Spaces:
Paused
Paused
Update main.py
Browse files
main.py
CHANGED
|
@@ -9,6 +9,7 @@ import numpy as np
|
|
| 9 |
import random
|
| 10 |
from PIL import Image
|
| 11 |
import io
|
|
|
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
|
|
@@ -16,91 +17,71 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
| 16 |
|
| 17 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
"
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
use_safetensors=True,
|
| 78 |
-
)
|
| 79 |
-
model.scheduler = DPMSolverSinglestepScheduler.from_config(model.scheduler.config, use_karras_sigmas=False, timestep_spacing="trailing", lower_order_final=True)
|
| 80 |
-
elif model_name in ["Fluently v4 inpaint", "Fluently XL v3 inpaint"]:
|
| 81 |
-
if model_name == "Fluently v4 inpaint":
|
| 82 |
-
model = StableDiffusionInpaintPipeline.from_pretrained(
|
| 83 |
-
paths[model_name],
|
| 84 |
-
torch_dtype=torch.float16,
|
| 85 |
-
use_safetensors=True,
|
| 86 |
-
)
|
| 87 |
-
else:
|
| 88 |
-
model = StableDiffusionXLInpaintPipeline.from_single_file(
|
| 89 |
-
paths[model_name],
|
| 90 |
-
torch_dtype=torch.float16,
|
| 91 |
-
use_safetensors=True,
|
| 92 |
-
)
|
| 93 |
-
else:
|
| 94 |
-
raise ValueError(f"Model {model_name} not found")
|
| 95 |
-
|
| 96 |
-
model.to(device)
|
| 97 |
-
return model
|
| 98 |
|
| 99 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 100 |
if randomize_seed:
|
| 101 |
seed = random.randint(0, MAX_SEED)
|
| 102 |
return seed
|
| 103 |
|
|
|
|
| 104 |
@app.post("/generate")
|
| 105 |
async def generate(
|
| 106 |
model: str = Form(...),
|
|
@@ -125,10 +106,8 @@ async def generate(
|
|
| 125 |
inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
|
| 126 |
mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None
|
| 127 |
|
| 128 |
-
model_pipeline = load_model(model)
|
| 129 |
-
|
| 130 |
if model == "Fluently XL Final":
|
| 131 |
-
images =
|
| 132 |
prompt=prompt,
|
| 133 |
negative_prompt=negative_prompt,
|
| 134 |
width=width,
|
|
@@ -139,7 +118,7 @@ async def generate(
|
|
| 139 |
output_type="pil",
|
| 140 |
).images
|
| 141 |
elif model == "Fluently Anime":
|
| 142 |
-
images =
|
| 143 |
prompt=prompt,
|
| 144 |
negative_prompt=negative_prompt,
|
| 145 |
width=width,
|
|
@@ -150,7 +129,7 @@ async def generate(
|
|
| 150 |
output_type="pil",
|
| 151 |
).images
|
| 152 |
elif model == "Fluently Epic":
|
| 153 |
-
images =
|
| 154 |
prompt=prompt,
|
| 155 |
negative_prompt=negative_prompt,
|
| 156 |
width=width,
|
|
@@ -161,7 +140,7 @@ async def generate(
|
|
| 161 |
output_type="pil",
|
| 162 |
).images
|
| 163 |
elif model == "Fluently XL v4":
|
| 164 |
-
images =
|
| 165 |
prompt=prompt,
|
| 166 |
negative_prompt=negative_prompt,
|
| 167 |
width=width,
|
|
@@ -172,7 +151,7 @@ async def generate(
|
|
| 172 |
output_type="pil",
|
| 173 |
).images
|
| 174 |
elif model == "Fluently XL v3 Lightning":
|
| 175 |
-
images =
|
| 176 |
prompt=prompt,
|
| 177 |
negative_prompt=negative_prompt,
|
| 178 |
width=width,
|
|
@@ -183,8 +162,8 @@ async def generate(
|
|
| 183 |
output_type="pil",
|
| 184 |
).images
|
| 185 |
elif model == "Fluently v4 inpaint" or model == "Fluently XL v3 inpaint":
|
| 186 |
-
blurred_mask =
|
| 187 |
-
images =
|
| 188 |
prompt=prompt,
|
| 189 |
image=inpaint_image_pil,
|
| 190 |
mask_image=blurred_mask,
|
|
@@ -198,10 +177,6 @@ async def generate(
|
|
| 198 |
output_type="pil",
|
| 199 |
).images
|
| 200 |
|
| 201 |
-
# Unload the model from the device
|
| 202 |
-
model_pipeline.to("cpu")
|
| 203 |
-
torch.cuda.empty_cache()
|
| 204 |
-
|
| 205 |
img = images[0]
|
| 206 |
img_byte_arr = io.BytesIO()
|
| 207 |
img.save(img_byte_arr, format='PNG')
|
|
|
|
| 9 |
import random
|
| 10 |
from PIL import Image
|
| 11 |
import io
|
| 12 |
+
import os
|
| 13 |
|
| 14 |
app = FastAPI()
|
| 15 |
|
|
|
|
| 17 |
|
| 18 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 19 |
|
| 20 |
+
# Load HF token from environment variable
|
| 21 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 22 |
+
|
| 23 |
+
# Load pipelines
|
| 24 |
+
pipe_xl_final = StableDiffusionXLPipeline.from_single_file(
|
| 25 |
+
hf_hub_download(repo_id="fluently/Fluently-XL-Final", filename="FluentlyXL-Final.safetensors", token=HF_TOKEN),
|
| 26 |
+
torch_dtype=torch.float16,
|
| 27 |
+
use_safetensors=True,
|
| 28 |
+
)
|
| 29 |
+
pipe_xl_final.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_xl_final.scheduler.config)
|
| 30 |
+
pipe_xl_final.to(device)
|
| 31 |
+
|
| 32 |
+
pipe_anime = StableDiffusionPipeline.from_pretrained(
|
| 33 |
+
"fluently/Fluently-anime",
|
| 34 |
+
torch_dtype=torch.float16,
|
| 35 |
+
use_safetensors=True,
|
| 36 |
+
)
|
| 37 |
+
pipe_anime.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_anime.scheduler.config)
|
| 38 |
+
pipe_anime.to(device)
|
| 39 |
+
|
| 40 |
+
pipe_epic = StableDiffusionPipeline.from_pretrained(
|
| 41 |
+
"fluently/Fluently-epic",
|
| 42 |
+
torch_dtype=torch.float16,
|
| 43 |
+
use_safetensors=True,
|
| 44 |
+
)
|
| 45 |
+
pipe_epic.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_epic.scheduler.config)
|
| 46 |
+
pipe_epic.to(device)
|
| 47 |
+
|
| 48 |
+
pipe_xl_inpaint = StableDiffusionXLInpaintPipeline.from_single_file(
|
| 49 |
+
"https://huggingface.co/fluently/Fluently-XL-v3-inpainting/blob/main/FluentlyXL-v3-inpainting.safetensors",
|
| 50 |
+
torch_dtype=torch.float16,
|
| 51 |
+
use_safetensors=True,
|
| 52 |
+
)
|
| 53 |
+
pipe_xl_inpaint.to(device)
|
| 54 |
+
|
| 55 |
+
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
| 56 |
+
"fluently/Fluently-v4-inpainting",
|
| 57 |
+
torch_dtype=torch.float16,
|
| 58 |
+
use_safetensors=True,
|
| 59 |
+
)
|
| 60 |
+
pipe_inpaint.to(device)
|
| 61 |
+
|
| 62 |
+
pipe_xl = StableDiffusionXLPipeline.from_pretrained(
|
| 63 |
+
"fluently/Fluently-XL-v4",
|
| 64 |
+
torch_dtype=torch.float16,
|
| 65 |
+
use_safetensors=True,
|
| 66 |
+
)
|
| 67 |
+
pipe_xl.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_xl.scheduler.config)
|
| 68 |
+
pipe_xl.to(device)
|
| 69 |
+
|
| 70 |
+
pipe_xl_lightning = StableDiffusionXLPipeline.from_pretrained(
|
| 71 |
+
"fluently/Fluently-XL-v3-lightning",
|
| 72 |
+
torch_dtype=torch.float16,
|
| 73 |
+
use_safetensors=True,
|
| 74 |
+
)
|
| 75 |
+
pipe_xl_lightning.scheduler = DPMSolverSinglestepScheduler.from_config(pipe_xl_lightning.scheduler.config, use_karras_sigmas=False, timestep_spacing="trailing", lower_order_final=True)
|
| 76 |
+
pipe_xl_lightning.to(device)
|
| 77 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 80 |
if randomize_seed:
|
| 81 |
seed = random.randint(0, MAX_SEED)
|
| 82 |
return seed
|
| 83 |
|
| 84 |
+
|
| 85 |
@app.post("/generate")
|
| 86 |
async def generate(
|
| 87 |
model: str = Form(...),
|
|
|
|
| 106 |
inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
|
| 107 |
mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None
|
| 108 |
|
|
|
|
|
|
|
| 109 |
if model == "Fluently XL Final":
|
| 110 |
+
images = pipe_xl_final(
|
| 111 |
prompt=prompt,
|
| 112 |
negative_prompt=negative_prompt,
|
| 113 |
width=width,
|
|
|
|
| 118 |
output_type="pil",
|
| 119 |
).images
|
| 120 |
elif model == "Fluently Anime":
|
| 121 |
+
images = pipe_anime(
|
| 122 |
prompt=prompt,
|
| 123 |
negative_prompt=negative_prompt,
|
| 124 |
width=width,
|
|
|
|
| 129 |
output_type="pil",
|
| 130 |
).images
|
| 131 |
elif model == "Fluently Epic":
|
| 132 |
+
images = pipe_epic(
|
| 133 |
prompt=prompt,
|
| 134 |
negative_prompt=negative_prompt,
|
| 135 |
width=width,
|
|
|
|
| 140 |
output_type="pil",
|
| 141 |
).images
|
| 142 |
elif model == "Fluently XL v4":
|
| 143 |
+
images = pipe_xl(
|
| 144 |
prompt=prompt,
|
| 145 |
negative_prompt=negative_prompt,
|
| 146 |
width=width,
|
|
|
|
| 151 |
output_type="pil",
|
| 152 |
).images
|
| 153 |
elif model == "Fluently XL v3 Lightning":
|
| 154 |
+
images = pipe_xl_lightning(
|
| 155 |
prompt=prompt,
|
| 156 |
negative_prompt=negative_prompt,
|
| 157 |
width=width,
|
|
|
|
| 162 |
output_type="pil",
|
| 163 |
).images
|
| 164 |
elif model == "Fluently v4 inpaint" or model == "Fluently XL v3 inpaint":
|
| 165 |
+
blurred_mask = pipe_inpaint.mask_processor.blur(mask_image_pil, blur_factor=blur_factor)
|
| 166 |
+
images = pipe_inpaint(
|
| 167 |
prompt=prompt,
|
| 168 |
image=inpaint_image_pil,
|
| 169 |
mask_image=blurred_mask,
|
|
|
|
| 177 |
output_type="pil",
|
| 178 |
).images
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
img = images[0]
|
| 181 |
img_byte_arr = io.BytesIO()
|
| 182 |
img.save(img_byte_arr, format='PNG')
|