model = whisper.load_model("base")
|
| 117 |
+
result = model.transcribe(dz_audio)
|
| 118 |
+
# for _ in result['segments']:
|
| 119 |
+
# print(_['start'], _['end'], _['text'])
|
| 120 |
+
captions = [[((caption["start"]*1000)), ((caption["end"]*1000)), caption["text"]] for caption in result['segments']]
|
| 121 |
+
conversation = []
|
| 122 |
+
for i in range(len(segments)):
|
| 123 |
+
idx = 0
|
| 124 |
+
for idx in range(len(captions)):
|
| 125 |
+
if captions[idx][0] >= (segments[i] - spacermilli):
|
| 126 |
+
break;
|
| 127 |
+
|
| 128 |
+
while (idx < (len(captions))) and ((i == len(segments) - 1) or (captions[idx][1] < segments[i+1])):
|
| 129 |
+
c = captions[idx]
|
| 130 |
+
start = dzList[i][0] + (c[0] -segments[i])
|
| 131 |
+
if start < 0:
|
| 132 |
+
start = 0
|
| 133 |
+
idx += 1
|
| 134 |
+
if not len(conversation):
|
| 135 |
+
conversation.append([dzList[i][2], c[2]])
|
| 136 |
+
elif conversation[-1][0] == dzList[i][2]:
|
| 137 |
+
conversation[-1][1] += c[2]
|
| 138 |
+
else:
|
| 139 |
+
conversation.append([dzList[i][2], c[2]])
|
| 140 |
+
#print(f"[{dzList[i][2]}] {c[2]}")
|
| 141 |
+
return conversation, ("".join([f"{speaker} --> {text}\n" for speaker, text in conversation]))
|
| 142 |
|
| 143 |
+
GenerateSpeakerDict(SpeakerNames)
|
| 144 |
+
spacermilli, spacer = preprocess(audio)
|
| 145 |
+
dz_audio, dzList, segments = diarization(audio)
|
| 146 |
+
conversation, t_text = transcribe(dz_audio)
|
| 147 |
+
RemoveAllFiles()
|
| 148 |
+
return (t_text, ({ "data": [{"speaker": speaker, "text": text} for speaker, text in conversation]}))
|
| 149 |
|
| 150 |
|
| 151 |
def Transcribe_V2(num_speakers, speaker_names, audio="temp_audio.wav"):
|
| 152 |
+
SPEAKER_DICT = {}
|
| 153 |
+
SPEAKERS = []
|
| 154 |
+
def GetSpeaker(sp):
|
| 155 |
+
speaker = sp
|
| 156 |
+
if sp not in list(SPEAKER_DICT.keys()):
|
| 157 |
+
if len(SPEAKERS):
|
| 158 |
+
t = SPEAKERS.pop(0)
|
| 159 |
+
SPEAKER_DICT[sp] = t
|
| 160 |
+
speaker = SPEAKER_DICT[sp]
|
| 161 |
+
else:
|
| 162 |
+
speaker = SPEAKER_DICT[sp]
|
| 163 |
+
return speaker
|
| 164 |
+
|
| 165 |
+
def GenerateSpeakerDict(sp):
|
| 166 |
+
global SPEAKERS
|
| 167 |
+
SPEAKERS = [speaker.strip() for speaker in sp.split(',')]
|
| 168 |
|
| 169 |
+
# audio = Audio()
|
| 170 |
+
GenerateSpeakerDict(speaker_names)
|
| 171 |
+
def get_output(segments):
|
| 172 |
+
# print(segments)
|
| 173 |
+
conversation=[]
|
| 174 |
+
for (i, segment) in enumerate(segments):
|
| 175 |
+
print(f"{i}, {segment["speaker"]}, {segments[i - 1]["speaker"]}")
|
| 176 |
+
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
| 177 |
+
if i != 0:
|
| 178 |
+
conversation.append([GetSpeaker(segment["speaker"]), segment["text"][1:]]) # segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
|
| 179 |
+
conversation[-1][1] += segment["text"][1:]
|
| 180 |
+
# return output
|
| 181 |
+
return conversation, ("".join([f"{speaker} --> {text}\n" for speaker, text in conversation]))
|
| 182 |
|
| 183 |
+
def get_duration(path):
|
| 184 |
+
with contextlib.closing(wave.open(path,'r')) as f:
|
| 185 |
+
frames = f.getnframes()
|
| 186 |
+
rate = f.getframerate()
|
| 187 |
+
return frames / float(rate)
|
| 188 |
|
| 189 |
+
def make_embeddings(path, segments, duration):
|
| 190 |
+
embeddings = np.zeros(shape=(len(segments), 192))
|
| 191 |
+
for i, segment in enumerate(segments):
|
| 192 |
+
embeddings[i] = segment_embedding(path, segment, duration)
|
| 193 |
+
return np.nan_to_num(embeddings)
|
| 194 |
|
| 195 |
+
def segment_embedding(path, segment, duration):
|
| 196 |
+
start = segment["start"]
|
| 197 |
+
# Whisper overshoots the end timestamp in the last segment
|
| 198 |
+
end = min(duration, segment["end"])
|
| 199 |
+
clip = Segment(start, end)
|
| 200 |
+
waveform, sample_rate = Audio().crop(path, clip)
|
| 201 |
+
return embedding_model(waveform[None])
|
| 202 |
|
| 203 |
+
def add_speaker_labels(segments, embeddings, num_speakers):
|
| 204 |
+
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
| 205 |
+
labels = clustering.labels_
|
| 206 |
+
for i in range(len(segments)):
|
| 207 |
+
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
| 208 |
|
| 209 |
+
def time(secs):
|
| 210 |
+
return datetime.timedelta(seconds=round(secs))
|
| 211 |
|
| 212 |
+
duration = get_duration(audio)
|
| 213 |
+
if duration > 4 * 60 * 60:
|
| 214 |
+
return "Audio duration too long"
|
| 215 |
|
| 216 |
+
result = model.transcribe(audio)
|
| 217 |
|
| 218 |
+
segments = result["segments"]
|
| 219 |
|
| 220 |
+
num_speakers = min(max(round(num_speakers), 1), len(segments))
|
| 221 |
+
if len(segments) == 1:
|
| 222 |
+
segments[0]['speaker'] = 'SPEAKER 1'
|
| 223 |
+
else:
|
| 224 |
+
embeddings = make_embeddings(audio, segments, duration)
|
| 225 |
+
add_speaker_labels(segments, embeddings, num_speakers)
|
| 226 |
+
return get_output(segments)
|
| 227 |
+
# return output
|
| 228 |
|
| 229 |
def AudioTranscribe(NumberOfSpeakers=None, SpeakerNames="", audio="", retries=5):
|
| 230 |
+
if retries:
|
| 231 |
+
# subprocess.call(['ffmpeg', '-i', audio,'temp_audio.wav'])
|
| 232 |
+
try:
|
| 233 |
+
subprocess.call(['ffmpeg', '-i', audio,'temp_audio.wav'])
|
| 234 |
+
except Exception as ex:
|
| 235 |
+
traceback.print_exc()
|
| 236 |
+
return AudioTranscribe(NumberOfSpeakers, SpeakerNames, audio, retries-1)
|
| 237 |
+
if not (os.path.isfile("temp_audio.wav")):
|
| 238 |
+
return AudioTranscribe(NumberOfSpeakers, SpeakerNames, audio, retries-1)
|
| 239 |
+
return Transcribe_V2(NumberOfSpeakers, SpeakerNames)
|
| 240 |
+
else:
|
| 241 |
+
raise gr.Error("There is some issue ith Audio Transcriber. Please try again later!")
|
| 242 |
|
| 243 |
def VideoTranscribe(NumberOfSpeakers=None, SpeakerNames="", video="", retries=5):
|
| 244 |
+
if retries:
|
| 245 |
+
try:
|
| 246 |
+
clip = mp.VideoFileClip(video)
|
| 247 |
+
clip.audio.write_audiofile("temp_audio.wav")
|
| 248 |
+
# command = f"ffmpeg -i {video} -ab 160k -ac 2 -ar 44100 -vn temp_audio.wav"
|
| 249 |
+
# subprocess.call(command, shell=True)
|
| 250 |
+
except Exception as ex:
|
| 251 |
+
traceback.print_exc()
|
| 252 |
+
return VideoTranscribe(NumberOfSpeakers, SpeakerNames, video, retries-1)
|
| 253 |
+
if not (os.path.isfile("temp_audio.wav")):
|
| 254 |
+
return VideoTranscribe(NumberOfSpeakers, SpeakerNames, video, retries-1)
|
| 255 |
+
return Transcribe_V2(NumberOfSpeakers, SpeakerNames)
|
| 256 |
+
else:
|
| 257 |
+
raise gr.Error("There is some issue ith Video Transcriber. Please try again later!")
|
| 258 |
+
return Transcribe_V2(NumberOfSpeakers, SpeakerNames)
|
| 259 |
|
| 260 |
def YoutubeTranscribe(NumberOfSpeakers=None, SpeakerNames="", URL="", retries = 5):
|
| 261 |
+
if retries:
|
| 262 |
+
if "youtu" not in URL.lower():
|
| 263 |
+
raise gr.Error(f"{URL} is not a valid youtube URL.")
|
| 264 |
+
else:
|
| 265 |
+
RemoveFile("temp_audio.wav")
|
| 266 |
+
ydl_opts = {
|
| 267 |
+
'format': 'bestaudio/best',
|
| 268 |
+
'outtmpl': 'temp_audio.%(ext)s',
|
| 269 |
+
'postprocessors': [{
|
| 270 |
+
'key': 'FFmpegExtractAudio',
|
| 271 |
+
'preferredcodec': 'wav',
|
| 272 |
+
}],
|
| 273 |
+
}
|
| 274 |
+
try:
|
| 275 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
| 276 |
+
ydl.download([URL])
|
| 277 |
+
except:
|
| 278 |
+
return YoutubeTranscribe(NumberOfSpeakers, SpeakerNames, URL, retries-1)
|
| 279 |
+
stream = ffmpeg.input('temp_audio.m4a')
|
| 280 |
+
stream = ffmpeg.output(stream, 'temp_audio.wav')
|
| 281 |
+
RemoveFile("temp_audio.m4a")
|
| 282 |
+
return Transcribe_V2(NumberOfSpeakers, SpeakerNames)
|
| 283 |
+
else:
|
| 284 |
+
raise gr.Error(f"Unable to get video from {URL}")
|
| 285 |
|
| 286 |
ut = gr.Interface(
|
| 287 |
+
fn=YoutubeTranscribe,
|
| 288 |
+
inputs=[gr.Number(label="Number of Speakers", placeholder="2"), gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2"), gr.Textbox(label="Youtube Link", placeholder="https://www.youtube.com/watch?v=GECcjrYHH8w"),],
|
| 289 |
+
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
|
| 290 |
)
|
| 291 |
vt = gr.Interface(
|
| 292 |
+
fn=VideoTranscribe,
|
| 293 |
+
inputs=[gr.Number(label="Number of Speakers", placeholder="2"), gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2"), 'video'],
|
| 294 |
+
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
|
| 295 |
)
|
| 296 |
at = gr.Interface(
|
| 297 |
+
fn=AudioTranscribe,
|
| 298 |
+
inputs=[gr.Number(label="Number of Speakers", placeholder="2"), gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2"), 'audio'],
|
| 299 |
+
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
|
| 300 |
)
|
| 301 |
|
| 302 |
demo = gr.TabbedInterface([ut, vt, at], ["Youtube URL", "Video", "Audio"])
|