Spaces:
Paused
Paused
Update main.py
Browse files
main.py
CHANGED
|
@@ -3,80 +3,75 @@ from fastapi import FastAPI, File, UploadFile, Form
|
|
| 3 |
from fastapi.responses import StreamingResponse
|
| 4 |
import torch
|
| 5 |
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, DPMSolverSinglestepScheduler
|
| 6 |
-
from diffusers.pipelines import StableDiffusionInpaintPipeline
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
import numpy as np
|
| 9 |
import random
|
| 10 |
from PIL import Image
|
| 11 |
import io
|
| 12 |
-
import os
|
| 13 |
|
| 14 |
app = FastAPI()
|
| 15 |
|
| 16 |
MAX_SEED = np.iinfo(np.int32).max
|
| 17 |
-
|
| 18 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 19 |
|
| 20 |
# Load HF token from environment variable
|
| 21 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
)
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
)
|
| 70 |
-
|
| 71 |
-
pipe_xl_lightning.to(device)
|
| 72 |
-
|
| 73 |
|
| 74 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 75 |
if randomize_seed:
|
| 76 |
seed = random.randint(0, MAX_SEED)
|
| 77 |
return seed
|
| 78 |
|
| 79 |
-
|
| 80 |
@app.post("/generate")
|
| 81 |
async def generate(
|
| 82 |
model: str = Form(...),
|
|
@@ -101,73 +96,31 @@ async def generate(
|
|
| 101 |
inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
|
| 102 |
mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
height=height,
|
| 110 |
-
guidance_scale=guidance_scale,
|
| 111 |
-
num_inference_steps=25,
|
| 112 |
-
num_images_per_prompt=1,
|
| 113 |
-
output_type="pil",
|
| 114 |
-
).images
|
| 115 |
-
elif model == "Fluently Anime":
|
| 116 |
-
images = pipe_anime(
|
| 117 |
-
prompt=prompt,
|
| 118 |
-
negative_prompt=negative_prompt,
|
| 119 |
-
width=width,
|
| 120 |
-
height=height,
|
| 121 |
-
guidance_scale=guidance_scale,
|
| 122 |
-
num_inference_steps=30,
|
| 123 |
-
num_images_per_prompt=1,
|
| 124 |
-
output_type="pil",
|
| 125 |
-
).images
|
| 126 |
-
elif model == "Fluently Epic":
|
| 127 |
-
images = pipe_epic(
|
| 128 |
prompt=prompt,
|
|
|
|
|
|
|
| 129 |
negative_prompt=negative_prompt,
|
| 130 |
width=width,
|
| 131 |
height=height,
|
| 132 |
guidance_scale=guidance_scale,
|
| 133 |
num_inference_steps=30,
|
|
|
|
| 134 |
num_images_per_prompt=1,
|
| 135 |
output_type="pil",
|
| 136 |
).images
|
| 137 |
-
|
| 138 |
-
images =
|
| 139 |
-
prompt=prompt,
|
| 140 |
-
negative_prompt=negative_prompt,
|
| 141 |
-
width=width,
|
| 142 |
-
height=height,
|
| 143 |
-
guidance_scale=guidance_scale,
|
| 144 |
-
num_inference_steps=25,
|
| 145 |
-
num_images_per_prompt=1,
|
| 146 |
-
output_type="pil",
|
| 147 |
-
).images
|
| 148 |
-
elif model == "Fluently XL v3 Lightning":
|
| 149 |
-
images = pipe_xl_lightning(
|
| 150 |
-
prompt=prompt,
|
| 151 |
-
negative_prompt=negative_prompt,
|
| 152 |
-
width=width,
|
| 153 |
-
height=height,
|
| 154 |
-
guidance_scale=2,
|
| 155 |
-
num_inference_steps=5,
|
| 156 |
-
num_images_per_prompt=1,
|
| 157 |
-
output_type="pil",
|
| 158 |
-
).images
|
| 159 |
-
elif model == "Fluently v4 inpaint" or model == "Fluently XL v3 inpaint":
|
| 160 |
-
blurred_mask = pipe_inpaint.mask_processor.blur(mask_image_pil, blur_factor=blur_factor)
|
| 161 |
-
images = pipe_inpaint(
|
| 162 |
prompt=prompt,
|
| 163 |
-
image=inpaint_image_pil,
|
| 164 |
-
mask_image=blurred_mask,
|
| 165 |
negative_prompt=negative_prompt,
|
| 166 |
width=width,
|
| 167 |
height=height,
|
| 168 |
guidance_scale=guidance_scale,
|
| 169 |
-
num_inference_steps=30,
|
| 170 |
-
strength=strength,
|
| 171 |
num_images_per_prompt=1,
|
| 172 |
output_type="pil",
|
| 173 |
).images
|
|
@@ -179,7 +132,6 @@ async def generate(
|
|
| 179 |
|
| 180 |
return StreamingResponse(img_byte_arr, media_type="image/png")
|
| 181 |
|
| 182 |
-
|
| 183 |
if __name__ == "__main__":
|
| 184 |
import uvicorn
|
| 185 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 3 |
from fastapi.responses import StreamingResponse
|
| 4 |
import torch
|
| 5 |
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, DPMSolverSinglestepScheduler
|
| 6 |
+
from diffusers.pipelines import StableDiffusionInpaintPipeline
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
import numpy as np
|
| 9 |
import random
|
| 10 |
from PIL import Image
|
| 11 |
import io
|
|
|
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 16 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 17 |
|
| 18 |
# Load HF token from environment variable
|
| 19 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 20 |
|
| 21 |
+
# Function to load pipeline dynamically
|
| 22 |
+
def load_pipeline(model_name: str):
|
| 23 |
+
if model_name == "Fluently XL Final":
|
| 24 |
+
pipe = StableDiffusionXLPipeline.from_single_file(
|
| 25 |
+
hf_hub_download(repo_id="fluently/Fluently-XL-Final", filename="FluentlyXL-Final.safetensors", token=HF_TOKEN),
|
| 26 |
+
torch_dtype=torch.float16,
|
| 27 |
+
use_safetensors=True,
|
| 28 |
+
)
|
| 29 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 30 |
+
elif model_name == "Fluently Anime":
|
| 31 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 32 |
+
"fluently/Fluently-anime",
|
| 33 |
+
torch_dtype=torch.float16,
|
| 34 |
+
use_safetensors=True,
|
| 35 |
+
)
|
| 36 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 37 |
+
elif model_name == "Fluently Epic":
|
| 38 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 39 |
+
"fluently/Fluently-epic",
|
| 40 |
+
torch_dtype=torch.float16,
|
| 41 |
+
use_safetensors=True,
|
| 42 |
+
)
|
| 43 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 44 |
+
elif model_name == "Fluently XL v4":
|
| 45 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 46 |
+
"fluently/Fluently-XL-v4",
|
| 47 |
+
torch_dtype=torch.float16,
|
| 48 |
+
use_safetensors=True,
|
| 49 |
+
)
|
| 50 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 51 |
+
elif model_name == "Fluently XL v3 Lightning":
|
| 52 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 53 |
+
"fluently/Fluently-XL-v3-lightning",
|
| 54 |
+
torch_dtype=torch.float16,
|
| 55 |
+
use_safetensors=True,
|
| 56 |
+
)
|
| 57 |
+
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=False, timestep_spacing="trailing", lower_order_final=True)
|
| 58 |
+
elif model_name == "Fluently v4 inpaint":
|
| 59 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 60 |
+
"fluently/Fluently-v4-inpainting",
|
| 61 |
+
torch_dtype=torch.float16,
|
| 62 |
+
use_safetensors=True,
|
| 63 |
+
)
|
| 64 |
+
else:
|
| 65 |
+
raise ValueError(f"Unknown model: {model_name}")
|
| 66 |
+
|
| 67 |
+
pipe.to(device)
|
| 68 |
+
return pipe
|
|
|
|
|
|
|
| 69 |
|
| 70 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 71 |
if randomize_seed:
|
| 72 |
seed = random.randint(0, MAX_SEED)
|
| 73 |
return seed
|
| 74 |
|
|
|
|
| 75 |
@app.post("/generate")
|
| 76 |
async def generate(
|
| 77 |
model: str = Form(...),
|
|
|
|
| 96 |
inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
|
| 97 |
mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None
|
| 98 |
|
| 99 |
+
pipe = load_pipeline(model)
|
| 100 |
+
|
| 101 |
+
if model in ["Fluently v4 inpaint"]:
|
| 102 |
+
blurred_mask = pipe.mask_processor.blur(mask_image_pil, blur_factor=blur_factor)
|
| 103 |
+
images = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
prompt=prompt,
|
| 105 |
+
image=inpaint_image_pil,
|
| 106 |
+
mask_image=blurred_mask,
|
| 107 |
negative_prompt=negative_prompt,
|
| 108 |
width=width,
|
| 109 |
height=height,
|
| 110 |
guidance_scale=guidance_scale,
|
| 111 |
num_inference_steps=30,
|
| 112 |
+
strength=strength,
|
| 113 |
num_images_per_prompt=1,
|
| 114 |
output_type="pil",
|
| 115 |
).images
|
| 116 |
+
else:
|
| 117 |
+
images = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
prompt=prompt,
|
|
|
|
|
|
|
| 119 |
negative_prompt=negative_prompt,
|
| 120 |
width=width,
|
| 121 |
height=height,
|
| 122 |
guidance_scale=guidance_scale,
|
| 123 |
+
num_inference_steps=25 if model == "Fluently XL Final" else 30,
|
|
|
|
| 124 |
num_images_per_prompt=1,
|
| 125 |
output_type="pil",
|
| 126 |
).images
|
|
|
|
| 132 |
|
| 133 |
return StreamingResponse(img_byte_arr, media_type="image/png")
|
| 134 |
|
|
|
|
| 135 |
if __name__ == "__main__":
|
| 136 |
import uvicorn
|
| 137 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|