Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -52,11 +52,23 @@ with st.expander("How to format your CSV", expanded=False):
|
|
| 52 |
# ------------------------------
|
| 53 |
# Demo data download
|
| 54 |
# ------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
@st.cache_data(show_spinner=False)
|
| 56 |
def load_demo_csv_as_bytes() -> bytes:
|
| 57 |
demo_df = pd.read_csv("data/demo_reaction_data.csv")
|
| 58 |
return demo_df.to_csv(index=False).encode("utf-8")
|
| 59 |
|
|
|
|
| 60 |
st.download_button(
|
| 61 |
label="Download demo_reaction_data.csv",
|
| 62 |
data=load_demo_csv_as_bytes(),
|
|
@@ -81,13 +93,19 @@ with st.sidebar:
|
|
| 81 |
|
| 82 |
num_beams = st.slider(
|
| 83 |
"Beam size",
|
| 84 |
-
min_value=1,
|
|
|
|
|
|
|
|
|
|
| 85 |
help="Number of beams for beam search.",
|
| 86 |
)
|
| 87 |
|
| 88 |
seed = st.number_input(
|
| 89 |
"Random seed",
|
| 90 |
-
min_value=0,
|
|
|
|
|
|
|
|
|
|
| 91 |
help="Seed for reproducibility.",
|
| 92 |
)
|
| 93 |
|
|
@@ -99,20 +117,29 @@ with st.sidebar:
|
|
| 99 |
"Output max length", min_value=8, max_value=1024, value=300, step=8
|
| 100 |
)
|
| 101 |
output_min_length = st.number_input(
|
| 102 |
-
"Output min length",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
help="Use -1 to let the model decide.",
|
| 104 |
)
|
| 105 |
batch_size = st.number_input(
|
| 106 |
"Batch size", min_value=1, max_value=16, value=1, step=1
|
| 107 |
)
|
| 108 |
num_workers = st.number_input(
|
| 109 |
-
"DataLoader workers",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
help="Set to 0 if multiprocessing is restricted in your environment.",
|
| 111 |
)
|
| 112 |
|
| 113 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 114 |
st.caption(f"Detected device: **{device.type.upper()}**")
|
| 115 |
|
|
|
|
| 116 |
# ------------------------------
|
| 117 |
# Cached loaders
|
| 118 |
# ------------------------------
|
|
@@ -121,6 +148,7 @@ def load_tokenizer(model_ref: str):
|
|
| 121 |
resolved = os.path.abspath(model_ref) if os.path.exists(model_ref) else model_ref
|
| 122 |
return AutoTokenizer.from_pretrained(resolved, return_tensors="pt")
|
| 123 |
|
|
|
|
| 124 |
@st.cache_resource(show_spinner=True)
|
| 125 |
def load_model(model_ref: str, device_str: str):
|
| 126 |
resolved = os.path.abspath(model_ref) if os.path.exists(model_ref) else model_ref
|
|
@@ -129,10 +157,12 @@ def load_model(model_ref: str, device_str: str):
|
|
| 129 |
model.eval()
|
| 130 |
return model
|
| 131 |
|
|
|
|
| 132 |
@st.cache_data(show_spinner=False)
|
| 133 |
def df_to_csv_bytes(df: pd.DataFrame) -> bytes:
|
| 134 |
return df.to_csv(index=False).encode("utf-8")
|
| 135 |
|
|
|
|
| 136 |
# ------------------------------
|
| 137 |
# Main interaction
|
| 138 |
# ------------------------------
|
|
@@ -150,7 +180,9 @@ with left:
|
|
| 150 |
|
| 151 |
if uploaded is not None:
|
| 152 |
try:
|
| 153 |
-
|
|
|
|
|
|
|
| 154 |
st.subheader("Input preview")
|
| 155 |
st.dataframe(raw_df.head(20), use_container_width=True)
|
| 156 |
except Exception as e:
|
|
@@ -172,11 +204,11 @@ with right:
|
|
| 172 |
# ------------------------------
|
| 173 |
# Inference
|
| 174 |
# ------------------------------
|
| 175 |
-
if
|
| 176 |
-
st.session_state[
|
| 177 |
|
| 178 |
-
if
|
| 179 |
-
st.session_state[
|
| 180 |
|
| 181 |
if run:
|
| 182 |
if uploaded is None:
|
|
@@ -205,14 +237,15 @@ if run:
|
|
| 205 |
model = load_model(CFG.model_name_or_path, device.type)
|
| 206 |
status.update(label="Model ready.", state="complete")
|
| 207 |
except Exception as e:
|
| 208 |
-
st.session_state[
|
| 209 |
status.update(label="Model load failed.", state="error")
|
| 210 |
st.stop()
|
| 211 |
|
| 212 |
# Prepare data
|
| 213 |
-
|
|
|
|
|
|
|
| 214 |
input_df = preprocess_df(input_df, drop_duplicates=False)
|
| 215 |
-
|
| 216 |
|
| 217 |
# Dataset & loader
|
| 218 |
dataset = ReactionT5Dataset(CFG, input_df)
|
|
@@ -261,28 +294,30 @@ if run:
|
|
| 261 |
|
| 262 |
# Save predictions
|
| 263 |
try:
|
| 264 |
-
output_df = save_multiple_predictions(
|
| 265 |
-
|
|
|
|
|
|
|
| 266 |
st.success("Prediction complete.")
|
| 267 |
except Exception as e:
|
| 268 |
-
st.session_state[
|
| 269 |
-
st.error(st.session_state[
|
| 270 |
st.stop()
|
| 271 |
|
| 272 |
# ------------------------------
|
| 273 |
# Results
|
| 274 |
# ------------------------------
|
| 275 |
-
if st.session_state.get(
|
| 276 |
st.subheader("Results preview")
|
| 277 |
-
st.dataframe(st.session_state[
|
| 278 |
|
| 279 |
st.download_button(
|
| 280 |
label="Download predictions as CSV",
|
| 281 |
-
data=df_to_csv_bytes(st.session_state[
|
| 282 |
file_name="output.csv",
|
| 283 |
mime="text/csv",
|
| 284 |
use_container_width=True,
|
| 285 |
)
|
| 286 |
|
| 287 |
-
if st.session_state.get(
|
| 288 |
-
st.error(st.session_state[
|
|
|
|
| 52 |
# ------------------------------
|
| 53 |
# Demo data download
|
| 54 |
# ------------------------------
|
| 55 |
+
import io
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@st.cache_data(show_spinner=False)
|
| 59 |
+
def parse_csv_from_bytes(file_bytes: bytes) -> pd.DataFrame:
|
| 60 |
+
# If your files are always UTF-8, this is fine:
|
| 61 |
+
return pd.read_csv(io.BytesIO(file_bytes))
|
| 62 |
+
# If you prefer explicit text decoding:
|
| 63 |
+
# return pd.read_csv(io.StringIO(file_bytes.decode("utf-8")))
|
| 64 |
+
|
| 65 |
+
|
| 66 |
@st.cache_data(show_spinner=False)
|
| 67 |
def load_demo_csv_as_bytes() -> bytes:
|
| 68 |
demo_df = pd.read_csv("data/demo_reaction_data.csv")
|
| 69 |
return demo_df.to_csv(index=False).encode("utf-8")
|
| 70 |
|
| 71 |
+
|
| 72 |
st.download_button(
|
| 73 |
label="Download demo_reaction_data.csv",
|
| 74 |
data=load_demo_csv_as_bytes(),
|
|
|
|
| 93 |
|
| 94 |
num_beams = st.slider(
|
| 95 |
"Beam size",
|
| 96 |
+
min_value=1,
|
| 97 |
+
max_value=10,
|
| 98 |
+
value=5,
|
| 99 |
+
step=1,
|
| 100 |
help="Number of beams for beam search.",
|
| 101 |
)
|
| 102 |
|
| 103 |
seed = st.number_input(
|
| 104 |
"Random seed",
|
| 105 |
+
min_value=0,
|
| 106 |
+
max_value=2**32 - 1,
|
| 107 |
+
value=42,
|
| 108 |
+
step=1,
|
| 109 |
help="Seed for reproducibility.",
|
| 110 |
)
|
| 111 |
|
|
|
|
| 117 |
"Output max length", min_value=8, max_value=1024, value=300, step=8
|
| 118 |
)
|
| 119 |
output_min_length = st.number_input(
|
| 120 |
+
"Output min length",
|
| 121 |
+
min_value=-1,
|
| 122 |
+
max_value=1024,
|
| 123 |
+
value=-1,
|
| 124 |
+
step=1,
|
| 125 |
help="Use -1 to let the model decide.",
|
| 126 |
)
|
| 127 |
batch_size = st.number_input(
|
| 128 |
"Batch size", min_value=1, max_value=16, value=1, step=1
|
| 129 |
)
|
| 130 |
num_workers = st.number_input(
|
| 131 |
+
"DataLoader workers",
|
| 132 |
+
min_value=0,
|
| 133 |
+
max_value=8,
|
| 134 |
+
value=4,
|
| 135 |
+
step=1,
|
| 136 |
help="Set to 0 if multiprocessing is restricted in your environment.",
|
| 137 |
)
|
| 138 |
|
| 139 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 140 |
st.caption(f"Detected device: **{device.type.upper()}**")
|
| 141 |
|
| 142 |
+
|
| 143 |
# ------------------------------
|
| 144 |
# Cached loaders
|
| 145 |
# ------------------------------
|
|
|
|
| 148 |
resolved = os.path.abspath(model_ref) if os.path.exists(model_ref) else model_ref
|
| 149 |
return AutoTokenizer.from_pretrained(resolved, return_tensors="pt")
|
| 150 |
|
| 151 |
+
|
| 152 |
@st.cache_resource(show_spinner=True)
|
| 153 |
def load_model(model_ref: str, device_str: str):
|
| 154 |
resolved = os.path.abspath(model_ref) if os.path.exists(model_ref) else model_ref
|
|
|
|
| 157 |
model.eval()
|
| 158 |
return model
|
| 159 |
|
| 160 |
+
|
| 161 |
@st.cache_data(show_spinner=False)
|
| 162 |
def df_to_csv_bytes(df: pd.DataFrame) -> bytes:
|
| 163 |
return df.to_csv(index=False).encode("utf-8")
|
| 164 |
|
| 165 |
+
|
| 166 |
# ------------------------------
|
| 167 |
# Main interaction
|
| 168 |
# ------------------------------
|
|
|
|
| 180 |
|
| 181 |
if uploaded is not None:
|
| 182 |
try:
|
| 183 |
+
file_bytes = uploaded.getvalue()
|
| 184 |
+
raw_df = parse_csv_from_bytes(file_bytes)
|
| 185 |
+
# raw_df = pd.read_csv(uploaded)
|
| 186 |
st.subheader("Input preview")
|
| 187 |
st.dataframe(raw_df.head(20), use_container_width=True)
|
| 188 |
except Exception as e:
|
|
|
|
| 204 |
# ------------------------------
|
| 205 |
# Inference
|
| 206 |
# ------------------------------
|
| 207 |
+
if "results_df" not in st.session_state:
|
| 208 |
+
st.session_state["results_df"] = None
|
| 209 |
|
| 210 |
+
if "last_error" not in st.session_state:
|
| 211 |
+
st.session_state["last_error"] = None
|
| 212 |
|
| 213 |
if run:
|
| 214 |
if uploaded is None:
|
|
|
|
| 237 |
model = load_model(CFG.model_name_or_path, device.type)
|
| 238 |
status.update(label="Model ready.", state="complete")
|
| 239 |
except Exception as e:
|
| 240 |
+
st.session_state["last_error"] = f"Failed to load model: {e}"
|
| 241 |
status.update(label="Model load failed.", state="error")
|
| 242 |
st.stop()
|
| 243 |
|
| 244 |
# Prepare data
|
| 245 |
+
file_bytes = uploaded.getvalue()
|
| 246 |
+
input_df = parse_csv_from_bytes(file_bytes)
|
| 247 |
+
# input_df = pd.read_csv(uploaded)
|
| 248 |
input_df = preprocess_df(input_df, drop_duplicates=False)
|
|
|
|
| 249 |
|
| 250 |
# Dataset & loader
|
| 251 |
dataset = ReactionT5Dataset(CFG, input_df)
|
|
|
|
| 294 |
|
| 295 |
# Save predictions
|
| 296 |
try:
|
| 297 |
+
output_df = save_multiple_predictions(
|
| 298 |
+
input_df, all_sequences, all_scores, CFG
|
| 299 |
+
)
|
| 300 |
+
st.session_state["results_df"] = output_df
|
| 301 |
st.success("Prediction complete.")
|
| 302 |
except Exception as e:
|
| 303 |
+
st.session_state["last_error"] = f"Failed to assemble output: {e}"
|
| 304 |
+
st.error(st.session_state["last_error"])
|
| 305 |
st.stop()
|
| 306 |
|
| 307 |
# ------------------------------
|
| 308 |
# Results
|
| 309 |
# ------------------------------
|
| 310 |
+
if st.session_state.get("results_df") is not None:
|
| 311 |
st.subheader("Results preview")
|
| 312 |
+
st.dataframe(st.session_state["results_df"].head(50), use_container_width=True)
|
| 313 |
|
| 314 |
st.download_button(
|
| 315 |
label="Download predictions as CSV",
|
| 316 |
+
data=df_to_csv_bytes(st.session_state["results_df"]),
|
| 317 |
file_name="output.csv",
|
| 318 |
mime="text/csv",
|
| 319 |
use_container_width=True,
|
| 320 |
)
|
| 321 |
|
| 322 |
+
if st.session_state.get("last_error"):
|
| 323 |
+
st.error(st.session_state["last_error"])
|