Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,22 @@
|
|
| 1 |
import os
|
| 2 |
-
import gc
|
| 3 |
import random
|
| 4 |
-
import warnings
|
| 5 |
-
warnings.filterwarnings('ignore')
|
| 6 |
import numpy as np
|
|
|
|
| 7 |
import pandas as pd
|
| 8 |
import torch
|
| 9 |
-
import
|
| 10 |
-
import
|
| 11 |
-
|
| 12 |
-
import sentencepiece
|
| 13 |
-
from rdkit import Chem
|
| 14 |
-
import rdkit
|
| 15 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
st.title('
|
| 18 |
st.markdown('##### At this space, you can predict the products of reactions from their inputs.')
|
| 19 |
st.markdown('##### The code expects input_data as a string or CSV file that contains an "input" column. The format of the string or contents of the column are like "REACTANT:{reactants of the reaction}REAGENT:{reagents, catalysts, or solvents of the reaction}".')
|
| 20 |
st.markdown('##### If there is no reagent, fill the blank with a space. And if there are multiple compounds, concatenate them with "."')
|
| 21 |
-
st.markdown('##### The output contains smiles of predicted products and sum of log-likelihood for each prediction. Predictions are ordered by their log-likelihood.(0th is the most probable product.)
|
| 22 |
|
| 23 |
|
| 24 |
display_text = 'input the reaction smiles (e.g. REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1)'
|
|
@@ -35,120 +33,150 @@ class CFG():
|
|
| 35 |
num_return_sequences = num_beams
|
| 36 |
uploaded_file = st.file_uploader("Choose a CSV file")
|
| 37 |
input_data = st.text_area(display_text)
|
| 38 |
-
model_name_or_path = 'sagawa/
|
|
|
|
|
|
|
| 39 |
model = 't5'
|
| 40 |
seed = 42
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
if st.button('predict'):
|
| 43 |
with st.spinner('Now processing. If num beams=5, this process takes about 15 seconds per reaction.'):
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def seed_everything(seed=42):
|
| 48 |
-
random.seed(seed)
|
| 49 |
-
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 50 |
-
np.random.seed(seed)
|
| 51 |
-
torch.manual_seed(seed)
|
| 52 |
-
torch.cuda.manual_seed(seed)
|
| 53 |
-
torch.backends.cudnn.deterministic = True
|
| 54 |
-
seed_everything(seed=CFG.seed)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
|
| 58 |
-
|
| 59 |
-
if CFG.model == 't5':
|
| 60 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
|
| 61 |
-
elif CFG.model == 'deberta':
|
| 62 |
-
model = EncoderDecoderModel.from_pretrained(CFG.model_name_or_path).to(device)
|
| 63 |
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
if CFG.uploaded_file is
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
scores.append(scores[ith])
|
| 81 |
-
break
|
| 82 |
-
if type(mol) == None:
|
| 83 |
-
output.append(None)
|
| 84 |
-
scores.append(None)
|
| 85 |
-
output += scores
|
| 86 |
-
output = [input_compound] + output
|
| 87 |
-
outputs.append(output)
|
| 88 |
-
|
| 89 |
-
else:
|
| 90 |
-
output = [tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace('. ', '.').rstrip('.')]
|
| 91 |
-
mol = Chem.MolFromSmiles(output[0])
|
| 92 |
-
if type(mol) == rdkit.Chem.rdchem.Mol:
|
| 93 |
-
output.append(output[0])
|
| 94 |
-
else:
|
| 95 |
-
output.append(None)
|
| 96 |
-
output = [input_compound] + output
|
| 97 |
-
outputs.append(output)
|
| 98 |
-
|
| 99 |
-
if CFG.num_beams > 1:
|
| 100 |
-
output_df = pd.DataFrame(outputs, columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
|
| 101 |
-
else:
|
| 102 |
-
output_df = pd.DataFrame(outputs, columns=['input', '0th', 'valid compound'])
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
@st.cache
|
| 106 |
-
def convert_df(df):
|
| 107 |
-
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
| 108 |
-
return df.to_csv(index=False)
|
| 109 |
-
|
| 110 |
-
csv = convert_df(output_df)
|
| 111 |
-
|
| 112 |
-
st.download_button(
|
| 113 |
-
label="Download data as CSV",
|
| 114 |
-
data=csv,
|
| 115 |
-
file_name='output.csv',
|
| 116 |
-
mime='text/csv',
|
| 117 |
)
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
output
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
mol = Chem.MolFromSmiles(output[0])
|
| 142 |
-
if type(mol) == rdkit.Chem.rdchem.Mol:
|
| 143 |
-
output.append(output[0])
|
| 144 |
-
else:
|
| 145 |
-
output.append(None)
|
| 146 |
-
|
| 147 |
|
| 148 |
-
if CFG.num_beams > 1:
|
| 149 |
-
output_df = pd.DataFrame(np.array(output).reshape(1, -1), columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
|
| 150 |
-
else:
|
| 151 |
-
output_df = pd.DataFrame(np.array([input_compound]+output).reshape(1, -1), columns=['input', '0th', 'valid compound'])
|
| 152 |
st.table(output_df)
|
| 153 |
|
| 154 |
@st.cache
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import random
|
|
|
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
+
import warnings
|
| 5 |
import pandas as pd
|
| 6 |
import torch
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 8 |
+
from torch.utils.data import Dataset, DataLoader
|
| 9 |
+
import gc
|
|
|
|
|
|
|
|
|
|
| 10 |
import streamlit as st
|
| 11 |
+
|
| 12 |
+
warnings.filterwarnings("ignore")
|
| 13 |
+
|
| 14 |
|
| 15 |
+
st.title('ReactionT5_task_forward')
|
| 16 |
st.markdown('##### At this space, you can predict the products of reactions from their inputs.')
|
| 17 |
st.markdown('##### The code expects input_data as a string or CSV file that contains an "input" column. The format of the string or contents of the column are like "REACTANT:{reactants of the reaction}REAGENT:{reagents, catalysts, or solvents of the reaction}".')
|
| 18 |
st.markdown('##### If there is no reagent, fill the blank with a space. And if there are multiple compounds, concatenate them with "."')
|
| 19 |
+
st.markdown('##### The output contains smiles of predicted products and sum of log-likelihood for each prediction. Predictions are ordered by their log-likelihood.(0th is the most probable product.)')
|
| 20 |
|
| 21 |
|
| 22 |
display_text = 'input the reaction smiles (e.g. REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1)'
|
|
|
|
| 33 |
num_return_sequences = num_beams
|
| 34 |
uploaded_file = st.file_uploader("Choose a CSV file")
|
| 35 |
input_data = st.text_area(display_text)
|
| 36 |
+
model_name_or_path = 'sagawa/ReactionT5-forward-v2'
|
| 37 |
+
input_column = 'input'
|
| 38 |
+
input_max_length = 400
|
| 39 |
model = 't5'
|
| 40 |
seed = 42
|
| 41 |
|
| 42 |
+
def seed_everything(seed=42):
|
| 43 |
+
random.seed(seed)
|
| 44 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 45 |
+
np.random.seed(seed)
|
| 46 |
+
torch.manual_seed(seed)
|
| 47 |
+
torch.cuda.manual_seed(seed)
|
| 48 |
+
torch.backends.cudnn.deterministic = True
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def prepare_input(cfg, text):
|
| 53 |
+
inputs = tokenizer(
|
| 54 |
+
text,
|
| 55 |
+
return_tensors="pt",
|
| 56 |
+
max_length=cfg.input_max_length,
|
| 57 |
+
padding="max_length",
|
| 58 |
+
truncation=True,
|
| 59 |
+
)
|
| 60 |
+
dic = {"input_ids": [], "attention_mask": []}
|
| 61 |
+
for k, v in inputs.items():
|
| 62 |
+
dic[k].append(torch.tensor(v[0], dtype=torch.long))
|
| 63 |
+
return dic
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class ProductDataset(Dataset):
|
| 67 |
+
def __init__(self, cfg, df):
|
| 68 |
+
self.cfg = cfg
|
| 69 |
+
self.inputs = df[cfg.input_column].values
|
| 70 |
+
|
| 71 |
+
def __len__(self):
|
| 72 |
+
return len(self.inputs)
|
| 73 |
+
|
| 74 |
+
def __getitem__(self, idx):
|
| 75 |
+
return prepare_input(self.cfg, self.inputs[idx])
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def predict_single_input(input_compound):
|
| 79 |
+
inp = tokenizer(input_compound, return_tensors="pt").to(device)
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
output = model.generate(
|
| 82 |
+
**inp,
|
| 83 |
+
num_beams=CFG.num_beams,
|
| 84 |
+
num_return_sequences=CFG.num_return_sequences,
|
| 85 |
+
return_dict_in_generate=True,
|
| 86 |
+
output_scores=True,
|
| 87 |
+
)
|
| 88 |
+
return output
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def decode_output(output):
|
| 92 |
+
sequences = [
|
| 93 |
+
tokenizer.decode(seq, skip_special_tokens=True).replace(" ", "").rstrip(".")
|
| 94 |
+
for seq in output["sequences"]
|
| 95 |
+
]
|
| 96 |
+
if CFG.num_beams > 1:
|
| 97 |
+
scores = output["sequences_scores"].tolist()
|
| 98 |
+
return sequences, scores
|
| 99 |
+
return sequences, None
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def save_single_prediction(input_compound, output, scores):
|
| 103 |
+
output_data = [input_compound] + output + (scores if scores else [])
|
| 104 |
+
columns = (
|
| 105 |
+
["input"]
|
| 106 |
+
+ [f"{i}th" for i in range(CFG.num_beams)]
|
| 107 |
+
+ ([f"{i}th score" for i in range(CFG.num_beams)] if scores else [])
|
| 108 |
+
)
|
| 109 |
+
output_df = pd.DataFrame([output_data], columns=columns)
|
| 110 |
+
return output_df
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def save_multiple_predictions(input_data, sequences, scores):
|
| 114 |
+
output_list = [
|
| 115 |
+
[input_data.loc[i // CFG.num_return_sequences, CFG.input_column]]
|
| 116 |
+
+ sequences[i : i + CFG.num_return_sequences]
|
| 117 |
+
+ scores[i : i + CFG.num_return_sequences]
|
| 118 |
+
for i in range(0, len(sequences), CFG.num_return_sequences)
|
| 119 |
+
]
|
| 120 |
+
columns = (
|
| 121 |
+
["input"]
|
| 122 |
+
+ [f"{i}th" for i in range(CFG.num_return_sequences)]
|
| 123 |
+
+ ([f"{i}th score" for i in range(CFG.num_return_sequences)] if scores else [])
|
| 124 |
+
)
|
| 125 |
+
output_df = pd.DataFrame(output_list, columns=columns)
|
| 126 |
+
return output_df
|
| 127 |
+
|
| 128 |
+
|
| 129 |
if st.button('predict'):
|
| 130 |
with st.spinner('Now processing. If num beams=5, this process takes about 15 seconds per reaction.'):
|
| 131 |
+
|
| 132 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 133 |
|
| 134 |
+
seed_everything(seed=CFG.seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors="pt")
|
| 137 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
|
| 138 |
+
model.eval()
|
| 139 |
|
| 140 |
+
if CFG.uploaded_file is None:
|
| 141 |
+
input_compound = CFG.input_data
|
| 142 |
+
output = predict_single_input(input_compound)
|
| 143 |
+
sequences, scores = decode_output(output)
|
| 144 |
+
output_df = save_single_prediction(input_compound, sequences, scores)
|
| 145 |
+
else:
|
| 146 |
+
input_data = pd.read_csv(CFG.input_data)
|
| 147 |
+
dataset = ProductDataset(CFG, input_data)
|
| 148 |
+
dataloader = DataLoader(
|
| 149 |
+
dataset,
|
| 150 |
+
batch_size=CFG.batch_size,
|
| 151 |
+
shuffle=False,
|
| 152 |
+
num_workers=4,
|
| 153 |
+
pin_memory=True,
|
| 154 |
+
drop_last=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
)
|
| 156 |
|
| 157 |
+
all_sequences, all_scores = [], []
|
| 158 |
+
for inputs in dataloader:
|
| 159 |
+
inputs = {k: v[0].to(device) for k, v in inputs.items()}
|
| 160 |
+
with torch.no_grad():
|
| 161 |
+
output = model.generate(
|
| 162 |
+
**inputs,
|
| 163 |
+
min_length=CFG.output_min_length,
|
| 164 |
+
max_length=CFG.output_max_length,
|
| 165 |
+
num_beams=CFG.num_beams,
|
| 166 |
+
num_return_sequences=CFG.num_return_sequences,
|
| 167 |
+
return_dict_in_generate=True,
|
| 168 |
+
output_scores=True,
|
| 169 |
+
)
|
| 170 |
+
sequences, scores = decode_output(output)
|
| 171 |
+
all_sequences.extend(sequences)
|
| 172 |
+
if scores:
|
| 173 |
+
all_scores.extend(scores)
|
| 174 |
+
del output
|
| 175 |
+
torch.cuda.empty_cache()
|
| 176 |
+
gc.collect()
|
| 177 |
+
|
| 178 |
+
output_df = save_multiple_predictions(input_data, all_sequences, all_scores)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
st.table(output_df)
|
| 181 |
|
| 182 |
@st.cache
|