Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,9 +10,9 @@ import subprocess
|
|
| 10 |
import numpy as np
|
| 11 |
from typing import List, Dict, Tuple, Any, Optional, Union
|
| 12 |
from functools import lru_cache
|
| 13 |
-
# No asyncio needed
|
| 14 |
import threading
|
| 15 |
-
# No ThreadPoolExecutor needed
|
| 16 |
import warnings
|
| 17 |
import traceback # For detailed error logging
|
| 18 |
import re # For text cleaning
|
|
@@ -30,58 +30,36 @@ MAX_NEW_TOKENS = 300
|
|
| 30 |
TEMPERATURE = 0.7
|
| 31 |
TOP_P = 0.95
|
| 32 |
KOKORO_PATH = 'Kokoro-82M'
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
TTS_GPU_DURATION = 45 # Seconds (adjust based on expected TTS generation time)
|
| 36 |
|
| 37 |
# --- Initialization ---
|
| 38 |
-
# Suppress specific warnings
|
| 39 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
| 40 |
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
| 41 |
|
| 42 |
# --- LLM Initialization ---
|
| 43 |
llm_model: Optional[AutoModelForCausalLM] = None
|
| 44 |
llm_tokenizer: Optional[AutoTokenizer] = None
|
| 45 |
-
llm_device = "cpu"
|
| 46 |
-
|
| 47 |
try:
|
| 48 |
print("[LLM Init] Initializing Language Model...")
|
| 49 |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 50 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 51 |
-
|
| 52 |
-
# For ZeroGPU, we assume GPU will be available when needed, load with cuda preference
|
| 53 |
-
# If running locally without GPU, it might try CPU based on device_map="auto" fallback
|
| 54 |
-
llm_device = "cuda" if torch.cuda.is_available() else "cpu" # Check initial availability info
|
| 55 |
torch_dtype = torch.float16 if llm_device == "cuda" else torch.float32
|
| 56 |
-
# device_map="auto" is generally okay, ZeroGPU handles the actual assignment during decorated function call
|
| 57 |
device_map = "auto"
|
| 58 |
print(f"[LLM Init] Preparing model load (target device via ZeroGPU: cuda, dtype={torch_dtype})")
|
| 59 |
-
|
| 60 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 61 |
-
MODEL_NAME,
|
| 62 |
-
device_map=device_map, # Let accelerate/ZeroGPU handle placement
|
| 63 |
-
low_cpu_mem_usage=True,
|
| 64 |
-
torch_dtype=torch_dtype,
|
| 65 |
)
|
| 66 |
-
print(f"[LLM Init] LLM loaded configuration successfully.
|
| 67 |
llm_model.eval()
|
| 68 |
-
|
| 69 |
except Exception as e:
|
| 70 |
print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}")
|
| 71 |
-
print(traceback.format_exc())
|
| 72 |
-
llm_model = None
|
| 73 |
-
llm_tokenizer = None
|
| 74 |
print("[LLM Init] LLM features will be unavailable.")
|
| 75 |
|
| 76 |
-
|
| 77 |
# --- TTS Initialization ---
|
| 78 |
-
|
| 79 |
-
VOICE_CHOICES = {
|
| 80 |
-
'🇺🇸 Female (Default)': 'af',
|
| 81 |
-
'🇺🇸 Bella': 'af_bella',
|
| 82 |
-
'🇺🇸 Sarah': 'af_sarah',
|
| 83 |
-
'🇺🇸 Nicole': 'af_nicole'
|
| 84 |
-
}
|
| 85 |
TTS_ENABLED = False
|
| 86 |
tts_model: Optional[Any] = None
|
| 87 |
voicepacks: Dict[str, Any] = {}
|
|
@@ -92,18 +70,15 @@ def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = Non
|
|
| 92 |
print(f"Running command: {' '.join(cmd)}")
|
| 93 |
try:
|
| 94 |
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
|
|
|
|
| 95 |
if not check or result.returncode != 0:
|
| 96 |
-
|
| 97 |
-
|
| 98 |
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
|
| 99 |
-
|
| 100 |
return result
|
| 101 |
-
except FileNotFoundError:
|
| 102 |
-
|
| 103 |
-
raise
|
| 104 |
-
except subprocess.TimeoutExpired:
|
| 105 |
-
print(f" Error: Command timed out - {' '.join(cmd)}")
|
| 106 |
-
raise
|
| 107 |
except subprocess.CalledProcessError as e:
|
| 108 |
print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})")
|
| 109 |
if e.stdout: print(f" Stdout: {e.stdout.strip()}")
|
|
@@ -111,400 +86,277 @@ def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = Non
|
|
| 111 |
raise
|
| 112 |
|
| 113 |
def setup_tts_task():
|
| 114 |
-
"""Initializes Kokoro TTS model and dependencies."""
|
| 115 |
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
| 116 |
print("[TTS Setup] Starting background initialization...")
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
# If decorated with @spaces.GPU, it will use CUDA when called.
|
| 120 |
-
tts_device = "cuda" # Assume it will run on GPU via decorator
|
| 121 |
-
print(f"[TTS Setup] Target device for TTS model (via @spaces.GPU): {tts_device}")
|
| 122 |
-
|
| 123 |
can_sudo = shutil.which('sudo') is not None
|
| 124 |
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
| 125 |
absolute_kokoro_path = os.path.abspath(KOKORO_PATH)
|
| 126 |
-
|
| 127 |
try:
|
| 128 |
# 1. Clone/Update Repo
|
| 129 |
if not os.path.exists(absolute_kokoro_path):
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
else:
|
| 138 |
-
print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
|
| 139 |
|
| 140 |
# 2. Install espeak
|
| 141 |
print("[TTS Setup] Checking/Installing espeak...")
|
| 142 |
-
try:
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
except Exception:
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
print("[TTS Setup] espeak installed or already present.")
|
| 151 |
-
except Exception as espeak_err:
|
| 152 |
-
print(f"[TTS Setup] ERROR: Failed to install espeak: {espeak_err}. TTS disabled.")
|
| 153 |
-
return
|
| 154 |
|
| 155 |
# 3. Load Kokoro Model and Voices
|
| 156 |
sys_path_updated = False
|
| 157 |
if os.path.exists(absolute_kokoro_path):
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
loaded_voices = 0
|
| 193 |
-
for voice_name, voice_id in VOICE_CHOICES.items():
|
| 194 |
-
voice_file_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
|
| 195 |
-
if os.path.exists(voice_file_path):
|
| 196 |
-
try:
|
| 197 |
-
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name}) to CPU")
|
| 198 |
-
voicepacks[voice_id] = torch.load(voice_file_path, map_location='cpu') # <<< Load to CPU
|
| 199 |
-
loaded_voices += 1
|
| 200 |
-
except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
| 201 |
-
else: print(f"[TTS Setup] Info: Voice file {voice_file_path} not found.")
|
| 202 |
-
|
| 203 |
-
if loaded_voices == 0:
|
| 204 |
-
print("[TTS Setup] ERROR: No voicepacks loaded. TTS disabled.")
|
| 205 |
-
tts_model = None; return
|
| 206 |
-
|
| 207 |
-
TTS_ENABLED = True
|
| 208 |
-
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
| 209 |
-
|
| 210 |
-
except ImportError as ie:
|
| 211 |
-
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.")
|
| 212 |
-
print(traceback.format_exc())
|
| 213 |
-
except Exception as load_err:
|
| 214 |
-
print(f"[TTS Setup] ERROR: Exception during TTS model/voice loading: {load_err}. TTS disabled.")
|
| 215 |
-
print(traceback.format_exc())
|
| 216 |
-
finally:
|
| 217 |
-
if sys_path_updated: # Cleanup sys.path
|
| 218 |
-
try:
|
| 219 |
-
if sys.path[0] == absolute_kokoro_path: sys.path.pop(0)
|
| 220 |
-
elif absolute_kokoro_path in sys.path: sys.path.remove(absolute_kokoro_path)
|
| 221 |
-
print(f"[TTS Setup] Cleaned up sys.path.")
|
| 222 |
-
except Exception as cleanup_err: print(f"[TTS Setup] Warning: Error cleaning sys.path: {cleanup_err}")
|
| 223 |
-
else:
|
| 224 |
-
print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
|
| 225 |
-
|
| 226 |
-
except Exception as e:
|
| 227 |
-
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
|
| 228 |
-
print(traceback.format_exc())
|
| 229 |
-
TTS_ENABLED = False; tts_model = None; voicepacks.clear()
|
| 230 |
|
| 231 |
-
# Start TTS setup thread
|
| 232 |
print("Starting TTS setup thread...")
|
| 233 |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
| 234 |
tts_setup_thread.start()
|
| 235 |
|
| 236 |
-
|
| 237 |
-
# --- Core Logic Functions (SYNCHRONOUS + @spaces.GPU) ---
|
| 238 |
-
|
| 239 |
-
# Web search remains synchronous
|
| 240 |
@lru_cache(maxsize=128)
|
| 241 |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
| 242 |
"""Synchronous web search function with caching."""
|
| 243 |
-
# (Implementation remains the same as before)
|
| 244 |
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
|
| 245 |
try:
|
| 246 |
with DDGS() as ddgs:
|
| 247 |
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
|
| 248 |
print(f"[Web Search] Found {len(results)} results.")
|
| 249 |
-
formatted = [{
|
| 250 |
-
"id": i + 1, "title": res.get("title", "No Title"),
|
| 251 |
-
"snippet": res.get("body", "No Snippet"), "url": res.get("href", "#"),
|
| 252 |
-
} for i, res in enumerate(results)]
|
| 253 |
return formatted
|
| 254 |
-
except Exception as e:
|
| 255 |
-
print(f"[Web Search] Error: {e}"); return []
|
| 256 |
|
| 257 |
-
# Prompt formatting remains the same
|
| 258 |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
| 259 |
"""Formats the prompt for the LLM."""
|
| 260 |
-
# (Implementation remains the same as before)
|
| 261 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 262 |
-
context_str = "\n\n".join(
|
| 263 |
-
|
| 264 |
-
) if context else "No relevant web context found."
|
| 265 |
-
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}
|
| 266 |
-
|
| 267 |
-
CONTEXT:
|
| 268 |
-
---
|
| 269 |
-
{context_str}
|
| 270 |
-
---
|
| 271 |
|
| 272 |
-
USER: {html.escape(query)}
|
| 273 |
-
|
| 274 |
-
ASSISTANT:"""
|
| 275 |
-
|
| 276 |
-
# Source formatting remains the same
|
| 277 |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
| 278 |
"""Formats search results into HTML for display."""
|
| 279 |
-
# (Implementation remains the same as before)
|
| 280 |
if not web_results: return "<div class='no-sources'>No sources found.</div>"
|
| 281 |
items_html = ""
|
| 282 |
for res in web_results:
|
| 283 |
-
title_safe = html.escape(res.get("title", "Source"))
|
| 284 |
-
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
|
| 285 |
-
url = html.escape(res.get("url", "#"))
|
| 286 |
items_html += f"""<div class='source-item'><div class='source-number'>[{res['id']}]</div><div class='source-content'><a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a><div class='source-snippet'>{snippet_safe}</div></div></div>"""
|
| 287 |
return f"<div class='sources-container'>{items_html}</div>"
|
| 288 |
|
| 289 |
-
|
| 290 |
-
# <<<--- ADD @spaces.GPU decorator AND MAKE SYNCHRONOUS --->>>
|
| 291 |
@spaces.GPU(duration=LLM_GPU_DURATION)
|
| 292 |
def generate_llm_answer(prompt: str) -> str:
|
| 293 |
"""Generates answer using the LLM (Synchronous, GPU-decorated)."""
|
| 294 |
-
if not llm_model or not llm_tokenizer:
|
| 295 |
-
print("[LLM Generate] LLM model or tokenizer not available.")
|
| 296 |
-
return "Error: Language Model is not available."
|
| 297 |
-
|
| 298 |
print(f"[LLM Generate] Requesting generation (sync, GPU) (prompt length {len(prompt)})...")
|
| 299 |
start_time = time.time()
|
| 300 |
try:
|
| 301 |
-
#
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
current_device = next(llm_model.parameters()).device
|
| 305 |
-
print(f"[LLM Generate] Model currently on device: {current_device}") # Debug device
|
| 306 |
-
|
| 307 |
-
inputs = llm_tokenizer(
|
| 308 |
-
prompt, return_tensors="pt", padding=True, truncation=True,
|
| 309 |
-
max_length=1024, return_attention_mask=True
|
| 310 |
-
).to(current_device) # Send input to model's device
|
| 311 |
-
|
| 312 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
| 318 |
-
temperature=TEMPERATURE, top_p=TOP_P,
|
| 319 |
-
pad_token_id=llm_tokenizer.eos_token_id,
|
| 320 |
-
eos_token_id=llm_tokenizer.eos_token_id,
|
| 321 |
-
do_sample=True, num_return_sequences=1
|
| 322 |
-
)
|
| 323 |
-
|
| 324 |
-
output_ids = outputs[0][inputs.input_ids.shape[1]:]
|
| 325 |
-
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
| 326 |
-
if not answer_part: answer_part = "*Model generated an empty response.*"
|
| 327 |
-
|
| 328 |
-
end_time = time.time()
|
| 329 |
-
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
| 330 |
return answer_part
|
|
|
|
| 331 |
|
| 332 |
-
except Exception as e:
|
| 333 |
-
print(f"[LLM Generate] Error: {e}")
|
| 334 |
-
print(traceback.format_exc())
|
| 335 |
-
return f"Error during answer generation: Check logs."
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
# <<<--- ADD @spaces.GPU decorator AND MAKE SYNCHRONOUS --->>>
|
| 339 |
@spaces.GPU(duration=TTS_GPU_DURATION)
|
| 340 |
def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
| 341 |
-
"""Generates speech using TTS model (Synchronous, GPU-decorated)."""
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
if not
|
| 346 |
-
print("[TTS Generate] Skipping: Invalid or empty text.")
|
| 347 |
-
return None
|
| 348 |
|
| 349 |
-
print(f"[TTS Generate] Requesting speech (sync, GPU) (
|
| 350 |
start_time = time.time()
|
| 351 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
try:
|
|
|
|
| 353 |
actual_voice_id = voice_id
|
| 354 |
if voice_id not in voicepacks:
|
| 355 |
-
print(f"[TTS Generate]
|
| 356 |
actual_voice_id = 'af'
|
| 357 |
-
if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af'
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL)
|
| 362 |
-
clean_text = re.sub(r'`[^`]*`', '', clean_text)
|
| 363 |
-
clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE)
|
| 364 |
-
clean_text = re.sub(r'[\*#_]', '', clean_text)
|
| 365 |
-
clean_text = html.unescape(clean_text)
|
| 366 |
-
clean_text = ' '.join(clean_text.split())
|
| 367 |
|
|
|
|
|
|
|
|
|
|
| 368 |
if not clean_text: print("[TTS Generate] Skipping: Text empty after cleaning."); return None
|
| 369 |
|
|
|
|
| 370 |
if len(clean_text) > MAX_TTS_CHARS:
|
| 371 |
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
| 372 |
-
clean_text = clean_text[:MAX_TTS_CHARS]
|
| 373 |
-
last_punct = max(clean_text.rfind(p) for p in '.?!; ')
|
| 374 |
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
| 375 |
clean_text += "..."
|
| 376 |
|
| 377 |
-
|
|
|
|
|
|
|
| 378 |
gen_func = globals()['generate_tts_internal']
|
| 379 |
-
|
| 380 |
|
| 381 |
-
# *** Crucial for ZeroGPU: Move TTS model and voicepack to CUDA within the decorated function ***
|
| 382 |
-
current_device = 'cuda' # Assume GPU is attached by decorator
|
| 383 |
try:
|
| 384 |
-
|
|
|
|
| 385 |
tts_model.to(current_device)
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
elif isinstance(voice_pack_data, torch.Tensor):
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
#
|
| 396 |
-
audio_data,
|
| 397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
finally:
|
| 399 |
-
#
|
| 400 |
-
# ZeroGPU might handle this, but explicit move-back can be safer if running locally too
|
| 401 |
try:
|
| 402 |
print("[TTS Generate] Moving TTS model back to CPU...")
|
| 403 |
-
tts_model.to('cpu')
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
elif isinstance(audio_data, np.ndarray):
|
| 412 |
-
|
|
|
|
| 413 |
audio_np = audio_np.flatten().astype(np.float32)
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s.
|
| 417 |
-
|
|
|
|
|
|
|
| 418 |
|
| 419 |
except Exception as e:
|
| 420 |
-
print(f"[TTS Generate]
|
| 421 |
-
print(traceback.format_exc())
|
| 422 |
-
return None
|
| 423 |
|
| 424 |
-
# Voice ID mapping remains same
|
| 425 |
def get_voice_id_from_display(voice_display_name: str) -> str:
|
|
|
|
| 426 |
return VOICE_CHOICES.get(voice_display_name, 'af')
|
| 427 |
|
| 428 |
-
|
| 429 |
-
# --- Gradio Interaction Logic (SYNCHRONOUS) ---
|
| 430 |
ChatHistoryType = List[Dict[str, Optional[str]]]
|
| 431 |
|
| 432 |
def handle_interaction(
|
| 433 |
query: str,
|
| 434 |
history: ChatHistoryType,
|
| 435 |
selected_voice_display_name: str
|
| 436 |
-
) -> Tuple[ChatHistoryType, str, str, Optional[Tuple[int, np.ndarray]], Any]:
|
| 437 |
"""Synchronous function to handle user queries for ZeroGPU."""
|
| 438 |
-
print(f"\n--- Handling Query (Sync) ---")
|
| 439 |
-
query = query.strip()
|
| 440 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
|
|
|
| 441 |
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
return history, "*Please enter a non-empty query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
|
| 446 |
-
|
| 447 |
-
# Initial state updates (won't be seen until the end in Gradio)
|
| 448 |
-
current_history: ChatHistoryType = history + [{"role": "user", "content": query}]
|
| 449 |
-
current_history.append({"role": "assistant", "content": "*Processing... Please wait.*"}) # Placeholder
|
| 450 |
-
status_update = "*Processing... Please wait.*"
|
| 451 |
-
sources_html = "<div class='searching'><span>Searching & Processing...</span></div>"
|
| 452 |
-
audio_data = None
|
| 453 |
-
button_update = gr.Button(value="Processing...", interactive=False) # Disabled during processing
|
| 454 |
|
| 455 |
-
# --- Start Blocking Operations ---
|
| 456 |
try:
|
| 457 |
-
|
| 458 |
-
print("[Handler]
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
# 2. Generate LLM Answer (Sync, Decorated)
|
| 463 |
-
print("[Handler] Generating LLM answer...")
|
| 464 |
-
status_update = "*Generating answer...*" # Update status text
|
| 465 |
-
# (UI won't update here yet)
|
| 466 |
llm_prompt = format_llm_prompt(query, web_results)
|
| 467 |
-
final_answer = generate_llm_answer(llm_prompt)
|
| 468 |
-
status_update = final_answer
|
| 469 |
|
| 470 |
-
# 3. Generate TTS Speech (Sync, Decorated, Optional)
|
| 471 |
tts_status_message = ""
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
# (UI won't update here yet)
|
| 476 |
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
| 477 |
-
audio_data = generate_tts_speech(final_answer, voice_id) #
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
final_answer_with_status = final_answer + tts_status_message
|
| 486 |
status_update = final_answer_with_status
|
| 487 |
-
current_history[-1]["content"] = final_answer_with_status # Update history
|
| 488 |
|
| 489 |
-
button_update = gr.Button(value="Search", interactive=True)
|
| 490 |
print("--- Query Handling Complete (Sync) ---")
|
| 491 |
|
| 492 |
except Exception as e:
|
| 493 |
-
print(f"[Handler] Error
|
| 494 |
-
|
| 495 |
-
error_message =
|
| 496 |
-
|
| 497 |
-
status_update = error_message
|
| 498 |
-
sources_html = "<div class='error'>Request failed.</div>"
|
| 499 |
-
audio_data = None
|
| 500 |
-
button_update = gr.Button(value="Search", interactive=True) # Re-enable button on error
|
| 501 |
-
|
| 502 |
-
# Return the final state tuple for all outputs
|
| 503 |
-
return current_history, status_update, sources_html, audio_data, button_update
|
| 504 |
|
|
|
|
|
|
|
| 505 |
|
| 506 |
# --- Gradio UI Definition ---
|
| 507 |
-
# (CSS remains the same)
|
| 508 |
css = """
|
| 509 |
/* ... [Your existing refined CSS] ... */
|
| 510 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
|
@@ -523,17 +375,17 @@ css = """
|
|
| 523 |
.search-box button:hover { background: #1d4ed8 !important; }
|
| 524 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
| 525 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
| 526 |
-
.answer-box {
|
| 527 |
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
|
| 528 |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
| 529 |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
| 530 |
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
|
| 531 |
.sources-container { margin-top: 0; }
|
| 532 |
-
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6;
|
| 533 |
.source-item:last-child { border-bottom: none; }
|
| 534 |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
| 535 |
-
.source-content { flex: 1; min-width: 0;}
|
| 536 |
-
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px;
|
| 537 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
| 538 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
| 539 |
.chat-history { max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
|
@@ -542,25 +394,13 @@ css = """
|
|
| 542 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
| 543 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
| 544 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
| 545 |
-
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important;
|
| 546 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
| 547 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
| 548 |
-
|
| 549 |
-
.markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; }
|
| 550 |
-
.markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;}
|
| 551 |
-
.markdown-content h3 { font-size: 1.2em !important; }
|
| 552 |
-
.markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; }
|
| 553 |
-
.markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; }
|
| 554 |
-
.markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; }
|
| 555 |
-
.markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;}
|
| 556 |
-
.markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;}
|
| 557 |
-
.markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; }
|
| 558 |
-
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
|
| 559 |
-
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
| 560 |
-
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
| 561 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
| 562 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
| 563 |
-
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important;
|
| 564 |
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;}
|
| 565 |
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
|
| 566 |
.audio-player audio { width: 100% !important; }
|
|
@@ -570,119 +410,35 @@ css = """
|
|
| 570 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
| 571 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
| 572 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
| 573 |
-
/* Dark Mode Styles */
|
| 574 |
.dark .gradio-container { background-color: #111827 !important; }
|
| 575 |
-
|
| 576 |
-
.dark #header h3 { color: #9ca3af; }
|
| 577 |
-
.dark .search-container { background: #1f2937; border-color: #374151; }
|
| 578 |
-
.dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; }
|
| 579 |
-
.dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; }
|
| 580 |
-
.dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; }
|
| 581 |
-
.dark .search-box button { background: #3b82f6 !important; }
|
| 582 |
-
.dark .search-box button:hover { background: #2563eb !important; }
|
| 583 |
-
.dark .search-box button:disabled { background: #4b5563 !important; }
|
| 584 |
-
.dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; }
|
| 585 |
-
.dark .answer-box p { color: #d1d5db; }
|
| 586 |
-
.dark .answer-box code { background: #374151; color: #9ca3af; }
|
| 587 |
-
.dark .sources-box { background: #1f2937; border-color: #374151; }
|
| 588 |
-
.dark .sources-box h3 { color: #f9fafb; }
|
| 589 |
-
.dark .source-item { border-bottom-color: #374151; }
|
| 590 |
-
.dark .source-item:hover { background-color: #374151; }
|
| 591 |
-
.dark .source-number { color: #9ca3af; }
|
| 592 |
-
.dark .source-title { color: #60a5fa; }
|
| 593 |
-
.dark .source-title:hover { color: #93c5fd; }
|
| 594 |
-
.dark .source-snippet { color: #d1d5db; }
|
| 595 |
-
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;}
|
| 596 |
-
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
|
| 597 |
-
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
|
| 598 |
-
.dark .examples-container { background: #374151; border-color: #4b5563; }
|
| 599 |
-
.dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; }
|
| 600 |
-
.dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; }
|
| 601 |
-
.dark .markdown-content { color: #d1d5db !important; }
|
| 602 |
-
.dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; }
|
| 603 |
-
.dark .markdown-content a { color: #60a5fa !important; }
|
| 604 |
-
.dark .markdown-content a:hover { color: #93c5fd !important; }
|
| 605 |
-
.dark .markdown-content code { background: #374151 !important; color: #9ca3af; }
|
| 606 |
-
.dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;}
|
| 607 |
-
.dark .markdown-content pre code { background: transparent !important; }
|
| 608 |
-
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
|
| 609 |
-
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
| 610 |
-
.dark .markdown-content th { background: #374151 !important; }
|
| 611 |
-
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
| 612 |
-
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
| 613 |
-
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
| 614 |
-
.dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; }
|
| 615 |
-
.dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; }
|
| 616 |
-
.dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; }
|
| 617 |
-
.dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; }
|
| 618 |
-
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
|
| 619 |
-
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
|
| 620 |
-
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
| 621 |
"""
|
| 622 |
|
| 623 |
with gr.Blocks(title="AI Search Assistant (ZeroGPU Sync)", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
| 624 |
chat_history_state = gr.State([])
|
| 625 |
-
|
| 626 |
with gr.Column():
|
| 627 |
-
with gr.Column(elem_id="header"):
|
| 628 |
-
gr.Markdown("# 🔍 AI Search Assistant (ZeroGPU Version)")
|
| 629 |
-
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
| 630 |
-
gr.Markdown("*(UI will block during processing for ZeroGPU compatibility)*")
|
| 631 |
-
|
| 632 |
with gr.Column(elem_classes="search-container"):
|
| 633 |
with gr.Row(elem_classes="search-box"):
|
| 634 |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
| 635 |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
| 636 |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
| 637 |
-
|
| 638 |
with gr.Row(elem_classes="results-container"):
|
| 639 |
with gr.Column(scale=3):
|
| 640 |
-
chatbot_display = gr.Chatbot(
|
| 641 |
-
|
| 642 |
-
elem_classes="chat-history", type="messages", show_label=False,
|
| 643 |
-
avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png")
|
| 644 |
-
)
|
| 645 |
-
# This Markdown will only show the *final* status/answer text
|
| 646 |
-
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
|
| 647 |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
| 648 |
-
|
| 649 |
with gr.Column(scale=2):
|
| 650 |
-
with gr.Column(elem_classes="sources-box"):
|
| 651 |
-
|
| 652 |
-
sources_output_html = gr.HTML(value="<div class='no-sources'>Sources will appear here.</div>")
|
| 653 |
-
|
| 654 |
-
with gr.Row(elem_classes="examples-container"):
|
| 655 |
-
gr.Examples(
|
| 656 |
-
examples=[ "Latest news about renewable energy", "Explain Large Language Models (LLMs)",
|
| 657 |
-
"Symptoms and prevention tips for the flu", "Compare Python and JavaScript",
|
| 658 |
-
"Summarize the Paris Agreement", ],
|
| 659 |
-
inputs=search_input, label="Try these examples:",
|
| 660 |
-
)
|
| 661 |
-
|
| 662 |
-
# --- Event Handling Setup (Synchronous) ---
|
| 663 |
event_inputs = [search_input, chat_history_state, voice_select]
|
| 664 |
-
event_outputs = [ chatbot_display, answer_status_output, sources_output_html,
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
# Connect the SYNCHRONOUS handle_interaction function directly
|
| 668 |
-
search_btn.click(
|
| 669 |
-
fn=handle_interaction, # Use the synchronous handler
|
| 670 |
-
inputs=event_inputs,
|
| 671 |
-
outputs=event_outputs
|
| 672 |
-
)
|
| 673 |
-
search_input.submit(
|
| 674 |
-
fn=handle_interaction, # Use the synchronous handler
|
| 675 |
-
inputs=event_inputs,
|
| 676 |
-
outputs=event_outputs
|
| 677 |
-
)
|
| 678 |
|
| 679 |
-
# --- Main Execution ---
|
| 680 |
if __name__ == "__main__":
|
| 681 |
print("Starting Gradio application (Synchronous for ZeroGPU)...")
|
| 682 |
-
#
|
| 683 |
-
|
| 684 |
-
demo.queue(max_size=20).launch(
|
| 685 |
-
debug=True,
|
| 686 |
-
share=True,
|
| 687 |
-
)
|
| 688 |
print("Gradio application stopped.")
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
from typing import List, Dict, Tuple, Any, Optional, Union
|
| 12 |
from functools import lru_cache
|
| 13 |
+
# No asyncio needed
|
| 14 |
import threading
|
| 15 |
+
# No ThreadPoolExecutor needed
|
| 16 |
import warnings
|
| 17 |
import traceback # For detailed error logging
|
| 18 |
import re # For text cleaning
|
|
|
|
| 30 |
TEMPERATURE = 0.7
|
| 31 |
TOP_P = 0.95
|
| 32 |
KOKORO_PATH = 'Kokoro-82M'
|
| 33 |
+
LLM_GPU_DURATION = 120 # Seconds
|
| 34 |
+
TTS_GPU_DURATION = 60 # Seconds
|
|
|
|
| 35 |
|
| 36 |
# --- Initialization ---
|
|
|
|
| 37 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
| 38 |
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
| 39 |
|
| 40 |
# --- LLM Initialization ---
|
| 41 |
llm_model: Optional[AutoModelForCausalLM] = None
|
| 42 |
llm_tokenizer: Optional[AutoTokenizer] = None
|
|
|
|
|
|
|
| 43 |
try:
|
| 44 |
print("[LLM Init] Initializing Language Model...")
|
| 45 |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 46 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
| 47 |
+
llm_device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
| 48 |
torch_dtype = torch.float16 if llm_device == "cuda" else torch.float32
|
|
|
|
| 49 |
device_map = "auto"
|
| 50 |
print(f"[LLM Init] Preparing model load (target device via ZeroGPU: cuda, dtype={torch_dtype})")
|
|
|
|
| 51 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
+
MODEL_NAME, device_map=device_map, low_cpu_mem_usage=True, torch_dtype=torch_dtype,
|
|
|
|
|
|
|
|
|
|
| 53 |
)
|
| 54 |
+
print(f"[LLM Init] LLM loaded configuration successfully.")
|
| 55 |
llm_model.eval()
|
|
|
|
| 56 |
except Exception as e:
|
| 57 |
print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}")
|
| 58 |
+
print(traceback.format_exc()); llm_model = None; llm_tokenizer = None
|
|
|
|
|
|
|
| 59 |
print("[LLM Init] LLM features will be unavailable.")
|
| 60 |
|
|
|
|
| 61 |
# --- TTS Initialization ---
|
| 62 |
+
VOICE_CHOICES = { '🇺🇸 Female (Default)': 'af', '🇺🇸 Bella': 'af_bella', '🇺🇸 Sarah': 'af_sarah', '🇺🇸 Nicole': 'af_nicole' }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
TTS_ENABLED = False
|
| 64 |
tts_model: Optional[Any] = None
|
| 65 |
voicepacks: Dict[str, Any] = {}
|
|
|
|
| 70 |
print(f"Running command: {' '.join(cmd)}")
|
| 71 |
try:
|
| 72 |
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
|
| 73 |
+
# Print output more selectively
|
| 74 |
if not check or result.returncode != 0:
|
| 75 |
+
if result.stdout: print(f" Stdout: {result.stdout.strip()}")
|
| 76 |
+
if result.stderr: print(f" Stderr: {result.stderr.strip()}")
|
| 77 |
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
|
| 78 |
+
print(f" Command successful.")
|
| 79 |
return result
|
| 80 |
+
except FileNotFoundError: print(f" Error: Command not found - {cmd[0]}"); raise
|
| 81 |
+
except subprocess.TimeoutExpired: print(f" Error: Command timed out - {' '.join(cmd)}"); raise
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
except subprocess.CalledProcessError as e:
|
| 83 |
print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})")
|
| 84 |
if e.stdout: print(f" Stdout: {e.stdout.strip()}")
|
|
|
|
| 86 |
raise
|
| 87 |
|
| 88 |
def setup_tts_task():
|
| 89 |
+
"""Initializes Kokoro TTS model and dependencies (runs in background)."""
|
| 90 |
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
| 91 |
print("[TTS Setup] Starting background initialization...")
|
| 92 |
+
tts_device_target = "cuda" # Target device when GPU is attached by decorator
|
| 93 |
+
print(f"[TTS Setup] Target device for TTS model (via @spaces.GPU): {tts_device_target}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
can_sudo = shutil.which('sudo') is not None
|
| 95 |
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
| 96 |
absolute_kokoro_path = os.path.abspath(KOKORO_PATH)
|
|
|
|
| 97 |
try:
|
| 98 |
# 1. Clone/Update Repo
|
| 99 |
if not os.path.exists(absolute_kokoro_path):
|
| 100 |
+
print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...")
|
| 101 |
+
try: _run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
|
| 102 |
+
except Exception as lfs_err: print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}")
|
| 103 |
+
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path])
|
| 104 |
+
try: _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
|
| 105 |
+
except Exception as lfs_pull_err: print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
|
| 106 |
+
else: print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# 2. Install espeak
|
| 109 |
print("[TTS Setup] Checking/Installing espeak...")
|
| 110 |
+
try:
|
| 111 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
|
| 112 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
|
| 113 |
+
print("[TTS Setup] espeak-ng installed or already present.")
|
| 114 |
except Exception:
|
| 115 |
+
print("[TTS Setup] espeak-ng installation failed, trying espeak...")
|
| 116 |
+
try: _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak']); print("[TTS Setup] espeak installed or already present.")
|
| 117 |
+
except Exception as espeak_err: print(f"[TTS Setup] ERROR: Failed to install espeak: {espeak_err}. TTS disabled."); return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
# 3. Load Kokoro Model and Voices
|
| 120 |
sys_path_updated = False
|
| 121 |
if os.path.exists(absolute_kokoro_path):
|
| 122 |
+
print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}");
|
| 123 |
+
try: print(f"[TTS Setup] Contents: {os.listdir(absolute_kokoro_path)}")
|
| 124 |
+
except OSError as list_err: print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}")
|
| 125 |
+
if absolute_kokoro_path not in sys.path: sys.path.insert(0, absolute_kokoro_path); sys_path_updated = True; print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.")
|
| 126 |
+
try:
|
| 127 |
+
print("[TTS Setup] Attempting to import Kokoro modules...")
|
| 128 |
+
from models import build_model
|
| 129 |
+
from kokoro import generate as generate_tts_internal
|
| 130 |
+
print("[TTS Setup] Kokoro modules imported successfully.")
|
| 131 |
+
globals()['build_model'] = build_model; globals()['generate_tts_internal'] = generate_tts_internal
|
| 132 |
+
model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth')
|
| 133 |
+
if not os.path.exists(model_file): print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled."); return
|
| 134 |
+
print(f"[TTS Setup] Loading TTS model config from {model_file} (to CPU first)...")
|
| 135 |
+
tts_model = build_model(model_file, 'cpu'); tts_model.eval(); print("[TTS Setup] TTS model structure loaded (CPU).")
|
| 136 |
+
loaded_voices = 0
|
| 137 |
+
for voice_name, voice_id in VOICE_CHOICES.items():
|
| 138 |
+
vp_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
|
| 139 |
+
if os.path.exists(vp_path):
|
| 140 |
+
try: voicepacks[voice_id] = torch.load(vp_path, map_location='cpu'); loaded_voices += 1; print(f"[TTS Setup] Loaded voice: {voice_id} ({voice_name}) to CPU")
|
| 141 |
+
except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
| 142 |
+
else: print(f"[TTS Setup] Info: Voice file {vp_path} not found.")
|
| 143 |
+
if loaded_voices == 0: print("[TTS Setup] ERROR: No voicepacks loaded. TTS disabled."); tts_model = None; return
|
| 144 |
+
TTS_ENABLED = True; print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
| 145 |
+
except ImportError as ie: print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}."); print(traceback.format_exc())
|
| 146 |
+
except Exception as load_err: print(f"[TTS Setup] ERROR: Exception during TTS loading: {load_err}. TTS disabled."); print(traceback.format_exc())
|
| 147 |
+
finally:
|
| 148 |
+
if sys_path_updated: # Cleanup sys.path
|
| 149 |
+
try:
|
| 150 |
+
if sys.path[0] == absolute_kokoro_path: sys.path.pop(0)
|
| 151 |
+
elif absolute_kokoro_path in sys.path: sys.path.remove(absolute_kokoro_path)
|
| 152 |
+
print(f"[TTS Setup] Cleaned up sys.path.")
|
| 153 |
+
except Exception as cleanup_err: print(f"[TTS Setup] Warning: Error cleaning sys.path: {cleanup_err}")
|
| 154 |
+
else: print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
|
| 155 |
+
except Exception as e: print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}"); print(traceback.format_exc()); TTS_ENABLED = False; tts_model = None; voicepacks.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
|
|
|
| 157 |
print("Starting TTS setup thread...")
|
| 158 |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
| 159 |
tts_setup_thread.start()
|
| 160 |
|
| 161 |
+
# --- Core Logic Functions (Synchronous + @spaces.GPU) ---
|
|
|
|
|
|
|
|
|
|
| 162 |
@lru_cache(maxsize=128)
|
| 163 |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
| 164 |
"""Synchronous web search function with caching."""
|
|
|
|
| 165 |
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
|
| 166 |
try:
|
| 167 |
with DDGS() as ddgs:
|
| 168 |
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
|
| 169 |
print(f"[Web Search] Found {len(results)} results.")
|
| 170 |
+
formatted = [{"id": i + 1, "title": res.get("title", "No Title"), "snippet": res.get("body", "No Snippet"), "url": res.get("href", "#")} for i, res in enumerate(results)]
|
|
|
|
|
|
|
|
|
|
| 171 |
return formatted
|
| 172 |
+
except Exception as e: print(f"[Web Search] Error: {e}"); return []
|
|
|
|
| 173 |
|
|
|
|
| 174 |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
| 175 |
"""Formats the prompt for the LLM."""
|
|
|
|
| 176 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 177 |
+
context_str = "\n\n".join([f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]) if context else "No relevant web context found."
|
| 178 |
+
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}\n\nCONTEXT:\n---\n{context_str}\n---\n\nUSER: {html.escape(query)}\n\nASSISTANT:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
| 181 |
"""Formats search results into HTML for display."""
|
|
|
|
| 182 |
if not web_results: return "<div class='no-sources'>No sources found.</div>"
|
| 183 |
items_html = ""
|
| 184 |
for res in web_results:
|
| 185 |
+
title_safe = html.escape(res.get("title", "Source")); snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")); url = html.escape(res.get("url", "#"))
|
|
|
|
|
|
|
| 186 |
items_html += f"""<div class='source-item'><div class='source-number'>[{res['id']}]</div><div class='source-content'><a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a><div class='source-snippet'>{snippet_safe}</div></div></div>"""
|
| 187 |
return f"<div class='sources-container'>{items_html}</div>"
|
| 188 |
|
|
|
|
|
|
|
| 189 |
@spaces.GPU(duration=LLM_GPU_DURATION)
|
| 190 |
def generate_llm_answer(prompt: str) -> str:
|
| 191 |
"""Generates answer using the LLM (Synchronous, GPU-decorated)."""
|
| 192 |
+
if not llm_model or not llm_tokenizer: print("[LLM Generate] LLM unavailable."); return "Error: Language Model unavailable."
|
|
|
|
|
|
|
|
|
|
| 193 |
print(f"[LLM Generate] Requesting generation (sync, GPU) (prompt length {len(prompt)})...")
|
| 194 |
start_time = time.time()
|
| 195 |
try:
|
| 196 |
+
# ZeroGPU context should place model on GPU here
|
| 197 |
+
current_device = next(llm_model.parameters()).device; print(f"[LLM Generate] Model device: {current_device}")
|
| 198 |
+
inputs = llm_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024, return_attention_mask=True).to(current_device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
| 200 |
+
outputs = llm_model.generate(inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, top_p=TOP_P, pad_token_id=llm_tokenizer.eos_token_id, eos_token_id=llm_tokenizer.eos_token_id, do_sample=True, num_return_sequences=1)
|
| 201 |
+
output_ids = outputs[0][inputs.input_ids.shape[1]:]; answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
| 202 |
+
if not answer_part: answer_part = "*Model generated empty response.*"
|
| 203 |
+
end_time = time.time(); print(f"[LLM Generate] Complete in {end_time - start_time:.2f}s.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
return answer_part
|
| 205 |
+
except Exception as e: print(f"[LLM Generate] Error: {e}"); print(traceback.format_exc()); return f"Error generating answer."
|
| 206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
@spaces.GPU(duration=TTS_GPU_DURATION)
|
| 208 |
def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
| 209 |
+
"""Generates speech using TTS model (Synchronous, GPU-decorated) with debugging."""
|
| 210 |
+
# 1. Check initial state
|
| 211 |
+
if not TTS_ENABLED: print("[TTS Generate] Skipping: TTS is not enabled."); return None
|
| 212 |
+
if not tts_model: print("[TTS Generate] Skipping: TTS model object is None."); return None
|
| 213 |
+
if 'generate_tts_internal' not in globals(): print("[TTS Generate] Skipping: generate_tts_internal not found."); return None
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
print(f"[TTS Generate] Requesting speech (sync, GPU) for text (len {len(text)}), req voice '{voice_id}'...")
|
| 216 |
start_time = time.time()
|
| 217 |
|
| 218 |
+
# 2. Check input text validity
|
| 219 |
+
if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model"):
|
| 220 |
+
print(f"[TTS Generate] Skipping: Invalid/empty text: '{text[:100]}...'")
|
| 221 |
+
return None
|
| 222 |
+
|
| 223 |
try:
|
| 224 |
+
# 3. Verify and select voice pack
|
| 225 |
actual_voice_id = voice_id
|
| 226 |
if voice_id not in voicepacks:
|
| 227 |
+
print(f"[TTS Generate] Warn: Voice '{voice_id}' missing. Trying 'af'. Available: {list(voicepacks.keys())}")
|
| 228 |
actual_voice_id = 'af'
|
| 229 |
+
if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af' missing."); return None
|
| 230 |
+
print(f"[TTS Generate] Using voice_id: {actual_voice_id}")
|
| 231 |
+
voice_pack_data = voicepacks[actual_voice_id]
|
| 232 |
+
if voice_pack_data is None: print(f"[TTS Generate] Error: Voice pack data for '{actual_voice_id}' is None."); return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
# 4. Clean text
|
| 235 |
+
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text); clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL); clean_text = re.sub(r'`[^`]*`', '', clean_text); clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE); clean_text = re.sub(r'[\*#_]', '', clean_text); clean_text = html.unescape(clean_text); clean_text = ' '.join(clean_text.split())
|
| 236 |
+
print(f"[TTS Generate] Cleaned text (first 100): '{clean_text[:100]}...'")
|
| 237 |
if not clean_text: print("[TTS Generate] Skipping: Text empty after cleaning."); return None
|
| 238 |
|
| 239 |
+
# 5. Truncate text
|
| 240 |
if len(clean_text) > MAX_TTS_CHARS:
|
| 241 |
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
| 242 |
+
clean_text = clean_text[:MAX_TTS_CHARS]; last_punct = max(clean_text.rfind(p) for p in '.?!; ');
|
|
|
|
| 243 |
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
| 244 |
clean_text += "..."
|
| 245 |
|
| 246 |
+
# 6. Prepare for GPU execution
|
| 247 |
+
current_device = 'cuda' # Assume GPU attached by decorator
|
| 248 |
+
moved_voice_pack = None
|
| 249 |
gen_func = globals()['generate_tts_internal']
|
| 250 |
+
print(f"[TTS Generate] Preparing for generation on device '{current_device}'...")
|
| 251 |
|
|
|
|
|
|
|
| 252 |
try:
|
| 253 |
+
# 7. Move model and data to GPU
|
| 254 |
+
print(f" TTS model device before move: {tts_model.device if hasattr(tts_model, 'device') else 'N/A'}")
|
| 255 |
tts_model.to(current_device)
|
| 256 |
+
print(f" TTS model device after move: {tts_model.device}")
|
| 257 |
+
print(" Moving voice pack data to CUDA...")
|
| 258 |
+
if isinstance(voice_pack_data, dict): moved_voice_pack = {k: v.to(current_device) if isinstance(v, torch.Tensor) else v for k, v in voice_pack_data.items()}
|
| 259 |
+
elif isinstance(voice_pack_data, torch.Tensor): moved_voice_pack = voice_pack_data.to(current_device)
|
| 260 |
+
else: moved_voice_pack = voice_pack_data
|
| 261 |
+
print(" Voice pack data moved (or assumed not tensor).")
|
| 262 |
+
|
| 263 |
+
# 8. Call the internal TTS function
|
| 264 |
+
print(f"[TTS Generate] Calling Kokoro generate function (language code 'eng')...")
|
| 265 |
+
# --- Using language code 'eng' ---
|
| 266 |
+
audio_data, sr = gen_func(tts_model, clean_text, moved_voice_pack, 'eng')
|
| 267 |
+
print(f"[TTS Generate] Kokoro function returned. Type: {type(audio_data)}, Sample Rate: {sr}")
|
| 268 |
+
|
| 269 |
+
except Exception as kokoro_err:
|
| 270 |
+
print(f"[TTS Generate] **** ERROR during Kokoro generate call ****: {kokoro_err}")
|
| 271 |
+
print(traceback.format_exc()); return None
|
| 272 |
finally:
|
| 273 |
+
# Move model back to CPU
|
|
|
|
| 274 |
try:
|
| 275 |
print("[TTS Generate] Moving TTS model back to CPU...")
|
| 276 |
+
if tts_model is not None: tts_model.to('cpu')
|
| 277 |
+
except Exception as move_back_err: print(f"[TTS Generate] Warn: Could not move TTS model back to CPU: {move_back_err}")
|
| 278 |
+
|
| 279 |
+
# 9. Process output audio data
|
| 280 |
+
if audio_data is None: print("[TTS Generate] Kokoro function returned None."); return None
|
| 281 |
+
print(f"[TTS Generate] Processing audio output. Type: {type(audio_data)}")
|
| 282 |
+
if isinstance(audio_data, torch.Tensor):
|
| 283 |
+
print(f" Original Tensor shape: {audio_data.shape}, dtype: {audio_data.dtype}, device: {audio_data.device}"); audio_np = audio_data.detach().cpu().numpy()
|
| 284 |
+
elif isinstance(audio_data, np.ndarray):
|
| 285 |
+
print(f" Original Numpy shape: {audio_data.shape}, dtype: {audio_data.dtype}"); audio_np = audio_data
|
| 286 |
+
else: print("[TTS Generate] Error: Unexpected audio data type from Kokoro."); return None
|
| 287 |
audio_np = audio_np.flatten().astype(np.float32)
|
| 288 |
+
print(f"[TTS Generate] Final Numpy Array shape: {audio_np.shape}, dtype: {audio_np.dtype}, min: {np.min(audio_np):.2f}, max: {np.max(audio_np):.2f}")
|
| 289 |
+
if np.max(np.abs(audio_np)) < 1e-4: print("[TTS Generate] Warning: Generated audio appears silent.")
|
| 290 |
+
end_time = time.time(); print(f"[TTS Generate] Audio generated successfully in {end_time - start_time:.2f}s.")
|
| 291 |
+
actual_sr = sr if isinstance(sr, int) and sr > 0 else TTS_SAMPLE_RATE
|
| 292 |
+
print(f"[TTS Generate] Returning audio tuple with SR={actual_sr}.")
|
| 293 |
+
return (actual_sr, audio_np)
|
| 294 |
|
| 295 |
except Exception as e:
|
| 296 |
+
print(f"[TTS Generate] **** UNEXPECTED ERROR in generate_tts_speech ****: {str(e)}")
|
| 297 |
+
print(traceback.format_exc()); return None
|
|
|
|
| 298 |
|
|
|
|
| 299 |
def get_voice_id_from_display(voice_display_name: str) -> str:
|
| 300 |
+
"""Maps display name to voice ID."""
|
| 301 |
return VOICE_CHOICES.get(voice_display_name, 'af')
|
| 302 |
|
| 303 |
+
# --- Gradio Interaction Logic (Synchronous) ---
|
|
|
|
| 304 |
ChatHistoryType = List[Dict[str, Optional[str]]]
|
| 305 |
|
| 306 |
def handle_interaction(
|
| 307 |
query: str,
|
| 308 |
history: ChatHistoryType,
|
| 309 |
selected_voice_display_name: str
|
| 310 |
+
) -> Tuple[ChatHistoryType, str, str, Optional[Tuple[int, np.ndarray]], Any]:
|
| 311 |
"""Synchronous function to handle user queries for ZeroGPU."""
|
| 312 |
+
print(f"\n--- Handling Query (Sync) ---"); query = query.strip()
|
|
|
|
| 313 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
| 314 |
+
if not query: print("Empty query."); return history, "*Please enter query.*", "<div class='no-sources'>Enter query.</div>", None, gr.Button(value="Search", interactive=True)
|
| 315 |
|
| 316 |
+
current_history: ChatHistoryType = history + [{"role": "user", "content": query}, {"role": "assistant", "content": "*Processing...*"}]
|
| 317 |
+
status_update = "*Processing... Please wait.*"; sources_html = "<div class='searching'><span>Searching...</span></div>"; audio_data = None
|
| 318 |
+
button_update = gr.Button(value="Processing...", interactive=False); final_answer = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
|
|
|
| 320 |
try:
|
| 321 |
+
print("[Handler] Web search..."); start_t = time.time()
|
| 322 |
+
web_results = get_web_results_sync(query); print(f"[Handler] Web search took {time.time()-start_t:.2f}s")
|
| 323 |
+
sources_html = format_sources_html(web_results)
|
| 324 |
+
|
| 325 |
+
print("[Handler] LLM generation..."); start_t = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
llm_prompt = format_llm_prompt(query, web_results)
|
| 327 |
+
final_answer = generate_llm_answer(llm_prompt); print(f"[Handler] LLM generation took {time.time()-start_t:.2f}s")
|
| 328 |
+
status_update = final_answer
|
| 329 |
|
|
|
|
| 330 |
tts_status_message = ""
|
| 331 |
+
print(f"[Handler] TTS Check: Enabled={TTS_ENABLED}, Model?={tts_model is not None}")
|
| 332 |
+
if TTS_ENABLED and tts_model is not None and not final_answer.startswith("Error"):
|
| 333 |
+
print("[Handler] TTS generation..."); start_t = time.time()
|
|
|
|
| 334 |
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
| 335 |
+
audio_data = generate_tts_speech(final_answer, voice_id) # Call decorated function
|
| 336 |
+
print(f"[Handler] TTS generation took {time.time()-start_t:.2f}s")
|
| 337 |
+
print(f"[Handler] Received audio_data: type={type(audio_data)}, shape={(audio_data[1].shape if audio_data else 'N/A')}")
|
| 338 |
+
if audio_data is None: tts_status_message = "\n\n*(Audio generation failed)*"
|
| 339 |
+
elif not TTS_ENABLED or tts_model is None:
|
| 340 |
+
tts_status_message = "\n\n*(TTS unavailable)*" if not tts_setup_thread.is_alive() else "\n\n*(TTS initializing...)*"
|
| 341 |
+
else: tts_status_message = "\n\n*(Audio skipped due to answer error)*"
|
| 342 |
+
|
| 343 |
final_answer_with_status = final_answer + tts_status_message
|
| 344 |
status_update = final_answer_with_status
|
| 345 |
+
current_history[-1]["content"] = final_answer_with_status # Update final history item
|
| 346 |
|
| 347 |
+
button_update = gr.Button(value="Search", interactive=True)
|
| 348 |
print("--- Query Handling Complete (Sync) ---")
|
| 349 |
|
| 350 |
except Exception as e:
|
| 351 |
+
print(f"[Handler] Error: {e}"); print(traceback.format_exc())
|
| 352 |
+
error_message = f"*Error: {e}*"; current_history[-1]["content"] = error_message
|
| 353 |
+
status_update = error_message; sources_html = "<div class='error'>Request failed.</div>"; audio_data = None
|
| 354 |
+
button_update = gr.Button(value="Search", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
+
print(f"[Handler] Returning: hist_len={len(current_history)}, status_len={len(status_update)}, sources_len={len(sources_html)}, audio?={audio_data is not None}, button_interact={button_update.interactive}")
|
| 357 |
+
return current_history, status_update, sources_html, audio_data, button_update
|
| 358 |
|
| 359 |
# --- Gradio UI Definition ---
|
|
|
|
| 360 |
css = """
|
| 361 |
/* ... [Your existing refined CSS] ... */
|
| 362 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
|
|
|
| 375 |
.search-box button:hover { background: #1d4ed8 !important; }
|
| 376 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
| 377 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
| 378 |
+
.answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;}
|
| 379 |
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
|
| 380 |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
| 381 |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
| 382 |
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
|
| 383 |
.sources-container { margin-top: 0; }
|
| 384 |
+
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; }
|
| 385 |
.source-item:last-child { border-bottom: none; }
|
| 386 |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
| 387 |
+
.source-content { flex: 1; min-width: 0;}
|
| 388 |
+
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
| 389 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
| 390 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
| 391 |
.chat-history { max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
|
|
|
| 394 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
| 395 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
| 396 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
| 397 |
+
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; cursor: pointer;}
|
| 398 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
| 399 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
| 400 |
+
/* ... other markdown styles ... */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
| 402 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
| 403 |
+
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
| 404 |
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;}
|
| 405 |
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
|
| 406 |
.audio-player audio { width: 100% !important; }
|
|
|
|
| 410 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
| 411 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
| 412 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
| 413 |
+
/* Dark Mode Styles (optional) */
|
| 414 |
.dark .gradio-container { background-color: #111827 !important; }
|
| 415 |
+
/* ... other dark mode rules ... */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
"""
|
| 417 |
|
| 418 |
with gr.Blocks(title="AI Search Assistant (ZeroGPU Sync)", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
| 419 |
chat_history_state = gr.State([])
|
|
|
|
| 420 |
with gr.Column():
|
| 421 |
+
with gr.Column(elem_id="header"): gr.Markdown("# 🔍 AI Search Assistant (ZeroGPU)\n### (UI blocks during processing)")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
with gr.Column(elem_classes="search-container"):
|
| 423 |
with gr.Row(elem_classes="search-box"):
|
| 424 |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
| 425 |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
| 426 |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
|
|
|
| 427 |
with gr.Row(elem_classes="results-container"):
|
| 428 |
with gr.Column(scale=3):
|
| 429 |
+
chatbot_display = gr.Chatbot(label="Conversation", bubble_full_width=True, height=500, elem_classes="chat-history", type="messages", show_label=False, avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png"))
|
| 430 |
+
answer_status_output = gr.Markdown(value="*Enter query to start.*", elem_classes="answer-box markdown-content") # Shows final text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
|
|
|
| 432 |
with gr.Column(scale=2):
|
| 433 |
+
with gr.Column(elem_classes="sources-box"): gr.Markdown("### Sources"); sources_output_html = gr.HTML(value="<div class='no-sources'>Sources appear here.</div>")
|
| 434 |
+
with gr.Row(elem_classes="examples-container"): gr.Examples(examples=["Latest AI news", "Explain LLMs", "Flu symptoms/prevention", "Python vs JS", "Paris Agreement"], inputs=search_input, label="Try examples:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
event_inputs = [search_input, chat_history_state, voice_select]
|
| 436 |
+
event_outputs = [ chatbot_display, answer_status_output, sources_output_html, audio_player, search_btn ]
|
| 437 |
+
search_btn.click(fn=handle_interaction, inputs=event_inputs, outputs=event_outputs)
|
| 438 |
+
search_input.submit(fn=handle_interaction, inputs=event_inputs, outputs=event_outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
|
|
|
|
| 440 |
if __name__ == "__main__":
|
| 441 |
print("Starting Gradio application (Synchronous for ZeroGPU)...")
|
| 442 |
+
time.sleep(1) # Wait for TTS setup thread
|
| 443 |
+
demo.queue(max_size=20).launch(debug=True, share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
print("Gradio application stopped.")
|