Spaces:
Running
Running
| import argparse | |
| import os | |
| import sys | |
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| from torch.utils.data import DataLoader | |
| from transformers import AutoTokenizer | |
| sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) | |
| from generation_utils import ReactionT5Dataset | |
| from models import ReactionT5Yield2 | |
| from train import preprocess_df | |
| from utils import filter_out, seed_everything | |
| def parse_args(): | |
| """ | |
| Parse command line arguments. | |
| """ | |
| parser = argparse.ArgumentParser( | |
| description="Prediction script for ReactionT5Yield model." | |
| ) | |
| parser.add_argument( | |
| "--input_data", | |
| type=str, | |
| required=True, | |
| help="Data as a string or CSV file that contains an 'input' column. The format of the string or contents of the column are like 'REACTANT:{reactants of the reaction}PRODUCT:{products of the reaction}'. If there are multiple reactants, concatenate them with '.'.", | |
| ) | |
| parser.add_argument( | |
| "--test_data", | |
| type=str, | |
| required=False, | |
| help="Path to the test data. If provided, the duplicates will be removed from the input data.", | |
| ) | |
| parser.add_argument( | |
| "--model_name_or_path", | |
| type=str, | |
| default="sagawa/ReactionT5v2-yield", | |
| help="Name or path of the finetuned model for prediction. Can be a local model or one from Hugging Face.", | |
| ) | |
| parser.add_argument("--debug", action="store_true", help="Use debug mode.") | |
| parser.add_argument( | |
| "--input_max_length", | |
| type=int, | |
| default=400, | |
| help="Maximum token length of input.", | |
| ) | |
| parser.add_argument( | |
| "--batch_size", type=int, default=5, required=False, help="Batch size." | |
| ) | |
| parser.add_argument( | |
| "--num_workers", type=int, default=4, help="Number of data loading workers." | |
| ) | |
| parser.add_argument( | |
| "--fc_dropout", | |
| type=float, | |
| default=0.0, | |
| help="Dropout rate after fully connected layers.", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="./", | |
| help="Directory where predictions are saved.", | |
| ) | |
| parser.add_argument( | |
| "--seed", type=int, default=42, help="Random seed for reproducibility." | |
| ) | |
| return parser.parse_args() | |
| def create_embedding(dataloader, model, device): | |
| outputs = [] | |
| model.eval() | |
| model.to(device) | |
| for inputs in dataloader: | |
| inputs = {k: v.to(device) for k, v in inputs.items()} | |
| with torch.no_grad(): | |
| output = model.generate_embedding(inputs) | |
| outputs.append(output.detach().cpu().numpy()) | |
| return outputs | |
| if __name__ == "__main__": | |
| CFG = parse_args() | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| CFG.device = device | |
| if not os.path.exists(CFG.output_dir): | |
| os.makedirs(CFG.output_dir) | |
| seed_everything(seed=CFG.seed) | |
| CFG.tokenizer = AutoTokenizer.from_pretrained( | |
| os.path.abspath(CFG.model_name_or_path) | |
| if os.path.exists(CFG.model_name_or_path) | |
| else CFG.model_name_or_path, | |
| return_tensors="pt", | |
| ) | |
| model = ReactionT5Yield2.from_pretrained(CFG.model_name_or_path).to(CFG.device) | |
| model.eval() | |
| input_data = filter_out( | |
| pd.read_csv(CFG.input_data), ["YIELD", "REACTANT", "PRODUCT"] | |
| ) | |
| input_data = preprocess_df(input_data, CFG, drop_duplicates=False) | |
| if CFG.test_data: | |
| test_data = filter_out( | |
| pd.read_csv(CFG.test_data), ["YIELD", "REACTANT", "PRODUCT"] | |
| ) | |
| test_data = preprocess_df(test_data, CFG, drop_duplicates=False) | |
| # Remove duplicates from the input data | |
| input_data = input_data[ | |
| ~input_data["input"].isin(test_data["input"]) | |
| ].reset_index(drop=True) | |
| input_data.to_csv(os.path.join(CFG.output_dir, "input_data.csv"), index=False) | |
| dataset = ReactionT5Dataset(CFG, input_data) | |
| dataloader = DataLoader( | |
| dataset, | |
| batch_size=CFG.batch_size, | |
| shuffle=False, | |
| num_workers=CFG.num_workers, | |
| pin_memory=True, | |
| drop_last=False, | |
| ) | |
| outputs = create_embedding(dataloader, model, CFG.device) | |
| outputs = np.concatenate(outputs, axis=0) | |
| np.save(os.path.join(CFG.output_dir, "embedding_mean.npy"), outputs) | |