Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,513 +1,246 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
-
import spaces
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
-
import time
|
| 6 |
-
import torch
|
| 7 |
from datetime import datetime
|
| 8 |
-
import
|
| 9 |
-
import subprocess
|
| 10 |
-
import numpy as np
|
| 11 |
-
from typing import List, Dict, Tuple, Any
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
subprocess.run(['git', 'lfs', 'install'], check=True)
|
| 16 |
-
if not os.path.exists('Kokoro-82M'):
|
| 17 |
-
subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
|
| 23 |
-
except subprocess.CalledProcessError:
|
| 24 |
-
print("Warning: Could not install espeak. Attempting espeak-ng...")
|
| 25 |
-
try:
|
| 26 |
-
subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True)
|
| 27 |
-
except subprocess.CalledProcessError:
|
| 28 |
-
print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")
|
| 29 |
-
|
| 30 |
-
except Exception as e:
|
| 31 |
-
print(f"Warning: Initial setup error: {str(e)}")
|
| 32 |
-
print("Continuing with limited functionality...")
|
| 33 |
-
|
| 34 |
-
# --- Initialization (Do this ONCE) ---
|
| 35 |
-
|
| 36 |
-
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
| 37 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 38 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 39 |
-
# Initialize DeepSeek model
|
| 40 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
-
model_name,
|
| 42 |
-
device_map="auto",
|
| 43 |
-
offload_folder="offload",
|
| 44 |
-
low_cpu_mem_usage=True,
|
| 45 |
-
torch_dtype=torch.float16
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
# Initialize Kokoro TTS (with error handling)
|
| 49 |
-
VOICE_CHOICES = {
|
| 50 |
-
'๐บ๐ธ Female (Default)': 'af',
|
| 51 |
-
'๐บ๐ธ Bella': 'af_bella',
|
| 52 |
-
'๐บ๐ธ Sarah': 'af_sarah',
|
| 53 |
-
'๐บ๐ธ Nicole': 'af_nicole'
|
| 54 |
-
}
|
| 55 |
-
TTS_ENABLED = False
|
| 56 |
-
TTS_MODEL = None
|
| 57 |
-
VOICEPACK = None
|
| 58 |
-
|
| 59 |
-
try:
|
| 60 |
-
if os.path.exists('Kokoro-82M'):
|
| 61 |
-
import sys
|
| 62 |
-
sys.path.append('Kokoro-82M')
|
| 63 |
-
from models import build_model # type: ignore
|
| 64 |
-
from kokoro import generate # type: ignore
|
| 65 |
-
|
| 66 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 67 |
-
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
|
| 68 |
-
|
| 69 |
-
# Load default voice
|
| 70 |
-
try:
|
| 71 |
-
VOICEPACK = torch.load('Kokoro-82M/voices/af.pt', map_location=device, weights_only=True)
|
| 72 |
-
except Exception as e:
|
| 73 |
-
print(f"Warning: Could not load default voice: {e}")
|
| 74 |
-
raise
|
| 75 |
-
|
| 76 |
-
TTS_ENABLED = True
|
| 77 |
-
else:
|
| 78 |
-
print("Warning: Kokoro-82M directory not found. TTS disabled.")
|
| 79 |
-
except Exception as e:
|
| 80 |
-
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
|
| 81 |
-
TTS_ENABLED = False
|
| 82 |
-
|
| 83 |
-
def get_web_results(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
| 84 |
-
"""Get web search results using DuckDuckGo"""
|
| 85 |
try:
|
| 86 |
with DDGS() as ddgs:
|
| 87 |
-
results = list(ddgs.text(query, max_results=max_results))
|
| 88 |
-
return [
|
| 89 |
-
"title":
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
"date": result.get("published", "")
|
| 93 |
-
} for result in results]
|
| 94 |
except Exception as e:
|
| 95 |
-
|
| 96 |
-
return []
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
|
|
|
| 100 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 101 |
-
|
| 102 |
-
return f"""
|
| 103 |
-
Current Time: {current_time}
|
| 104 |
-
Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context.
|
| 105 |
Query: {query}
|
| 106 |
Web Context:
|
| 107 |
-
{
|
| 108 |
-
Provide a detailed answer in markdown format
|
| 109 |
-
Answer:"""
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
if not web_results:
|
| 114 |
-
return "<div
|
| 115 |
-
|
| 116 |
-
sources_html = "<div class='sources-
|
| 117 |
for i, res in enumerate(web_results, 1):
|
| 118 |
-
title = res["title"] or "Source"
|
| 119 |
-
date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else ""
|
| 120 |
sources_html += f"""
|
| 121 |
<div class='source-item'>
|
| 122 |
-
<
|
| 123 |
-
<
|
| 124 |
-
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
|
| 125 |
-
{date}
|
| 126 |
-
<div class='source-snippet'>{res['snippet'][:150]}...</div>
|
| 127 |
-
</div>
|
| 128 |
</div>
|
| 129 |
"""
|
| 130 |
sources_html += "</div>"
|
| 131 |
return sources_html
|
| 132 |
|
| 133 |
-
|
| 134 |
-
def
|
| 135 |
-
"""
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
# Use the pre-loaded default voicepack
|
| 171 |
-
pass
|
| 172 |
-
elif os.path.exists(voice_file):
|
| 173 |
-
# Load the selected voicepack if it exists
|
| 174 |
-
voicepack = torch.load(voice_file, map_location=device, weights_only=True)
|
| 175 |
-
else:
|
| 176 |
-
# Fall back to default 'af' if selected voicepack is missing
|
| 177 |
-
print(f"Voicepack {voice_name}.pt not found. Falling back to default 'af'.")
|
| 178 |
-
voice_file = 'Kokoro-82M/voices/af.pt'
|
| 179 |
-
if os.path.exists(voice_file):
|
| 180 |
-
voicepack = torch.load(voice_file, map_location=device, weights_only=True)
|
| 181 |
-
else:
|
| 182 |
-
print("Default voicepack 'af.pt' not found. Cannot generate audio.")
|
| 183 |
-
return None
|
| 184 |
-
|
| 185 |
-
# Clean the text
|
| 186 |
-
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
|
| 187 |
-
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
|
| 188 |
-
|
| 189 |
-
# Split long text into chunks
|
| 190 |
-
max_chars = 1000
|
| 191 |
-
chunks = []
|
| 192 |
-
if len(clean_text) > max_chars:
|
| 193 |
-
sentences = clean_text.split('.')
|
| 194 |
-
current_chunk = ""
|
| 195 |
-
for sentence in sentences:
|
| 196 |
-
if len(current_chunk) + len(sentence) + 1 < max_chars:
|
| 197 |
-
current_chunk += sentence + "."
|
| 198 |
-
else:
|
| 199 |
-
chunks.append(current_chunk.strip())
|
| 200 |
-
current_chunk = sentence + "."
|
| 201 |
-
if current_chunk:
|
| 202 |
-
chunks.append(current_chunk.strip())
|
| 203 |
-
else:
|
| 204 |
-
chunks = [clean_text]
|
| 205 |
-
|
| 206 |
-
# Generate audio for each chunk
|
| 207 |
-
audio_chunks = []
|
| 208 |
-
for chunk in chunks:
|
| 209 |
-
if chunk.strip():
|
| 210 |
-
chunk_audio, _ = generate(tts_model, chunk, voicepack, lang='a')
|
| 211 |
-
if isinstance(chunk_audio, torch.Tensor):
|
| 212 |
-
chunk_audio = chunk_audio.cpu().numpy()
|
| 213 |
-
audio_chunks.append(chunk_audio)
|
| 214 |
-
|
| 215 |
-
# Concatenate chunks
|
| 216 |
-
if audio_chunks:
|
| 217 |
-
final_audio = np.concatenate(audio_chunks) if len(audio_chunks) > 1 else audio_chunks[0]
|
| 218 |
-
return (24000, final_audio)
|
| 219 |
-
else:
|
| 220 |
-
return None
|
| 221 |
-
|
| 222 |
-
except Exception as e:
|
| 223 |
-
print(f"Error generating speech: {str(e)}")
|
| 224 |
-
return None
|
| 225 |
-
|
| 226 |
-
def process_query(query: str, history: List[List[str]], selected_voice: str = 'af'):
|
| 227 |
-
"""Process user query with streaming effect"""
|
| 228 |
-
try:
|
| 229 |
-
if history is None:
|
| 230 |
-
history = []
|
| 231 |
-
|
| 232 |
-
# Get web results first
|
| 233 |
-
web_results = get_web_results(query)
|
| 234 |
-
sources_html = format_sources(web_results)
|
| 235 |
-
|
| 236 |
-
current_history = history + [[query, "*Searching...*"]]
|
| 237 |
-
|
| 238 |
-
# Yield initial searching state
|
| 239 |
-
yield (
|
| 240 |
-
"*Searching & Thinking...*", # answer_output (Markdown)
|
| 241 |
-
sources_html, # sources_output (HTML)
|
| 242 |
-
"Searching...", # search_btn (Button)
|
| 243 |
-
current_history, # chat_history_display (Chatbot)
|
| 244 |
-
None # audio_output (Audio)
|
| 245 |
-
)
|
| 246 |
-
|
| 247 |
-
# Generate answer
|
| 248 |
-
prompt = format_prompt(query, web_results)
|
| 249 |
-
answer = generate_answer(prompt)
|
| 250 |
-
final_answer = answer.split("Answer:")[-1].strip()
|
| 251 |
-
|
| 252 |
-
# Update history before TTS
|
| 253 |
-
updated_history = history + [[query, final_answer]]
|
| 254 |
-
|
| 255 |
-
# Generate speech from the answer (only if enabled)
|
| 256 |
-
if TTS_ENABLED:
|
| 257 |
-
yield (
|
| 258 |
-
final_answer, # answer_output
|
| 259 |
-
sources_html, # sources_output
|
| 260 |
-
"Generating audio...", # search_btn
|
| 261 |
-
updated_history, # chat_history_display
|
| 262 |
-
None # audio_output
|
| 263 |
-
)
|
| 264 |
-
try:
|
| 265 |
-
audio = generate_speech_with_gpu(final_answer, selected_voice)
|
| 266 |
-
if audio is None:
|
| 267 |
-
final_answer += "\n\n*Audio generation failed. The voicepack may be missing or incompatible.*"
|
| 268 |
-
except Exception as e:
|
| 269 |
-
final_answer += f"\n\n*Error generating audio: {str(e)}*"
|
| 270 |
-
audio = None
|
| 271 |
-
else:
|
| 272 |
-
final_answer += "\n\n*TTS is disabled. Audio not available.*"
|
| 273 |
-
audio = None
|
| 274 |
-
|
| 275 |
-
# Yield final result
|
| 276 |
-
yield (
|
| 277 |
-
final_answer, # answer_output
|
| 278 |
-
sources_html, # sources_output
|
| 279 |
-
"Search", # search_btn
|
| 280 |
-
updated_history, # chat_history_display
|
| 281 |
-
audio if audio is not None else None # audio_output
|
| 282 |
-
)
|
| 283 |
-
|
| 284 |
-
except Exception as e:
|
| 285 |
-
error_message = str(e)
|
| 286 |
-
if "GPU quota" in error_message:
|
| 287 |
-
error_message = "โ ๏ธ GPU quota exceeded. Please try again later when the daily quota resets."
|
| 288 |
-
yield (
|
| 289 |
-
f"Error: {error_message}", # answer_output
|
| 290 |
-
sources_html, # sources_output
|
| 291 |
-
"Search", # search_btn
|
| 292 |
-
history + [[query, f"*Error: {error_message}*"]], # chat_history_display
|
| 293 |
-
None # audio_output
|
| 294 |
-
)
|
| 295 |
-
|
| 296 |
-
# Update the CSS for better contrast and readability
|
| 297 |
css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
.gradio-container {
|
| 299 |
-
max-width:
|
| 300 |
-
|
|
|
|
| 301 |
}
|
| 302 |
-
|
| 303 |
text-align: center;
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
color: white;
|
| 309 |
-
}
|
| 310 |
-
#header h1 {
|
| 311 |
-
color: white;
|
| 312 |
-
font-size: 2.5rem;
|
| 313 |
-
margin-bottom: 0.5rem;
|
| 314 |
}
|
| 315 |
-
|
| 316 |
-
|
|
|
|
|
|
|
| 317 |
}
|
| 318 |
-
.
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
|
| 322 |
-
padding: 1rem;
|
| 323 |
-
margin-bottom: 1rem;
|
| 324 |
}
|
| 325 |
.search-box {
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
border-radius:
|
| 329 |
-
|
| 330 |
-
}
|
| 331 |
-
.search-box input
|
| 332 |
-
background: #
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
border-radius:
|
| 336 |
-
}
|
| 337 |
-
.search-box input[type="text"]::placeholder {
|
| 338 |
-
color: #a8a9ab !important;
|
| 339 |
}
|
| 340 |
.search-box button {
|
| 341 |
-
background: #
|
| 342 |
border: none !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
}
|
| 344 |
.results-container {
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
margin-top: 1rem;
|
| 349 |
}
|
| 350 |
.answer-box {
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
padding:
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
}
|
| 357 |
-
.answer-box
|
| 358 |
-
color: #
|
| 359 |
line-height: 1.6;
|
| 360 |
}
|
| 361 |
-
.sources-
|
| 362 |
-
|
| 363 |
-
background: #
|
| 364 |
-
|
| 365 |
-
|
|
|
|
| 366 |
}
|
| 367 |
.source-item {
|
| 368 |
-
|
| 369 |
-
padding: 12px;
|
| 370 |
-
margin: 8px 0;
|
| 371 |
-
background: #3a3b3e;
|
| 372 |
-
border-radius: 8px;
|
| 373 |
-
transition: all 0.2s;
|
| 374 |
-
}
|
| 375 |
-
.source-item:hover {
|
| 376 |
-
background: #4a4b4e;
|
| 377 |
}
|
| 378 |
.source-number {
|
|
|
|
| 379 |
font-weight: bold;
|
| 380 |
-
margin-right:
|
| 381 |
-
color: #60a5fa;
|
| 382 |
-
}
|
| 383 |
-
.source-content {
|
| 384 |
-
flex: 1;
|
| 385 |
}
|
| 386 |
-
.source-
|
| 387 |
-
color: #
|
| 388 |
-
font-weight: 500;
|
| 389 |
text-decoration: none;
|
| 390 |
-
display: block;
|
| 391 |
-
margin-bottom: 4px;
|
| 392 |
-
}
|
| 393 |
-
.source-date {
|
| 394 |
-
color: #a8a9ab;
|
| 395 |
-
font-size: 0.9em;
|
| 396 |
-
margin-left: 8px;
|
| 397 |
}
|
| 398 |
-
.source-
|
| 399 |
-
|
| 400 |
-
font-size: 0.9em;
|
| 401 |
-
line-height: 1.4;
|
| 402 |
}
|
| 403 |
-
.
|
| 404 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
overflow-y: auto;
|
| 406 |
-
|
| 407 |
-
background: #2c2d30;
|
| 408 |
-
border-radius: 8px;
|
| 409 |
-
margin-top: 1rem;
|
| 410 |
-
}
|
| 411 |
-
.examples-container {
|
| 412 |
-
background: #2c2d30;
|
| 413 |
-
border-radius: 8px;
|
| 414 |
-
padding: 1rem;
|
| 415 |
-
margin-top: 1rem;
|
| 416 |
-
}
|
| 417 |
-
.examples-container button {
|
| 418 |
-
background: #3a3b3e !important;
|
| 419 |
-
border: 1px solid #4a4b4e !important;
|
| 420 |
-
color: #e5e7eb !important;
|
| 421 |
-
}
|
| 422 |
-
.markdown-content {
|
| 423 |
-
color: #e5e7eb !important;
|
| 424 |
-
}
|
| 425 |
-
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
|
| 426 |
-
color: white !important;
|
| 427 |
-
}
|
| 428 |
-
.markdown-content a {
|
| 429 |
-
color: #60a5fa !important;
|
| 430 |
-
}
|
| 431 |
-
.accordion {
|
| 432 |
-
background: #2c2d30 !important;
|
| 433 |
-
border-radius: 8px !important;
|
| 434 |
-
margin-top: 1rem !important;
|
| 435 |
-
}
|
| 436 |
-
.voice-selector {
|
| 437 |
-
margin-top: 1rem;
|
| 438 |
-
background: #2c2d30;
|
| 439 |
-
border-radius: 8px;
|
| 440 |
-
padding: 0.5rem;
|
| 441 |
-
}
|
| 442 |
-
.voice-selector select {
|
| 443 |
-
background: #3a3b3e !important;
|
| 444 |
-
color: white !important;
|
| 445 |
-
border: 1px solid #4a4b4e !important;
|
| 446 |
}
|
| 447 |
"""
|
| 448 |
|
| 449 |
-
#
|
| 450 |
-
with gr.Blocks(title="
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
gr.Markdown("
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player")
|
| 479 |
-
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
| 480 |
-
chat_history_display = gr.Chatbot(elem_classes="chat-history")
|
| 481 |
-
with gr.Column(scale=1):
|
| 482 |
-
with gr.Column(elem_classes="sources-box"):
|
| 483 |
-
gr.Markdown("### Sources")
|
| 484 |
-
sources_output = gr.HTML()
|
| 485 |
-
|
| 486 |
-
with gr.Row(elem_classes="examples-container"):
|
| 487 |
-
gr.Examples(
|
| 488 |
-
examples=[
|
| 489 |
-
"musk explores blockchain for doge",
|
| 490 |
-
"nvidia to launch new gaming card",
|
| 491 |
-
"What are the best practices for sustainable living?",
|
| 492 |
-
"tesla mistaken for asteroid"
|
| 493 |
-
],
|
| 494 |
-
inputs=search_input,
|
| 495 |
-
label="Try these examples"
|
| 496 |
-
)
|
| 497 |
|
| 498 |
-
# Handle interactions
|
| 499 |
search_btn.click(
|
| 500 |
-
fn=
|
| 501 |
-
inputs=[search_input,
|
| 502 |
-
outputs=[answer_output, sources_output,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
)
|
| 504 |
-
|
| 505 |
-
# Also trigger search on Enter key
|
| 506 |
search_input.submit(
|
| 507 |
-
fn=
|
| 508 |
-
inputs=[search_input,
|
| 509 |
-
outputs=[answer_output, sources_output,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
)
|
| 511 |
|
|
|
|
| 512 |
if __name__ == "__main__":
|
| 513 |
-
demo.launch(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
|
|
|
| 3 |
from duckduckgo_search import DDGS
|
|
|
|
|
|
|
| 4 |
from datetime import datetime
|
| 5 |
+
import asyncio
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Initialize a lightweight text generation model (distilgpt2 for speed)
|
| 8 |
+
generator = pipeline("text-generation", model="distilgpt2", device=0 if gr.cuda.is_available() else -1)
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Web search function using DuckDuckGo
|
| 11 |
+
async def get_web_results(query: str, max_results: int = 5) -> list:
|
| 12 |
+
"""Fetch web results asynchronously for deep research."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
try:
|
| 14 |
with DDGS() as ddgs:
|
| 15 |
+
results = await asyncio.to_thread(lambda: list(ddgs.text(query, max_results=max_results)))
|
| 16 |
+
return [
|
| 17 |
+
{"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]}
|
| 18 |
+
for r in results
|
| 19 |
+
]
|
|
|
|
|
|
|
| 20 |
except Exception as e:
|
| 21 |
+
return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]
|
|
|
|
| 22 |
|
| 23 |
+
# Format prompt for the AI model
|
| 24 |
+
def format_prompt(query: str, web_results: list) -> str:
|
| 25 |
+
"""Create a concise prompt with web context."""
|
| 26 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 27 |
+
context = "\n".join([f"- {r['title']}: {r['snippet']}" for r in web_results])
|
| 28 |
+
return f"""Time: {current_time}
|
|
|
|
|
|
|
| 29 |
Query: {query}
|
| 30 |
Web Context:
|
| 31 |
+
{context}
|
| 32 |
+
Provide a detailed, well-structured answer in markdown format with citations [1], [2], etc."""
|
|
|
|
| 33 |
|
| 34 |
+
# Generate answer using the AI model
|
| 35 |
+
def generate_answer(prompt: str) -> str:
|
| 36 |
+
"""Generate a detailed research answer."""
|
| 37 |
+
response = generator(prompt, max_length=300, num_return_sequences=1, truncation=True)[0]["generated_text"]
|
| 38 |
+
# Extract the answer after the prompt
|
| 39 |
+
answer_start = response.find("Provide a detailed") + len("Provide a detailed, well-structured answer in markdown format with citations [1], [2], etc.")
|
| 40 |
+
return response[answer_start:].strip()
|
| 41 |
+
|
| 42 |
+
# Format sources for display
|
| 43 |
+
def format_sources(web_results: list) -> str:
|
| 44 |
+
"""Create an HTML list of sources."""
|
| 45 |
if not web_results:
|
| 46 |
+
return "<div>No sources available</div>"
|
| 47 |
+
|
| 48 |
+
sources_html = "<div class='sources-list'>"
|
| 49 |
for i, res in enumerate(web_results, 1):
|
|
|
|
|
|
|
| 50 |
sources_html += f"""
|
| 51 |
<div class='source-item'>
|
| 52 |
+
<span class='source-number'>[{i}]</span>
|
| 53 |
+
<a href='{res['url']}' target='_blank'>{res['title']}</a>: {res['snippet'][:150]}...
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
</div>
|
| 55 |
"""
|
| 56 |
sources_html += "</div>"
|
| 57 |
return sources_html
|
| 58 |
|
| 59 |
+
# Main processing function
|
| 60 |
+
async def process_deep_research(query: str, history: list):
|
| 61 |
+
"""Handle the deep research process with progressive updates."""
|
| 62 |
+
if not history:
|
| 63 |
+
history = []
|
| 64 |
+
|
| 65 |
+
# Step 1: Initial loading state
|
| 66 |
+
yield {
|
| 67 |
+
"answer": "*Searching the web...*",
|
| 68 |
+
"sources": "<div>Fetching sources...</div>",
|
| 69 |
+
"history": history + [[query, "*Searching...*"]]
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
# Step 2: Fetch web results
|
| 73 |
+
web_results = await get_web_results(query)
|
| 74 |
+
sources_html = format_sources(web_results)
|
| 75 |
+
|
| 76 |
+
# Step 3: Update with web search completed
|
| 77 |
+
yield {
|
| 78 |
+
"answer": "*Analyzing results...*",
|
| 79 |
+
"sources": sources_html,
|
| 80 |
+
"history": history + [[query, "*Analyzing...*"]]
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
# Step 4: Generate detailed answer
|
| 84 |
+
prompt = format_prompt(query, web_results)
|
| 85 |
+
answer = generate_answer(prompt)
|
| 86 |
+
final_history = history + [[query, answer]]
|
| 87 |
+
|
| 88 |
+
# Step 5: Final result
|
| 89 |
+
yield {
|
| 90 |
+
"answer": answer,
|
| 91 |
+
"sources": sources_html,
|
| 92 |
+
"history": final_history
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
# Custom CSS for a cool, modern UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
css = """
|
| 97 |
+
body {
|
| 98 |
+
font-family: 'Arial', sans-serif;
|
| 99 |
+
background: #1a1a1a;
|
| 100 |
+
color: #ffffff;
|
| 101 |
+
}
|
| 102 |
.gradio-container {
|
| 103 |
+
max-width: 1000px;
|
| 104 |
+
margin: 0 auto;
|
| 105 |
+
padding: 20px;
|
| 106 |
}
|
| 107 |
+
.header {
|
| 108 |
text-align: center;
|
| 109 |
+
padding: 20px;
|
| 110 |
+
background: linear-gradient(135deg, #2c3e50, #3498db);
|
| 111 |
+
border-radius: 10px;
|
| 112 |
+
margin-bottom: 20px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
}
|
| 114 |
+
.header h1 {
|
| 115 |
+
font-size: 2.5em;
|
| 116 |
+
margin: 0;
|
| 117 |
+
color: #ffffff;
|
| 118 |
}
|
| 119 |
+
.header p {
|
| 120 |
+
color: #bdc3c7;
|
| 121 |
+
font-size: 1.1em;
|
|
|
|
|
|
|
|
|
|
| 122 |
}
|
| 123 |
.search-box {
|
| 124 |
+
background: #2c2c2c;
|
| 125 |
+
padding: 15px;
|
| 126 |
+
border-radius: 10px;
|
| 127 |
+
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
|
| 128 |
+
}
|
| 129 |
+
.search-box input {
|
| 130 |
+
background: #3a3a3a !important;
|
| 131 |
+
color: #ffffff !important;
|
| 132 |
+
border: none !important;
|
| 133 |
+
border-radius: 5px !important;
|
|
|
|
|
|
|
|
|
|
| 134 |
}
|
| 135 |
.search-box button {
|
| 136 |
+
background: #3498db !important;
|
| 137 |
border: none !important;
|
| 138 |
+
border-radius: 5px !important;
|
| 139 |
+
transition: background 0.3s;
|
| 140 |
+
}
|
| 141 |
+
.search-box button:hover {
|
| 142 |
+
background: #2980b9 !important;
|
| 143 |
}
|
| 144 |
.results-container {
|
| 145 |
+
margin-top: 20px;
|
| 146 |
+
display: flex;
|
| 147 |
+
gap: 20px;
|
|
|
|
| 148 |
}
|
| 149 |
.answer-box {
|
| 150 |
+
flex: 2;
|
| 151 |
+
background: #2c2c2c;
|
| 152 |
+
padding: 20px;
|
| 153 |
+
border-radius: 10px;
|
| 154 |
+
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
|
| 155 |
+
}
|
| 156 |
+
.answer-box .markdown {
|
| 157 |
+
color: #ecf0f1;
|
| 158 |
line-height: 1.6;
|
| 159 |
}
|
| 160 |
+
.sources-list {
|
| 161 |
+
flex: 1;
|
| 162 |
+
background: #2c2c2c;
|
| 163 |
+
padding: 15px;
|
| 164 |
+
border-radius: 10px;
|
| 165 |
+
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
|
| 166 |
}
|
| 167 |
.source-item {
|
| 168 |
+
margin-bottom: 10px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
}
|
| 170 |
.source-number {
|
| 171 |
+
color: #3498db;
|
| 172 |
font-weight: bold;
|
| 173 |
+
margin-right: 5px;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
}
|
| 175 |
+
.source-item a {
|
| 176 |
+
color: #3498db;
|
|
|
|
| 177 |
text-decoration: none;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
}
|
| 179 |
+
.source-item a:hover {
|
| 180 |
+
text-decoration: underline;
|
|
|
|
|
|
|
| 181 |
}
|
| 182 |
+
.history-box {
|
| 183 |
+
margin-top: 20px;
|
| 184 |
+
background: #2c2c2c;
|
| 185 |
+
padding: 15px;
|
| 186 |
+
border-radius: 10px;
|
| 187 |
+
max-height: 300px;
|
| 188 |
overflow-y: auto;
|
| 189 |
+
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
}
|
| 191 |
"""
|
| 192 |
|
| 193 |
+
# Gradio app setup with Blocks for better control
|
| 194 |
+
with gr.Blocks(title="Deep Research Engine", css=css) as demo:
|
| 195 |
+
history_state = gr.State([])
|
| 196 |
+
|
| 197 |
+
# Header
|
| 198 |
+
with gr.Column(elem_classes="header"):
|
| 199 |
+
gr.Markdown("# Deep Research Engine")
|
| 200 |
+
gr.Markdown("Your gateway to in-depth answers with real-time web insights.")
|
| 201 |
+
|
| 202 |
+
# Search input and button
|
| 203 |
+
with gr.Row(elem_classes="search-box"):
|
| 204 |
+
search_input = gr.Textbox(label="", placeholder="Ask anything...", lines=2)
|
| 205 |
+
search_btn = gr.Button("Research", variant="primary")
|
| 206 |
+
|
| 207 |
+
# Results layout
|
| 208 |
+
with gr.Row(elem_classes="results-container"):
|
| 209 |
+
with gr.Column():
|
| 210 |
+
answer_output = gr.Markdown(label="Research Findings", elem_classes="answer-box")
|
| 211 |
+
with gr.Column():
|
| 212 |
+
sources_output = gr.HTML(label="Sources", elem_classes="sources-list")
|
| 213 |
+
|
| 214 |
+
# Chat history
|
| 215 |
+
with gr.Row():
|
| 216 |
+
history_display = gr.Chatbot(label="History", elem_classes="history-box")
|
| 217 |
+
|
| 218 |
+
# Event handling
|
| 219 |
+
async def handle_search(query, history):
|
| 220 |
+
async for step in process_deep_research(query, history):
|
| 221 |
+
yield step["answer"], step["sources"], step["history"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
|
|
|
| 223 |
search_btn.click(
|
| 224 |
+
fn=handle_search,
|
| 225 |
+
inputs=[search_input, history_state],
|
| 226 |
+
outputs=[answer_output, sources_output, history_display],
|
| 227 |
+
_js="() => [document.querySelector('.search-box input').value, null]" # Ensure history is managed
|
| 228 |
+
).then(
|
| 229 |
+
fn=lambda x: x,
|
| 230 |
+
inputs=[history_display],
|
| 231 |
+
outputs=[history_state]
|
| 232 |
)
|
| 233 |
+
|
|
|
|
| 234 |
search_input.submit(
|
| 235 |
+
fn=handle_search,
|
| 236 |
+
inputs=[search_input, history_state],
|
| 237 |
+
outputs=[answer_output, sources_output, history_display]
|
| 238 |
+
).then(
|
| 239 |
+
fn=lambda x: x,
|
| 240 |
+
inputs=[history_display],
|
| 241 |
+
outputs=[history_state]
|
| 242 |
)
|
| 243 |
|
| 244 |
+
# Launch the app
|
| 245 |
if __name__ == "__main__":
|
| 246 |
+
demo.launch()
|