Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
-
import spaces #
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
import time
|
| 6 |
import torch
|
|
@@ -8,64 +8,76 @@ from datetime import datetime
|
|
| 8 |
import os
|
| 9 |
import subprocess
|
| 10 |
import numpy as np
|
| 11 |
-
from typing import List, Dict, Tuple, Any
|
| 12 |
from functools import lru_cache
|
| 13 |
import asyncio
|
| 14 |
import threading
|
| 15 |
from concurrent.futures import ThreadPoolExecutor
|
| 16 |
import warnings
|
| 17 |
import traceback # For detailed error logging
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Suppress another common warning with torch.compile backend
|
| 22 |
-
# warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
| 23 |
|
| 24 |
# --- Configuration ---
|
| 25 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
| 26 |
MAX_SEARCH_RESULTS = 5
|
| 27 |
TTS_SAMPLE_RATE = 24000
|
| 28 |
MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk
|
| 29 |
-
|
| 30 |
-
MAX_NEW_TOKENS = 300 # Increased slightly
|
| 31 |
TEMPERATURE = 0.7
|
| 32 |
TOP_P = 0.95
|
| 33 |
KOKORO_PATH = 'Kokoro-82M' # Path to TTS model directory
|
| 34 |
|
| 35 |
# --- Initialization ---
|
| 36 |
-
# Use a ThreadPoolExecutor for
|
| 37 |
-
executor = ThreadPoolExecutor(max_workers=4)
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 43 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
MODEL_NAME,
|
| 53 |
device_map=device_map,
|
| 54 |
-
|
| 55 |
-
low_cpu_mem_usage=True, # Important for faster loading
|
| 56 |
torch_dtype=torch_dtype,
|
| 57 |
-
# attn_implementation="flash_attention_2" # Optional:
|
| 58 |
)
|
| 59 |
-
print(f"
|
| 60 |
-
#
|
| 61 |
-
model.eval()
|
| 62 |
|
| 63 |
except Exception as e:
|
| 64 |
print(f"FATAL: Error initializing LLM model: {str(e)}")
|
| 65 |
print(traceback.format_exc())
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
|
|
|
| 69 |
VOICE_CHOICES = {
|
| 70 |
'🇺🇸 Female (Default)': 'af',
|
| 71 |
'🇺🇸 Bella': 'af_bella',
|
|
@@ -73,204 +85,181 @@ VOICE_CHOICES = {
|
|
| 73 |
'🇺🇸 Nicole': 'af_nicole'
|
| 74 |
}
|
| 75 |
TTS_ENABLED = False
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
# Check privileges for apt-get
|
| 84 |
can_sudo = shutil.which('sudo') is not None
|
|
|
|
| 85 |
|
| 86 |
try:
|
| 87 |
-
#
|
| 88 |
if not os.path.exists(KOKORO_PATH):
|
| 89 |
-
print("Cloning
|
| 90 |
-
# Install git-lfs if not present (might need sudo/apt)
|
| 91 |
try:
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', KOKORO_PATH]
|
| 98 |
-
result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True)
|
| 99 |
-
print("Kokoro cloned successfully.")
|
| 100 |
-
# print(result.stdout) # Can be verbose
|
| 101 |
-
# Optionally pull LFS files again (sometimes clone doesn't get them all)
|
| 102 |
try:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
except (FileNotFoundError, subprocess.CalledProcessError) as lfs_pull_err:
|
| 108 |
-
print(f"Warning: git lfs pull failed: {lfs_pull_err}")
|
| 109 |
-
|
| 110 |
else:
|
| 111 |
-
print(f"{KOKORO_PATH}
|
| 112 |
-
|
| 113 |
-
# Install espeak (essential for phonemization)
|
| 114 |
-
print("Attempting to install espeak-ng or espeak...")
|
| 115 |
-
apt_update_cmd = ['apt-get', 'update', '-qq']
|
| 116 |
-
install_cmd_ng = ['apt-get', 'install', '-y', '-qq', 'espeak-ng']
|
| 117 |
-
install_cmd_legacy = ['apt-get', 'install', '-y', '-qq', 'espeak']
|
| 118 |
-
|
| 119 |
-
if can_sudo:
|
| 120 |
-
apt_update_cmd.insert(0, 'sudo')
|
| 121 |
-
install_cmd_ng.insert(0, 'sudo')
|
| 122 |
-
install_cmd_legacy.insert(0, 'sudo')
|
| 123 |
|
|
|
|
|
|
|
| 124 |
try:
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
print(
|
| 128 |
-
|
| 129 |
-
print("espeak-ng
|
| 130 |
-
except (FileNotFoundError, subprocess.CalledProcessError) as ng_err:
|
| 131 |
-
print(f"espeak-ng installation failed ({ng_err}), trying espeak...")
|
| 132 |
try:
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
# Set up Kokoro TTS
|
| 141 |
if os.path.exists(KOKORO_PATH):
|
| 142 |
-
|
| 143 |
if KOKORO_PATH not in sys.path:
|
| 144 |
sys.path.append(KOKORO_PATH)
|
|
|
|
| 145 |
try:
|
| 146 |
from models import build_model
|
| 147 |
-
from kokoro import generate as generate_tts_internal
|
| 148 |
|
| 149 |
-
# Make
|
| 150 |
-
globals()['build_model'] = build_model
|
| 151 |
globals()['generate_tts_internal'] = generate_tts_internal
|
| 152 |
|
| 153 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 154 |
-
print(f"Loading TTS model onto device: {device}")
|
| 155 |
model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth')
|
| 156 |
-
|
| 157 |
if not os.path.exists(model_file):
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
TTS_MODEL = build_model(model_file, device)
|
| 170 |
-
print("TTS model loaded.")
|
| 171 |
-
|
| 172 |
-
# Preload voices
|
| 173 |
for voice_name, voice_id in VOICE_CHOICES.items():
|
| 174 |
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
|
| 175 |
if os.path.exists(voice_file_path):
|
| 176 |
try:
|
| 177 |
-
print(f"Loading voice: {voice_id} ({voice_name})")
|
| 178 |
-
#
|
| 179 |
-
|
|
|
|
| 180 |
except Exception as e:
|
| 181 |
-
print(f"Warning:
|
| 182 |
else:
|
| 183 |
-
print(f"Info: Voice file {voice_file_path}
|
| 184 |
|
| 185 |
-
if
|
| 186 |
-
print("ERROR: No voicepacks could be loaded. TTS disabled.")
|
|
|
|
| 187 |
return
|
| 188 |
|
| 189 |
-
# Ensure default 'af' is loaded if possible, even if not explicitly in choices sometimes
|
| 190 |
-
if 'af' not in VOICEPACKS:
|
| 191 |
-
voice_file_path = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
|
| 192 |
-
if os.path.exists(voice_file_path):
|
| 193 |
-
try:
|
| 194 |
-
print(f"Loading fallback default voice: af")
|
| 195 |
-
VOICEPACKS['af'] = torch.load(voice_file_path, map_location=device)
|
| 196 |
-
except Exception as e:
|
| 197 |
-
print(f"Warning: Could not load fallback default voice 'af': {str(e)}")
|
| 198 |
-
|
| 199 |
TTS_ENABLED = True
|
| 200 |
-
print("TTS
|
| 201 |
|
| 202 |
except ImportError as ie:
|
| 203 |
-
print(f"ERROR:
|
| 204 |
-
except Exception as
|
| 205 |
-
print(f"ERROR:
|
| 206 |
print(traceback.format_exc())
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
| 208 |
else:
|
| 209 |
-
print(f"ERROR: {KOKORO_PATH} directory not found. TTS disabled.")
|
| 210 |
-
|
| 211 |
-
print(f"ERROR: A subprocess command failed during TTS setup: {spe}")
|
| 212 |
-
print(f"Command: {' '.join(spe.cmd)}")
|
| 213 |
-
if spe.stderr: print(f"Stderr: {spe.stderr.strip()}")
|
| 214 |
-
print("TTS setup failed.")
|
| 215 |
except Exception as e:
|
| 216 |
-
print(f"ERROR:
|
| 217 |
print(traceback.format_exc())
|
|
|
|
| 218 |
TTS_ENABLED = False
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
# Start TTS setup in a
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
tts_thread.start()
|
| 225 |
|
| 226 |
-
|
|
|
|
| 227 |
|
| 228 |
@lru_cache(maxsize=128)
|
| 229 |
-
def
|
| 230 |
-
"""
|
| 231 |
-
print(f"[Web Search] Searching
|
| 232 |
try:
|
| 233 |
-
# Use DDGS context manager for cleanup
|
| 234 |
with DDGS() as ddgs:
|
| 235 |
-
|
| 236 |
-
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y')) # Limit to past year
|
| 237 |
print(f"[Web Search] Found {len(results)} results.")
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
})
|
| 246 |
-
return formatted_results
|
| 247 |
except Exception as e:
|
| 248 |
print(f"[Web Search] Error: {e}")
|
| 249 |
print(traceback.format_exc())
|
| 250 |
return []
|
| 251 |
|
| 252 |
-
def
|
| 253 |
-
"""
|
| 254 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
else:
|
| 263 |
-
context_str = "No web context available."
|
| 264 |
-
|
| 265 |
-
# Clear instructions for the model
|
| 266 |
-
prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context.
|
| 267 |
-
Follow these instructions carefully:
|
| 268 |
-
1. Synthesize the information from the context to provide a comprehensive answer.
|
| 269 |
-
2. Cite the sources used in your answer using bracket notation with the source ID, like [1], [2], etc.
|
| 270 |
-
3. If multiple sources support a point, you can cite them together, e.g., [1][3].
|
| 271 |
-
4. Do *not* add information that is not present in the context.
|
| 272 |
-
5. If the context does not contain relevant information to answer the query, clearly state that you cannot answer based on the provided context.
|
| 273 |
-
6. Format the answer clearly using markdown.
|
| 274 |
|
| 275 |
Current Time: {current_time}
|
| 276 |
|
|
@@ -282,24 +271,17 @@ Web Context:
|
|
| 282 |
User Query: {query}
|
| 283 |
|
| 284 |
Answer:"""
|
| 285 |
-
# print(f"--- Formatted Prompt ---\n{prompt[:1000]}...\n--- End Prompt ---") # Debugging: Print start of prompt
|
| 286 |
-
return prompt
|
| 287 |
|
| 288 |
-
def
|
| 289 |
-
"""
|
| 290 |
if not web_results:
|
| 291 |
return "<div class='no-sources'>No sources found for this query.</div>"
|
| 292 |
-
|
| 293 |
-
sources_html = "<div class='sources-container'>"
|
| 294 |
for res in web_results:
|
| 295 |
-
|
|
|
|
| 296 |
url = res.get("url", "#")
|
| 297 |
-
|
| 298 |
-
# Basic HTML escaping for snippet and title
|
| 299 |
-
title_safe = gr. gradio.utils.escape_html(title)
|
| 300 |
-
snippet_safe = gr. gradio.utils.escape_html(snippet[:150] + ("..." if len(snippet) > 150 else ""))
|
| 301 |
-
|
| 302 |
-
sources_html += f"""
|
| 303 |
<div class='source-item'>
|
| 304 |
<div class='source-number'>[{res['id']}]</div>
|
| 305 |
<div class='source-content'>
|
|
@@ -308,154 +290,130 @@ def format_sources(web_results: List[Dict[str, str]]) -> str:
|
|
| 308 |
</div>
|
| 309 |
</div>
|
| 310 |
"""
|
| 311 |
-
|
| 312 |
-
return sources_html
|
| 313 |
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
-
|
| 317 |
-
async def generate_answer(prompt: str) -> str:
|
| 318 |
-
"""Generate answer using the DeepSeek model (Async Wrapper)."""
|
| 319 |
-
print(f"[LLM Generate] Generating answer for prompt (length {len(prompt)})...")
|
| 320 |
start_time = time.time()
|
| 321 |
try:
|
| 322 |
-
|
| 323 |
-
inputs = tokenizer(
|
| 324 |
prompt,
|
| 325 |
return_tensors="pt",
|
| 326 |
padding=True,
|
| 327 |
truncation=True,
|
| 328 |
-
max_length=1024, #
|
| 329 |
return_attention_mask=True
|
| 330 |
-
).to(
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
attention_mask=inputs.attention_mask,
|
| 339 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 340 |
temperature=TEMPERATURE,
|
| 341 |
top_p=TOP_P,
|
| 342 |
-
pad_token_id=
|
| 343 |
-
eos_token_id=
|
| 344 |
do_sample=True,
|
| 345 |
num_return_sequences=1
|
| 346 |
)
|
| 347 |
|
| 348 |
-
# Decode only
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
#
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
answer_part = full_output[len(prompt_decoded):].strip()
|
| 363 |
-
# Check if the marker is now at the beginning
|
| 364 |
-
if answer_part.startswith(answer_marker):
|
| 365 |
-
answer_part = answer_part[len(answer_marker):].strip()
|
| 366 |
-
else:
|
| 367 |
-
print("[LLM Generate] Warning: 'Answer:' marker not found and prompt prefix mismatch. Using full output.")
|
| 368 |
-
answer_part = full_output # Use full output as last resort
|
| 369 |
|
| 370 |
end_time = time.time()
|
| 371 |
-
print(f"[LLM Generate]
|
| 372 |
-
return answer_part
|
| 373 |
|
| 374 |
except Exception as e:
|
| 375 |
print(f"[LLM Generate] Error: {e}")
|
| 376 |
print(traceback.format_exc())
|
| 377 |
-
return f"Error
|
| 378 |
-
|
| 379 |
-
# NOTE: @spaces.GPU decorator is REMOVED because it's incompatible with async def
|
| 380 |
-
async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None:
|
| 381 |
-
"""Generate speech from text using Kokoro TTS model (Async Wrapper)."""
|
| 382 |
-
global TTS_MODEL, TTS_ENABLED, VOICEPACKS
|
| 383 |
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
print("[TTS Generate] Skipping: TTS generation function not found.")
|
| 389 |
return None
|
| 390 |
if not text or not text.strip():
|
| 391 |
-
print("[TTS Generate] Skipping: Empty text
|
| 392 |
return None
|
| 393 |
|
| 394 |
-
print(f"[TTS Generate] Requesting speech
|
| 395 |
start_time = time.time()
|
| 396 |
|
| 397 |
try:
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
if 'af' not in VOICEPACKS:
|
| 406 |
-
print("[TTS Generate] Error: Default voice 'af' also not available. Cannot generate audio.")
|
| 407 |
return None
|
| 408 |
-
print("[TTS Generate] Using default voice 'af'.")
|
| 409 |
-
|
| 410 |
-
# Clean the text (simple cleaning)
|
| 411 |
-
# Remove markdown citations like [1], [2][3] etc.
|
| 412 |
-
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text)
|
| 413 |
-
# Remove other common markdown artifacts
|
| 414 |
-
clean_text = clean_text.replace('*', '').replace('#', '').replace('`', '')
|
| 415 |
-
# Remove excessive whitespace
|
| 416 |
-
clean_text = ' '.join(clean_text.split())
|
| 417 |
-
|
| 418 |
-
if not clean_text.strip():
|
| 419 |
-
print("[TTS Generate] Skipping: Text is empty after cleaning.")
|
| 420 |
-
return None
|
| 421 |
|
| 422 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
if len(clean_text) > MAX_TTS_CHARS:
|
| 424 |
-
print(f"[TTS Generate]
|
| 425 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
clean_text = clean_text[:cut_off+1]
|
| 430 |
-
clean_text += "..." # Indicate truncation
|
| 431 |
|
| 432 |
print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'")
|
| 433 |
gen_func = globals()['generate_tts_internal']
|
|
|
|
| 434 |
|
| 435 |
-
# Run
|
|
|
|
| 436 |
audio_data, _ = await asyncio.get_event_loop().run_in_executor(
|
| 437 |
executor,
|
| 438 |
gen_func,
|
| 439 |
-
|
| 440 |
-
clean_text,
|
| 441 |
-
|
| 442 |
-
'afr'
|
| 443 |
)
|
| 444 |
|
| 445 |
if isinstance(audio_data, torch.Tensor):
|
| 446 |
-
# Move tensor to CPU before converting to numpy if it's not already
|
| 447 |
audio_np = audio_data.detach().cpu().numpy()
|
| 448 |
elif isinstance(audio_data, np.ndarray):
|
| 449 |
audio_np = audio_data
|
| 450 |
else:
|
| 451 |
-
print("[TTS Generate] Warning: Unexpected audio data type
|
| 452 |
return None
|
| 453 |
|
|
|
|
|
|
|
|
|
|
| 454 |
end_time = time.time()
|
| 455 |
-
print(f"[TTS Generate] Audio generated
|
| 456 |
-
# Ensure it's 1D array
|
| 457 |
-
if audio_np.ndim > 1:
|
| 458 |
-
audio_np = audio_np.flatten()
|
| 459 |
return (TTS_SAMPLE_RATE, audio_np)
|
| 460 |
|
| 461 |
except Exception as e:
|
|
@@ -463,108 +421,111 @@ async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndar
|
|
| 463 |
print(traceback.format_exc())
|
| 464 |
return None
|
| 465 |
|
| 466 |
-
|
| 467 |
-
def get_voice_id(voice_display_name: str) -> str:
|
| 468 |
"""Maps the user-friendly voice name to the internal voice ID."""
|
| 469 |
-
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af'
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
-
#
|
| 472 |
-
|
| 473 |
|
| 474 |
-
async def
|
| 475 |
-
|
| 476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 477 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
| 478 |
|
| 479 |
if not query or not query.strip():
|
| 480 |
print("Empty query received.")
|
| 481 |
-
yield
|
| 482 |
-
|
| 483 |
-
)
|
| 484 |
return
|
| 485 |
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
|
|
|
| 489 |
|
| 490 |
-
# 1. Initial
|
| 491 |
yield (
|
| 492 |
-
"*Searching the web...*",
|
| 493 |
-
"<div class='searching'><span>Searching the web...</span></div>", # Added span for CSS animation
|
| 494 |
-
gr.Button(value="Searching...", interactive=False), # Disable button
|
| 495 |
current_history,
|
| 496 |
-
|
|
|
|
|
|
|
|
|
|
| 497 |
)
|
| 498 |
|
| 499 |
-
# 2. Perform Web Search (
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
|
|
|
| 503 |
|
| 504 |
-
# Update state:
|
|
|
|
| 505 |
yield (
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
)
|
| 512 |
|
| 513 |
-
# 3. Generate Answer (
|
| 514 |
-
|
| 515 |
-
final_answer = await
|
| 516 |
|
| 517 |
-
# Update history with the final answer
|
| 518 |
-
current_history[-1][
|
| 519 |
|
| 520 |
-
# Update state:
|
| 521 |
yield (
|
| 522 |
-
|
|
|
|
| 523 |
sources_html,
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
None
|
| 527 |
)
|
| 528 |
|
| 529 |
-
# 4. Generate Speech (
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
if not
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
elif tts_thread.is_alive():
|
| 536 |
-
print("[TTS Status] TTS is still initializing in the background.")
|
| 537 |
-
tts_message = "\n\n*(TTS is still initializing, audio may be delayed or unavailable)*"
|
| 538 |
-
elif TTS_ENABLED:
|
| 539 |
-
voice_id = get_voice_id(selected_voice_display_name)
|
| 540 |
-
# Only generate audio if the answer generation was successful
|
| 541 |
-
if not final_answer.startswith("Error"):
|
| 542 |
-
audio = await generate_speech(final_answer, voice_id) # This is already async
|
| 543 |
-
if audio is None:
|
| 544 |
-
print(f"[TTS Status] Audio generation failed for voice '{voice_id}'.")
|
| 545 |
-
tts_message = f"\n\n*(Audio generation failed)*"
|
| 546 |
-
else:
|
| 547 |
-
print("[TTS Status] Audio generated successfully.")
|
| 548 |
else:
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
yield (
|
| 556 |
-
|
|
|
|
| 557 |
sources_html,
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
audio
|
| 561 |
)
|
| 562 |
|
| 563 |
|
| 564 |
-
# --- Gradio
|
| 565 |
-
# (CSS remains the same
|
| 566 |
css = """
|
| 567 |
-
/* ... [Your existing refined CSS] ... */
|
|
|
|
|
|
|
| 568 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
| 569 |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
| 570 |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
|
@@ -589,20 +550,19 @@ css = """
|
|
| 589 |
.sources-container { margin-top: 0; }
|
| 590 |
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
|
| 591 |
.source-item:last-child { border-bottom: none; }
|
| 592 |
-
/* .source-item:hover { background-color: #f9fafb; } */
|
| 593 |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
| 594 |
.source-content { flex: 1; min-width: 0;} /* Allow content to shrink */
|
| 595 |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
| 596 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
| 597 |
-
.source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; }
|
| 598 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
| 599 |
-
.chat-history { max-height: 400px; overflow-y: auto;
|
|
|
|
| 600 |
.chat-history::-webkit-scrollbar { width: 6px; }
|
| 601 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
| 602 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
| 603 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
| 604 |
-
|
| 605 |
-
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin:
|
| 606 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
| 607 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
| 608 |
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
|
|
@@ -619,7 +579,7 @@ css = """
|
|
| 619 |
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
| 620 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
| 621 |
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
|
| 622 |
-
.accordion > .label-wrap { padding: 10px 15px !important; }
|
| 623 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
| 624 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
| 625 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
|
@@ -632,7 +592,7 @@ css = """
|
|
| 632 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
| 633 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
| 634 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
| 635 |
-
/* Dark Mode Styles */
|
| 636 |
.dark .gradio-container { background-color: #111827 !important; }
|
| 637 |
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
| 638 |
.dark #header h3 { color: #9ca3af; }
|
|
@@ -654,7 +614,7 @@ css = """
|
|
| 654 |
.dark .source-title { color: #60a5fa; }
|
| 655 |
.dark .source-title:hover { color: #93c5fd; }
|
| 656 |
.dark .source-snippet { color: #d1d5db; }
|
| 657 |
-
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;}
|
| 658 |
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
|
| 659 |
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
|
| 660 |
.dark .examples-container { background: #374151; border-color: #4b5563; }
|
|
@@ -671,11 +631,11 @@ css = """
|
|
| 671 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
| 672 |
.dark .markdown-content th { background: #374151 !important; }
|
| 673 |
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
|
| 674 |
-
.dark .accordion > .label-wrap { color: #d1d5db !important; }
|
| 675 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
| 676 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
| 677 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
| 678 |
-
.dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; }
|
| 679 |
.dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; }
|
| 680 |
.dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; }
|
| 681 |
.dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; }
|
|
@@ -684,146 +644,118 @@ css = """
|
|
| 684 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
| 685 |
"""
|
| 686 |
|
|
|
|
|
|
|
| 687 |
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
| 688 |
-
#
|
| 689 |
-
|
| 690 |
|
| 691 |
-
with gr.Column(): # Main container
|
| 692 |
-
# Header
|
| 693 |
with gr.Column(elem_id="header"):
|
| 694 |
gr.Markdown("# 🔍 AI Search Assistant")
|
| 695 |
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
| 696 |
|
| 697 |
-
# Search
|
| 698 |
with gr.Column(elem_classes="search-container"):
|
| 699 |
-
with gr.Row(elem_classes="search-box", equal_height=False):
|
| 700 |
-
search_input = gr.Textbox(
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
scale=5, # Takes more horizontal space
|
| 704 |
-
container=False, # Important for direct styling within Row
|
| 705 |
-
elem_classes="gradio-textbox"
|
| 706 |
-
)
|
| 707 |
-
voice_select = gr.Dropdown(
|
| 708 |
-
choices=list(VOICE_CHOICES.keys()),
|
| 709 |
-
value=list(VOICE_CHOICES.keys())[0], # Default voice display name
|
| 710 |
-
label="", # Visually hidden label
|
| 711 |
-
scale=1, # Takes less space
|
| 712 |
-
min_width=180, # Fixed width for dropdown
|
| 713 |
-
container=False, # Important
|
| 714 |
-
elem_classes="voice-selector gradio-dropdown"
|
| 715 |
-
)
|
| 716 |
-
search_btn = gr.Button(
|
| 717 |
-
"Search",
|
| 718 |
-
variant="primary",
|
| 719 |
-
scale=0, # Minimal width needed for text
|
| 720 |
-
min_width=100,
|
| 721 |
-
elem_classes="gradio-button"
|
| 722 |
-
)
|
| 723 |
|
| 724 |
-
# Results
|
| 725 |
with gr.Row(elem_classes="results-container", equal_height=False):
|
| 726 |
-
# Left Column: Answer
|
| 727 |
-
with gr.Column(scale=3):
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
label="Conversation",
|
| 742 |
-
bubble_full_width=True, # Bubbles take full width
|
| 743 |
-
height=400,
|
| 744 |
-
elem_classes="chat-history"
|
| 745 |
-
)
|
| 746 |
|
| 747 |
# Right Column: Sources
|
| 748 |
-
with gr.Column(scale=2):
|
| 749 |
-
|
| 750 |
gr.Markdown("### Sources")
|
| 751 |
-
|
| 752 |
|
| 753 |
-
#
|
| 754 |
with gr.Row(elem_classes="examples-container"):
|
|
|
|
| 755 |
gr.Examples(
|
| 756 |
examples=[
|
| 757 |
"Latest news about renewable energy",
|
| 758 |
-
"Explain
|
| 759 |
-
"
|
| 760 |
"Compare Python and JavaScript for web development",
|
| 761 |
-
"Summarize the main points of the Paris Agreement
|
| 762 |
],
|
| 763 |
-
inputs=search_input,
|
| 764 |
label="Try these examples:",
|
| 765 |
-
elem_classes="gradio-examples" # Add class for potential styling
|
| 766 |
)
|
| 767 |
|
| 768 |
-
# --- Event Handling ---
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
outputs["button"] = btn_state # Can be a gr.Button update dict or object
|
| 788 |
-
outputs["history"] = hist_display
|
| 789 |
-
outputs["audio"] = aud_out
|
| 790 |
-
# Yield the current state of all outputs
|
| 791 |
-
yield outputs["answer"], outputs["sources"], outputs["button"], outputs["history"], outputs["audio"]
|
| 792 |
-
except Exception as e:
|
| 793 |
-
print(f"[Interaction] Error: {e}")
|
| 794 |
print(traceback.format_exc())
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
final_error_history = history + [[query, f"*Error: {error_message}*"]] if query else history
|
| 798 |
yield (
|
| 799 |
-
|
| 800 |
-
"
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 805 |
|
| 806 |
-
# Connect the handle_interaction function to the button click and input submit events
|
| 807 |
-
outputs_list = [answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 808 |
-
inputs_list = [search_input, chat_history, voice_select] # Pass the dropdown component itself
|
| 809 |
|
|
|
|
| 810 |
search_btn.click(
|
| 811 |
-
fn=
|
| 812 |
-
inputs=
|
| 813 |
-
outputs=
|
| 814 |
)
|
| 815 |
-
|
| 816 |
search_input.submit(
|
| 817 |
-
fn=
|
| 818 |
-
inputs=
|
| 819 |
-
outputs=
|
| 820 |
)
|
| 821 |
|
| 822 |
if __name__ == "__main__":
|
| 823 |
print("Starting Gradio application...")
|
| 824 |
-
# Launch the app with queuing enabled for handling multiple users
|
| 825 |
demo.queue(max_size=20).launch(
|
| 826 |
-
debug=True,
|
| 827 |
-
share=True,
|
| 828 |
-
# server_name="0.0.0.0" # Bind to all interfaces
|
| 829 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
# import spaces # Removed as @spaces.GPU is not used with async
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
import time
|
| 6 |
import torch
|
|
|
|
| 8 |
import os
|
| 9 |
import subprocess
|
| 10 |
import numpy as np
|
| 11 |
+
from typing import List, Dict, Tuple, Any, Optional, Union
|
| 12 |
from functools import lru_cache
|
| 13 |
import asyncio
|
| 14 |
import threading
|
| 15 |
from concurrent.futures import ThreadPoolExecutor
|
| 16 |
import warnings
|
| 17 |
import traceback # For detailed error logging
|
| 18 |
+
import re # For text cleaning
|
| 19 |
+
import shutil # For checking sudo
|
| 20 |
+
import html # For escaping HTML
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# --- Configuration ---
|
| 23 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
| 24 |
MAX_SEARCH_RESULTS = 5
|
| 25 |
TTS_SAMPLE_RATE = 24000
|
| 26 |
MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk
|
| 27 |
+
MAX_NEW_TOKENS = 300
|
|
|
|
| 28 |
TEMPERATURE = 0.7
|
| 29 |
TOP_P = 0.95
|
| 30 |
KOKORO_PATH = 'Kokoro-82M' # Path to TTS model directory
|
| 31 |
|
| 32 |
# --- Initialization ---
|
| 33 |
+
# Use a ThreadPoolExecutor for blocking I/O or CPU-bound tasks
|
| 34 |
+
executor = ThreadPoolExecutor(max_workers=os.cpu_count() or 4) # Use available cores
|
| 35 |
|
| 36 |
+
# Suppress specific warnings
|
| 37 |
+
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
| 38 |
+
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# --- LLM Initialization ---
|
| 41 |
+
llm_model: Optional[AutoModelForCausalLM] = None
|
| 42 |
+
llm_tokenizer: Optional[AutoTokenizer] = None
|
| 43 |
+
llm_device = "cpu" # Default device
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
print("Initializing LLM...")
|
| 47 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 48 |
+
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 49 |
+
|
| 50 |
+
if torch.cuda.is_available():
|
| 51 |
+
llm_device = "cuda"
|
| 52 |
+
torch_dtype = torch.float16
|
| 53 |
+
device_map = "auto" # Let accelerate handle distribution
|
| 54 |
+
print(f"CUDA detected. Loading model with device_map='{device_map}', dtype={torch_dtype}")
|
| 55 |
+
else:
|
| 56 |
+
llm_device = "cpu"
|
| 57 |
+
torch_dtype = torch.float32 # float32 for CPU
|
| 58 |
+
device_map = {"": "cpu"}
|
| 59 |
+
print(f"CUDA not found. Loading model on CPU with dtype={torch_dtype}")
|
| 60 |
|
| 61 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 62 |
MODEL_NAME,
|
| 63 |
device_map=device_map,
|
| 64 |
+
low_cpu_mem_usage=True,
|
|
|
|
| 65 |
torch_dtype=torch_dtype,
|
| 66 |
+
# attn_implementation="flash_attention_2" # Optional: Uncomment if flash-attn is installed and compatible GPU
|
| 67 |
)
|
| 68 |
+
print(f"LLM loaded successfully. Device map: {llm_model.hf_device_map if hasattr(llm_model, 'hf_device_map') else 'N/A'}")
|
| 69 |
+
llm_model.eval() # Set to evaluation mode
|
|
|
|
| 70 |
|
| 71 |
except Exception as e:
|
| 72 |
print(f"FATAL: Error initializing LLM model: {str(e)}")
|
| 73 |
print(traceback.format_exc())
|
| 74 |
+
# Depending on environment, you might exit or just disable LLM features
|
| 75 |
+
llm_model = None
|
| 76 |
+
llm_tokenizer = None
|
| 77 |
+
print("LLM features will be unavailable.")
|
| 78 |
|
| 79 |
+
|
| 80 |
+
# --- TTS Initialization ---
|
| 81 |
VOICE_CHOICES = {
|
| 82 |
'🇺🇸 Female (Default)': 'af',
|
| 83 |
'🇺🇸 Bella': 'af_bella',
|
|
|
|
| 85 |
'🇺🇸 Nicole': 'af_nicole'
|
| 86 |
}
|
| 87 |
TTS_ENABLED = False
|
| 88 |
+
tts_model: Optional[Any] = None # Define type more specifically if Kokoro provides it
|
| 89 |
+
voicepacks: Dict[str, Any] = {} # Cache voice packs
|
| 90 |
+
tts_device = "cpu" # Default device for TTS model
|
| 91 |
+
|
| 92 |
+
# Use a lock for thread-safe access during initialization if needed, though Thread ensures sequential execution
|
| 93 |
+
# tts_init_lock = threading.Lock()
|
| 94 |
|
| 95 |
+
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None) -> subprocess.CompletedProcess:
|
| 96 |
+
"""Helper to run subprocess and capture output."""
|
| 97 |
+
print(f"Running command: {' '.join(cmd)}")
|
| 98 |
+
try:
|
| 99 |
+
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd)
|
| 100 |
+
if result.stdout: print(f"Stdout: {result.stdout.strip()}")
|
| 101 |
+
if result.stderr: print(f"Stderr: {result.stderr.strip()}")
|
| 102 |
+
return result
|
| 103 |
+
except FileNotFoundError:
|
| 104 |
+
print(f"Error: Command not found - {cmd[0]}")
|
| 105 |
+
raise
|
| 106 |
+
except subprocess.CalledProcessError as e:
|
| 107 |
+
print(f"Error running command: {' '.join(e.cmd)}")
|
| 108 |
+
if e.stdout: print(f"Stdout: {e.stdout.strip()}")
|
| 109 |
+
if e.stderr: print(f"Stderr: {e.stderr.strip()}")
|
| 110 |
+
raise
|
| 111 |
+
|
| 112 |
+
def setup_tts_task():
|
| 113 |
+
"""Initializes Kokoro TTS model and dependencies."""
|
| 114 |
+
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
| 115 |
+
print("[TTS Setup] Starting background initialization...")
|
| 116 |
+
|
| 117 |
+
# Determine TTS device
|
| 118 |
+
tts_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 119 |
+
print(f"[TTS Setup] Target device: {tts_device}")
|
| 120 |
|
|
|
|
| 121 |
can_sudo = shutil.which('sudo') is not None
|
| 122 |
+
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
| 123 |
|
| 124 |
try:
|
| 125 |
+
# 1. Clone Kokoro Repo if needed
|
| 126 |
if not os.path.exists(KOKORO_PATH):
|
| 127 |
+
print(f"[TTS Setup] Cloning repository to {KOKORO_PATH}...")
|
|
|
|
| 128 |
try:
|
| 129 |
+
_run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
|
| 130 |
+
except Exception as lfs_err:
|
| 131 |
+
print(f"[TTS Setup] Warning: git lfs install command failed: {lfs_err}. Continuing clone...")
|
| 132 |
+
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', KOKORO_PATH])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
try:
|
| 134 |
+
print("[TTS Setup] Running git lfs pull...")
|
| 135 |
+
_run_subprocess(['git', 'lfs', 'pull'], cwd=KOKORO_PATH)
|
| 136 |
+
except Exception as lfs_pull_err:
|
| 137 |
+
print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
|
|
|
|
|
|
|
|
|
|
| 138 |
else:
|
| 139 |
+
print(f"[TTS Setup] Directory {KOKORO_PATH} already exists.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
+
# 2. Install espeak dependency
|
| 142 |
+
print("[TTS Setup] Checking/Installing espeak...")
|
| 143 |
try:
|
| 144 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
|
| 145 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
|
| 146 |
+
print("[TTS Setup] espeak-ng installed or already present.")
|
| 147 |
+
except Exception:
|
| 148 |
+
print("[TTS Setup] espeak-ng failed, trying espeak...")
|
|
|
|
|
|
|
| 149 |
try:
|
| 150 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak'])
|
| 151 |
+
print("[TTS Setup] espeak installed or already present.")
|
| 152 |
+
except Exception as espeak_err:
|
| 153 |
+
print(f"[TTS Setup] ERROR: Failed to install both espeak-ng and espeak: {espeak_err}. TTS disabled.")
|
| 154 |
+
return # Critical dependency missing
|
| 155 |
+
|
| 156 |
+
# 3. Load Kokoro Model and Voices
|
|
|
|
| 157 |
if os.path.exists(KOKORO_PATH):
|
| 158 |
+
sys_path_updated = False
|
| 159 |
if KOKORO_PATH not in sys.path:
|
| 160 |
sys.path.append(KOKORO_PATH)
|
| 161 |
+
sys_path_updated = True
|
| 162 |
try:
|
| 163 |
from models import build_model
|
| 164 |
+
from kokoro import generate as generate_tts_internal
|
| 165 |
|
| 166 |
+
globals()['build_model'] = build_model # Make available globally
|
|
|
|
| 167 |
globals()['generate_tts_internal'] = generate_tts_internal
|
| 168 |
|
|
|
|
|
|
|
| 169 |
model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth')
|
|
|
|
| 170 |
if not os.path.exists(model_file):
|
| 171 |
+
print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.")
|
| 172 |
+
return
|
| 173 |
+
|
| 174 |
+
print(f"[TTS Setup] Loading TTS model from {model_file} onto {tts_device}...")
|
| 175 |
+
tts_model = build_model(model_file, tts_device)
|
| 176 |
+
tts_model.eval() # Set to eval mode
|
| 177 |
+
print("[TTS Setup] TTS model loaded.")
|
| 178 |
+
|
| 179 |
+
# Load voices
|
| 180 |
+
loaded_voices = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
for voice_name, voice_id in VOICE_CHOICES.items():
|
| 182 |
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
|
| 183 |
if os.path.exists(voice_file_path):
|
| 184 |
try:
|
| 185 |
+
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name})")
|
| 186 |
+
# map_location ensures it loads to the correct device
|
| 187 |
+
voicepacks[voice_id] = torch.load(voice_file_path, map_location=tts_device)
|
| 188 |
+
loaded_voices += 1
|
| 189 |
except Exception as e:
|
| 190 |
+
print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
| 191 |
else:
|
| 192 |
+
print(f"[TTS Setup] Info: Voice file {voice_file_path} not found, skipping.")
|
| 193 |
|
| 194 |
+
if loaded_voices == 0:
|
| 195 |
+
print("[TTS Setup] ERROR: No voicepacks could be loaded. TTS disabled.")
|
| 196 |
+
tts_model = None # Unload model if no voices
|
| 197 |
return
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
TTS_ENABLED = True
|
| 200 |
+
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
| 201 |
|
| 202 |
except ImportError as ie:
|
| 203 |
+
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}. Check clone and path. TTS disabled.")
|
| 204 |
+
except Exception as load_err:
|
| 205 |
+
print(f"[TTS Setup] ERROR: Failed loading TTS model/voices: {load_err}. TTS disabled.")
|
| 206 |
print(traceback.format_exc())
|
| 207 |
+
finally:
|
| 208 |
+
# Clean up sys.path if modified
|
| 209 |
+
if sys_path_updated and KOKORO_PATH in sys.path:
|
| 210 |
+
sys.path.remove(KOKORO_PATH)
|
| 211 |
else:
|
| 212 |
+
print(f"[TTS Setup] ERROR: {KOKORO_PATH} directory not found. TTS disabled.")
|
| 213 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
except Exception as e:
|
| 215 |
+
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
|
| 216 |
print(traceback.format_exc())
|
| 217 |
+
# Ensure TTS is marked as disabled
|
| 218 |
TTS_ENABLED = False
|
| 219 |
+
tts_model = None
|
| 220 |
+
voicepacks.clear()
|
| 221 |
|
| 222 |
+
# Start TTS setup in a background thread
|
| 223 |
+
print("Starting TTS setup thread...")
|
| 224 |
+
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
| 225 |
+
tts_setup_thread.start()
|
|
|
|
| 226 |
|
| 227 |
+
|
| 228 |
+
# --- Core Functions ---
|
| 229 |
|
| 230 |
@lru_cache(maxsize=128)
|
| 231 |
+
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
| 232 |
+
"""Synchronous web search function with caching."""
|
| 233 |
+
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
|
| 234 |
try:
|
|
|
|
| 235 |
with DDGS() as ddgs:
|
| 236 |
+
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
|
|
|
|
| 237 |
print(f"[Web Search] Found {len(results)} results.")
|
| 238 |
+
formatted = [{
|
| 239 |
+
"id": i + 1,
|
| 240 |
+
"title": res.get("title", "No Title"),
|
| 241 |
+
"snippet": res.get("body", "No Snippet"),
|
| 242 |
+
"url": res.get("href", "#"),
|
| 243 |
+
} for i, res in enumerate(results)]
|
| 244 |
+
return formatted
|
|
|
|
|
|
|
| 245 |
except Exception as e:
|
| 246 |
print(f"[Web Search] Error: {e}")
|
| 247 |
print(traceback.format_exc())
|
| 248 |
return []
|
| 249 |
|
| 250 |
+
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
| 251 |
+
"""Formats the prompt for the LLM, including context and instructions."""
|
| 252 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 253 |
+
context_str = "\n\n".join(
|
| 254 |
+
[f"[{res['id']}] {res['title']}\n{res['snippet']}" for res in context]
|
| 255 |
+
) if context else "No relevant web context found."
|
| 256 |
|
| 257 |
+
return f"""You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context.
|
| 258 |
+
Instructions:
|
| 259 |
+
- Synthesize information from the context to answer concisely.
|
| 260 |
+
- Cite sources using bracket notation like [1], [2], etc., corresponding to the context IDs.
|
| 261 |
+
- If the context is insufficient, state that clearly. Do not add external information.
|
| 262 |
+
- Use markdown for formatting.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
Current Time: {current_time}
|
| 265 |
|
|
|
|
| 271 |
User Query: {query}
|
| 272 |
|
| 273 |
Answer:"""
|
|
|
|
|
|
|
| 274 |
|
| 275 |
+
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
| 276 |
+
"""Formats search results into HTML for display."""
|
| 277 |
if not web_results:
|
| 278 |
return "<div class='no-sources'>No sources found for this query.</div>"
|
| 279 |
+
items_html = ""
|
|
|
|
| 280 |
for res in web_results:
|
| 281 |
+
title_safe = html.escape(res.get("title", "Source"))
|
| 282 |
+
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
|
| 283 |
url = res.get("url", "#")
|
| 284 |
+
items_html += f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
<div class='source-item'>
|
| 286 |
<div class='source-number'>[{res['id']}]</div>
|
| 287 |
<div class='source-content'>
|
|
|
|
| 290 |
</div>
|
| 291 |
</div>
|
| 292 |
"""
|
| 293 |
+
return f"<div class='sources-container'>{items_html}</div>"
|
|
|
|
| 294 |
|
| 295 |
+
async def generate_llm_answer(prompt: str) -> str:
|
| 296 |
+
"""Generates answer using the loaded LLM (Async Wrapper)."""
|
| 297 |
+
if not llm_model or not llm_tokenizer:
|
| 298 |
+
return "Error: LLM model is not available."
|
| 299 |
|
| 300 |
+
print(f"[LLM Generate] Requesting generation (prompt length {len(prompt)})...")
|
|
|
|
|
|
|
|
|
|
| 301 |
start_time = time.time()
|
| 302 |
try:
|
| 303 |
+
inputs = llm_tokenizer(
|
|
|
|
| 304 |
prompt,
|
| 305 |
return_tensors="pt",
|
| 306 |
padding=True,
|
| 307 |
truncation=True,
|
| 308 |
+
max_length=1024, # Consider model's actual max length
|
| 309 |
return_attention_mask=True
|
| 310 |
+
).to(llm_model.device) # Ensure inputs are on the same device as model parts
|
| 311 |
+
|
| 312 |
+
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
| 313 |
+
# Run blocking model.generate in the executor thread pool
|
| 314 |
+
outputs = await asyncio.get_event_loop().run_in_executor(
|
| 315 |
+
executor,
|
| 316 |
+
llm_model.generate,
|
| 317 |
+
inputs.input_ids,
|
| 318 |
attention_mask=inputs.attention_mask,
|
| 319 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 320 |
temperature=TEMPERATURE,
|
| 321 |
top_p=TOP_P,
|
| 322 |
+
pad_token_id=llm_tokenizer.eos_token_id,
|
| 323 |
+
eos_token_id=llm_tokenizer.eos_token_id,
|
| 324 |
do_sample=True,
|
| 325 |
num_return_sequences=1
|
| 326 |
)
|
| 327 |
|
| 328 |
+
# Decode only newly generated tokens relative to input
|
| 329 |
+
output_ids = outputs[0][inputs.input_ids.shape[1]:]
|
| 330 |
+
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
| 331 |
+
|
| 332 |
+
# Handle potential empty generation
|
| 333 |
+
if not answer_part:
|
| 334 |
+
# Sometimes the split method above is needed if the model includes the prompt
|
| 335 |
+
full_output = llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 336 |
+
answer_marker = "Answer:"
|
| 337 |
+
marker_index = full_output.rfind(answer_marker)
|
| 338 |
+
if marker_index != -1:
|
| 339 |
+
answer_part = full_output[marker_index + len(answer_marker):].strip()
|
| 340 |
+
else:
|
| 341 |
+
answer_part = "*Model generated an empty response.*" # Fallback message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
end_time = time.time()
|
| 344 |
+
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
| 345 |
+
return answer_part
|
| 346 |
|
| 347 |
except Exception as e:
|
| 348 |
print(f"[LLM Generate] Error: {e}")
|
| 349 |
print(traceback.format_exc())
|
| 350 |
+
return f"Error during answer generation: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
| 352 |
+
async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
| 353 |
+
"""Generates speech using the loaded TTS model (Async Wrapper)."""
|
| 354 |
+
if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
|
| 355 |
+
print("[TTS Generate] Skipping: TTS not ready.")
|
|
|
|
| 356 |
return None
|
| 357 |
if not text or not text.strip():
|
| 358 |
+
print("[TTS Generate] Skipping: Empty text.")
|
| 359 |
return None
|
| 360 |
|
| 361 |
+
print(f"[TTS Generate] Requesting speech (length {len(text)}, voice '{voice_id}')...")
|
| 362 |
start_time = time.time()
|
| 363 |
|
| 364 |
try:
|
| 365 |
+
# Verify voicepack availability
|
| 366 |
+
actual_voice_id = voice_id
|
| 367 |
+
if voice_id not in voicepacks:
|
| 368 |
+
print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying default 'af'.")
|
| 369 |
+
actual_voice_id = 'af'
|
| 370 |
+
if 'af' not in voicepacks:
|
| 371 |
+
print("[TTS Generate] Error: Default voice 'af' also not available.")
|
|
|
|
|
|
|
| 372 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
|
| 374 |
+
# Clean text for TTS
|
| 375 |
+
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text) # Remove citations like [1], [2][3]
|
| 376 |
+
clean_text = re.sub(r'[\*\#\`]', '', clean_text) # Remove markdown symbols
|
| 377 |
+
clean_text = ' '.join(clean_text.split()) # Normalize whitespace
|
| 378 |
+
|
| 379 |
+
if not clean_text: return None # Skip if empty after cleaning
|
| 380 |
+
|
| 381 |
+
# Truncate if necessary
|
| 382 |
if len(clean_text) > MAX_TTS_CHARS:
|
| 383 |
+
print(f"[TTS Generate] Truncating text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
| 384 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
| 385 |
+
last_punct = max(clean_text.rfind(p) for p in '.?! ')
|
| 386 |
+
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
| 387 |
+
clean_text += "..."
|
|
|
|
|
|
|
| 388 |
|
| 389 |
print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'")
|
| 390 |
gen_func = globals()['generate_tts_internal']
|
| 391 |
+
voice_pack_data = voicepacks[actual_voice_id]
|
| 392 |
|
| 393 |
+
# Run blocking TTS generation in the executor thread pool
|
| 394 |
+
# Assuming 'afr' is the correct language code for Kokoro's default voices
|
| 395 |
audio_data, _ = await asyncio.get_event_loop().run_in_executor(
|
| 396 |
executor,
|
| 397 |
gen_func,
|
| 398 |
+
tts_model, # The loaded model object
|
| 399 |
+
clean_text, # The cleaned text string
|
| 400 |
+
voice_pack_data,# The loaded voice pack tensor/dict
|
| 401 |
+
'afr' # Language code (verify this is correct)
|
| 402 |
)
|
| 403 |
|
| 404 |
if isinstance(audio_data, torch.Tensor):
|
|
|
|
| 405 |
audio_np = audio_data.detach().cpu().numpy()
|
| 406 |
elif isinstance(audio_data, np.ndarray):
|
| 407 |
audio_np = audio_data
|
| 408 |
else:
|
| 409 |
+
print("[TTS Generate] Warning: Unexpected audio data type.")
|
| 410 |
return None
|
| 411 |
|
| 412 |
+
# Ensure audio is 1D float32
|
| 413 |
+
audio_np = audio_np.flatten().astype(np.float32)
|
| 414 |
+
|
| 415 |
end_time = time.time()
|
| 416 |
+
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
|
|
|
|
|
|
|
|
|
|
| 417 |
return (TTS_SAMPLE_RATE, audio_np)
|
| 418 |
|
| 419 |
except Exception as e:
|
|
|
|
| 421 |
print(traceback.format_exc())
|
| 422 |
return None
|
| 423 |
|
| 424 |
+
def get_voice_id_from_display(voice_display_name: str) -> str:
|
|
|
|
| 425 |
"""Maps the user-friendly voice name to the internal voice ID."""
|
| 426 |
+
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af'
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
# --- Gradio Interaction Logic ---
|
| 430 |
|
| 431 |
+
# Define type for chat history using the 'messages' format
|
| 432 |
+
ChatHistoryType = List[Dict[str, str]]
|
| 433 |
|
| 434 |
+
async def handle_interaction(
|
| 435 |
+
query: str,
|
| 436 |
+
history: ChatHistoryType,
|
| 437 |
+
selected_voice_display_name: str
|
| 438 |
+
):
|
| 439 |
+
"""Main async generator function to handle user queries and update Gradio UI."""
|
| 440 |
+
print(f"\n--- Handling Query ---")
|
| 441 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
| 442 |
|
| 443 |
if not query or not query.strip():
|
| 444 |
print("Empty query received.")
|
| 445 |
+
# Need to yield the current state for all outputs
|
| 446 |
+
yield history, "*Please enter a query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
|
|
|
|
| 447 |
return
|
| 448 |
|
| 449 |
+
# Append user message to history
|
| 450 |
+
current_history = history + [{"role": "user", "content": query}]
|
| 451 |
+
# Add placeholder for assistant response
|
| 452 |
+
current_history.append({"role": "assistant", "content": "*Searching...*"})
|
| 453 |
|
| 454 |
+
# 1. Initial State: Searching
|
| 455 |
yield (
|
|
|
|
|
|
|
|
|
|
| 456 |
current_history,
|
| 457 |
+
"*Searching the web...*", # Update answer area
|
| 458 |
+
"<div class='searching'><span>Searching the web...</span></div>", # Update sources area
|
| 459 |
+
None, # No audio yet
|
| 460 |
+
gr.Button(value="Searching...", interactive=False) # Update button state
|
| 461 |
)
|
| 462 |
|
| 463 |
+
# 2. Perform Web Search (in executor)
|
| 464 |
+
web_results = await asyncio.get_event_loop().run_in_executor(
|
| 465 |
+
executor, get_web_results_sync, query
|
| 466 |
+
)
|
| 467 |
+
sources_html = format_sources_html(web_results)
|
| 468 |
|
| 469 |
+
# Update state: Generating Answer
|
| 470 |
+
current_history[-1]["content"] = "*Generating answer...*" # Update assistant placeholder
|
| 471 |
yield (
|
| 472 |
+
current_history,
|
| 473 |
+
"*Generating answer...*", # Update answer area
|
| 474 |
+
sources_html, # Show sources
|
| 475 |
+
None,
|
| 476 |
+
gr.Button(value="Generating...", interactive=False)
|
| 477 |
)
|
| 478 |
|
| 479 |
+
# 3. Generate LLM Answer (async)
|
| 480 |
+
llm_prompt = format_llm_prompt(query, web_results)
|
| 481 |
+
final_answer = await generate_llm_answer(llm_prompt)
|
| 482 |
|
| 483 |
+
# Update assistant message in history with the final answer
|
| 484 |
+
current_history[-1]["content"] = final_answer
|
| 485 |
|
| 486 |
+
# Update state: Generating Audio (if applicable)
|
| 487 |
yield (
|
| 488 |
+
current_history,
|
| 489 |
+
final_answer, # Show final answer
|
| 490 |
sources_html,
|
| 491 |
+
None,
|
| 492 |
+
gr.Button(value="Audio...", interactive=False) if TTS_ENABLED else gr.Button(value="Search", interactive=True) # Enable search if TTS disabled
|
|
|
|
| 493 |
)
|
| 494 |
|
| 495 |
+
# 4. Generate TTS Speech (async)
|
| 496 |
+
audio_output_data = None
|
| 497 |
+
tts_status_message = ""
|
| 498 |
+
if not TTS_ENABLED:
|
| 499 |
+
if tts_setup_thread.is_alive():
|
| 500 |
+
tts_status_message = "\n\n*(TTS initializing...)*"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 501 |
else:
|
| 502 |
+
tts_status_message = "\n\n*(TTS disabled or failed)*"
|
| 503 |
+
elif final_answer and not final_answer.startswith("Error"):
|
| 504 |
+
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
| 505 |
+
audio_output_data = await generate_tts_speech(final_answer, voice_id)
|
| 506 |
+
if audio_output_data is None:
|
| 507 |
+
tts_status_message = "\n\n*(Audio generation failed)*"
|
| 508 |
+
|
| 509 |
+
# 5. Final State: Show all results
|
| 510 |
+
final_answer_with_status = final_answer + tts_status_message
|
| 511 |
+
current_history[-1]["content"] = final_answer_with_status # Update history with status msg too
|
| 512 |
+
|
| 513 |
+
print("--- Query Handling Complete ---")
|
| 514 |
yield (
|
| 515 |
+
current_history,
|
| 516 |
+
final_answer_with_status, # Show answer + TTS status
|
| 517 |
sources_html,
|
| 518 |
+
audio_output_data, # Output audio data (or None)
|
| 519 |
+
gr.Button(value="Search", interactive=True) # Re-enable button
|
|
|
|
| 520 |
)
|
| 521 |
|
| 522 |
|
| 523 |
+
# --- Gradio UI Definition ---
|
| 524 |
+
# (CSS remains largely the same - ensure it targets default Gradio classes if elem_classes was removed)
|
| 525 |
css = """
|
| 526 |
+
/* ... [Your existing refined CSS, but remove selectors using .gradio-examples if you were using it] ... */
|
| 527 |
+
/* Example: Style examples container via its parent or default class if needed */
|
| 528 |
+
/* .examples-container .gradio-examples { ... } */ /* This might still work depending on structure */
|
| 529 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
| 530 |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
| 531 |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
|
|
|
| 550 |
.sources-container { margin-top: 0; }
|
| 551 |
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
|
| 552 |
.source-item:last-child { border-bottom: none; }
|
|
|
|
| 553 |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
| 554 |
.source-content { flex: 1; min-width: 0;} /* Allow content to shrink */
|
| 555 |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
| 556 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
|
|
|
| 557 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
| 558 |
+
.chat-history { /* Style the chatbot container */ max-height: 400px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; margin-top: 1rem; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
| 559 |
+
.chat-history > div { padding: 1rem; } /* Add padding inside the chatbot display area */
|
| 560 |
.chat-history::-webkit-scrollbar { width: 6px; }
|
| 561 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
| 562 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
| 563 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
| 564 |
+
/* Default styling for example buttons (since elem_classes might not work) */
|
| 565 |
+
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; }
|
| 566 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
| 567 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
| 568 |
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
|
|
|
|
| 579 |
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
| 580 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
| 581 |
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
|
| 582 |
+
.accordion > .label-wrap { padding: 10px 15px !important; }
|
| 583 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
| 584 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
| 585 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
|
|
|
| 592 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
| 593 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
| 594 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
| 595 |
+
/* Dark Mode Styles (Optional - keep if needed) */
|
| 596 |
.dark .gradio-container { background-color: #111827 !important; }
|
| 597 |
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
| 598 |
.dark #header h3 { color: #9ca3af; }
|
|
|
|
| 614 |
.dark .source-title { color: #60a5fa; }
|
| 615 |
.dark .source-title:hover { color: #93c5fd; }
|
| 616 |
.dark .source-snippet { color: #d1d5db; }
|
| 617 |
+
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;}
|
| 618 |
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
|
| 619 |
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
|
| 620 |
.dark .examples-container { background: #374151; border-color: #4b5563; }
|
|
|
|
| 631 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
| 632 |
.dark .markdown-content th { background: #374151 !important; }
|
| 633 |
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
|
| 634 |
+
.dark .accordion > .label-wrap { color: #d1d5db !important; }
|
| 635 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
| 636 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
| 637 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
| 638 |
+
.dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; }
|
| 639 |
.dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; }
|
| 640 |
.dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; }
|
| 641 |
.dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; }
|
|
|
|
| 644 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
| 645 |
"""
|
| 646 |
|
| 647 |
+
import sys # Needed for sys.path manipulation in TTS setup
|
| 648 |
+
|
| 649 |
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
| 650 |
+
# Use gr.State to store the chat history in the 'messages' format
|
| 651 |
+
chat_history_state = gr.State([])
|
| 652 |
|
| 653 |
+
with gr.Column(): # Main container
|
| 654 |
+
# Header
|
| 655 |
with gr.Column(elem_id="header"):
|
| 656 |
gr.Markdown("# 🔍 AI Search Assistant")
|
| 657 |
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
| 658 |
|
| 659 |
+
# Search Area
|
| 660 |
with gr.Column(elem_classes="search-container"):
|
| 661 |
+
with gr.Row(elem_classes="search-box", equal_height=False):
|
| 662 |
+
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
| 663 |
+
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
| 664 |
+
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 665 |
|
| 666 |
+
# Results Area
|
| 667 |
with gr.Row(elem_classes="results-container", equal_height=False):
|
| 668 |
+
# Left Column: Answer & History
|
| 669 |
+
with gr.Column(scale=3):
|
| 670 |
+
# Chatbot display (uses 'messages' format now)
|
| 671 |
+
chatbot_display = gr.Chatbot(
|
| 672 |
+
label="Conversation",
|
| 673 |
+
bubble_full_width=True,
|
| 674 |
+
height=500,
|
| 675 |
+
elem_classes="chat-history",
|
| 676 |
+
type="messages", # Use the recommended type
|
| 677 |
+
avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else None) # Optional: Add avatar for assistant
|
| 678 |
+
)
|
| 679 |
+
# Separate Markdown for status/intermediate answer
|
| 680 |
+
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
|
| 681 |
+
# Audio Output
|
| 682 |
+
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 683 |
|
| 684 |
# Right Column: Sources
|
| 685 |
+
with gr.Column(scale=2):
|
| 686 |
+
with gr.Column(elem_classes="sources-box"):
|
| 687 |
gr.Markdown("### Sources")
|
| 688 |
+
sources_output_html = gr.HTML(value="<div class='no-sources'>Sources will appear here.</div>")
|
| 689 |
|
| 690 |
+
# Examples Area
|
| 691 |
with gr.Row(elem_classes="examples-container"):
|
| 692 |
+
# REMOVED elem_classes from gr.Examples
|
| 693 |
gr.Examples(
|
| 694 |
examples=[
|
| 695 |
"Latest news about renewable energy",
|
| 696 |
+
"Explain Large Language Models (LLMs)",
|
| 697 |
+
"Symptoms and prevention tips for the flu",
|
| 698 |
"Compare Python and JavaScript for web development",
|
| 699 |
+
"Summarize the main points of the Paris Agreement",
|
| 700 |
],
|
| 701 |
+
inputs=search_input,
|
| 702 |
label="Try these examples:",
|
|
|
|
| 703 |
)
|
| 704 |
|
| 705 |
+
# --- Event Handling Setup ---
|
| 706 |
+
# Define the inputs and outputs for the Gradio event triggers
|
| 707 |
+
event_inputs = [search_input, chat_history_state, voice_select]
|
| 708 |
+
event_outputs = [
|
| 709 |
+
chatbot_display, # Updated chat history
|
| 710 |
+
answer_status_output, # Status or final answer text
|
| 711 |
+
sources_output_html, # Formatted sources
|
| 712 |
+
audio_player, # Audio data
|
| 713 |
+
search_btn # Button state (enabled/disabled)
|
| 714 |
+
]
|
| 715 |
+
|
| 716 |
+
# Create a wrapper to adapt the async generator for Gradio's streaming updates
|
| 717 |
+
async def stream_interaction_updates(query, history, voice_display_name):
|
| 718 |
+
try:
|
| 719 |
+
# Iterate through the states yielded by the handler
|
| 720 |
+
async for state_update in handle_interaction(query, history, voice_display_name):
|
| 721 |
+
yield state_update # Yield the tuple of output values
|
| 722 |
+
except Exception as e:
|
| 723 |
+
print(f"[Gradio Stream] Error during interaction: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 724 |
print(traceback.format_exc())
|
| 725 |
+
# Yield a final error state to the UI
|
| 726 |
+
error_history = history + [{"role":"user", "content":query}, {"role":"assistant", "content":f"*Error: {e}*"}]
|
|
|
|
| 727 |
yield (
|
| 728 |
+
error_history,
|
| 729 |
+
f"An error occurred: {e}",
|
| 730 |
+
"<div class='error'>Request failed.</div>",
|
| 731 |
+
None,
|
| 732 |
+
gr.Button(value="Search", interactive=True)
|
| 733 |
)
|
| 734 |
+
finally:
|
| 735 |
+
# Clear the text input after processing is complete (or errored out)
|
| 736 |
+
# We need to yield the final state *plus* the cleared input
|
| 737 |
+
# This requires adding search_input to the outputs list for the event triggers
|
| 738 |
+
# For now, let's not clear it automatically to avoid complexity.
|
| 739 |
+
# yield (*final_state_tuple, gr.Textbox(value="")) # Example if clearing input
|
| 740 |
+
print("[Gradio Stream] Interaction stream finished.")
|
| 741 |
|
|
|
|
|
|
|
|
|
|
| 742 |
|
| 743 |
+
# Connect the streaming function to the button click and input submit events
|
| 744 |
search_btn.click(
|
| 745 |
+
fn=stream_interaction_updates,
|
| 746 |
+
inputs=event_inputs,
|
| 747 |
+
outputs=event_outputs
|
| 748 |
)
|
|
|
|
| 749 |
search_input.submit(
|
| 750 |
+
fn=stream_interaction_updates,
|
| 751 |
+
inputs=event_inputs,
|
| 752 |
+
outputs=event_outputs
|
| 753 |
)
|
| 754 |
|
| 755 |
if __name__ == "__main__":
|
| 756 |
print("Starting Gradio application...")
|
|
|
|
| 757 |
demo.queue(max_size=20).launch(
|
| 758 |
+
debug=True,
|
| 759 |
+
share=True,
|
| 760 |
+
# server_name="0.0.0.0" # Optional: Bind to all interfaces
|
| 761 |
)
|