Spaces:
Sleeping
Sleeping
QAway-to
commited on
Commit
·
be92cc8
1
Parent(s):
ae4da3f
Base app.py interface v1.3
Browse files
app.py
CHANGED
|
@@ -1,16 +1,14 @@
|
|
| 1 |
-
# app.py — Financial RAG
|
| 2 |
import gradio as gr
|
| 3 |
-
import asyncio
|
| 4 |
-
from itertools import cycle
|
| 5 |
-
from datetime import datetime
|
| 6 |
import requests
|
| 7 |
import pandas as pd
|
| 8 |
from transformers import pipeline
|
|
|
|
| 9 |
|
| 10 |
-
#
|
| 11 |
# ⚙️ Конфигурация
|
| 12 |
-
#
|
| 13 |
-
FRED_API_KEY = "YOUR_FRED_API_KEY"
|
| 14 |
FRED_URL = "https://api.stlouisfed.org/fred/series/observations"
|
| 15 |
|
| 16 |
INDICATORS = {
|
|
@@ -22,99 +20,91 @@ INDICATORS = {
|
|
| 22 |
|
| 23 |
generator = pipeline("text2text-generation", model="google/flan-t5-base")
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
#
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
frames = cycle(["⠋","⠙","⠹","⠸","⠼","⠴","⠦","⠧","⠇","⠏"])
|
| 30 |
-
for frame in frames:
|
| 31 |
-
update_fn(f"💭 Fetching financial data... {frame}")
|
| 32 |
-
await asyncio.sleep(delay)
|
| 33 |
-
|
| 34 |
-
# ============================================================
|
| 35 |
-
# 📈 Основная логика: загрузка, анализ, экспорт
|
| 36 |
-
# ============================================================
|
| 37 |
-
def get_fred_data(series_id, start="2024-01-01"):
|
| 38 |
params = {
|
| 39 |
"series_id": series_id,
|
| 40 |
"api_key": FRED_API_KEY,
|
| 41 |
"file_type": "json",
|
| 42 |
-
"observation_start":
|
| 43 |
}
|
| 44 |
-
|
| 45 |
-
data =
|
| 46 |
df = pd.DataFrame(data)
|
| 47 |
if df.empty:
|
| 48 |
return pd.DataFrame()
|
| 49 |
df["value"] = pd.to_numeric(df["value"], errors="coerce")
|
| 50 |
-
return df.tail(
|
| 51 |
-
|
| 52 |
-
def analyze_and_export(indicator_name, progress_text):
|
| 53 |
-
"""Потоковая функция, полностью в стиле MBTI-интерфейса."""
|
| 54 |
-
if not indicator_name:
|
| 55 |
-
yield "⚠️ Select indicator first.", "", progress_text
|
| 56 |
-
return
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
series_id = INDICATORS[indicator_name]
|
| 61 |
-
df =
|
| 62 |
if df.empty:
|
| 63 |
-
|
| 64 |
-
return
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
context = f"Recent {indicator_name} values:\n{recent[['date','value']].to_string(index=False)}"
|
| 70 |
-
yield "📊 Data fetched successfully.", "💭 Generating analytical summary...", "2/3"
|
| 71 |
-
|
| 72 |
-
# шаг 3 — генерация аналитики
|
| 73 |
prompt = (
|
| 74 |
f"Analyze the following economic indicator data and describe the recent trend:\n"
|
| 75 |
f"{context}\nAverage change: {trend:.2f}%"
|
| 76 |
)
|
| 77 |
try:
|
| 78 |
-
|
| 79 |
except Exception as e:
|
| 80 |
-
|
| 81 |
|
| 82 |
-
#
|
| 83 |
-
|
| 84 |
-
df.to_csv(
|
| 85 |
-
|
| 86 |
|
| 87 |
-
#
|
| 88 |
-
#
|
| 89 |
-
#
|
| 90 |
-
with gr.Blocks(
|
| 91 |
gr.Markdown(
|
| 92 |
-
"
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
| 96 |
)
|
| 97 |
|
| 98 |
with gr.Row():
|
| 99 |
with gr.Column(scale=1):
|
| 100 |
-
|
| 101 |
-
choices=list(INDICATORS.keys()),
|
| 102 |
label="Выберите показатель",
|
| 103 |
-
|
|
|
|
| 104 |
)
|
| 105 |
-
|
| 106 |
|
| 107 |
-
with gr.Column(scale=
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
outputs=[summary_out, status_out, progress_out],
|
| 117 |
show_progress=True,
|
| 118 |
)
|
| 119 |
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py — Financial RAG Dashboard
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 3 |
import requests
|
| 4 |
import pandas as pd
|
| 5 |
from transformers import pipeline
|
| 6 |
+
from datetime import datetime
|
| 7 |
|
| 8 |
+
# ======================================================
|
| 9 |
# ⚙️ Конфигурация
|
| 10 |
+
# ======================================================
|
| 11 |
+
FRED_API_KEY = "YOUR_FRED_API_KEY"
|
| 12 |
FRED_URL = "https://api.stlouisfed.org/fred/series/observations"
|
| 13 |
|
| 14 |
INDICATORS = {
|
|
|
|
| 20 |
|
| 21 |
generator = pipeline("text2text-generation", model="google/flan-t5-base")
|
| 22 |
|
| 23 |
+
# ======================================================
|
| 24 |
+
# 🧠 Логика
|
| 25 |
+
# ======================================================
|
| 26 |
+
def fetch_fred_data(series_id: str, start_date="2024-01-01"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
params = {
|
| 28 |
"series_id": series_id,
|
| 29 |
"api_key": FRED_API_KEY,
|
| 30 |
"file_type": "json",
|
| 31 |
+
"observation_start": start_date,
|
| 32 |
}
|
| 33 |
+
response = requests.get(FRED_URL, params=params)
|
| 34 |
+
data = response.json().get("observations", [])
|
| 35 |
df = pd.DataFrame(data)
|
| 36 |
if df.empty:
|
| 37 |
return pd.DataFrame()
|
| 38 |
df["value"] = pd.to_numeric(df["value"], errors="coerce")
|
| 39 |
+
return df[["date", "value"]].tail(12)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
def generate_financial_summary(indicator_name: str):
|
| 42 |
+
"""Основная функция — загружает данные, генерирует сводку, экспортирует CSV."""
|
| 43 |
series_id = INDICATORS[indicator_name]
|
| 44 |
+
df = fetch_fred_data(series_id)
|
| 45 |
if df.empty:
|
| 46 |
+
return "⚠️ No data found.", None
|
|
|
|
| 47 |
|
| 48 |
+
# --- контекст для LLM ---
|
| 49 |
+
trend = df["value"].pct_change().mean() * 100
|
| 50 |
+
context = f"Recent {indicator_name} data:\n{df.to_string(index=False)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
prompt = (
|
| 52 |
f"Analyze the following economic indicator data and describe the recent trend:\n"
|
| 53 |
f"{context}\nAverage change: {trend:.2f}%"
|
| 54 |
)
|
| 55 |
try:
|
| 56 |
+
summary = generator(prompt, max_new_tokens=150)[0]["generated_text"]
|
| 57 |
except Exception as e:
|
| 58 |
+
summary = f"⚠️ LLM generation error: {e}"
|
| 59 |
|
| 60 |
+
# --- экспорт ---
|
| 61 |
+
file_name = f"powerbi_{indicator_name.lower().replace(' ', '_')}.csv"
|
| 62 |
+
df.to_csv(file_name, index=False)
|
| 63 |
+
return summary, file_name
|
| 64 |
|
| 65 |
+
# ======================================================
|
| 66 |
+
# 💻 Интерфейс
|
| 67 |
+
# ======================================================
|
| 68 |
+
with gr.Blocks(title="🏦 Financial RAG → Power BI", theme=gr.themes.Soft()) as demo:
|
| 69 |
gr.Markdown(
|
| 70 |
+
"""
|
| 71 |
+
## 🏦 Financial RAG Dashboard
|
| 72 |
+
Автоматическая аналитика по ключевым банковским показателям (FRED API)
|
| 73 |
+
Экспортируй данные для Power BI и DAX визуализаций.
|
| 74 |
+
"""
|
| 75 |
)
|
| 76 |
|
| 77 |
with gr.Row():
|
| 78 |
with gr.Column(scale=1):
|
| 79 |
+
indicator_dropdown = gr.Dropdown(
|
|
|
|
| 80 |
label="Выберите показатель",
|
| 81 |
+
choices=list(INDICATORS.keys()),
|
| 82 |
+
value="Inflation (CPI)",
|
| 83 |
)
|
| 84 |
+
generate_btn = gr.Button("📊 Сформировать отчёт", variant="primary")
|
| 85 |
|
| 86 |
+
with gr.Column(scale=2):
|
| 87 |
+
summary_box = gr.Textbox(
|
| 88 |
+
label="📈 Аналитическая сводка",
|
| 89 |
+
placeholder="Здесь появится результат анализа...",
|
| 90 |
+
lines=10,
|
| 91 |
+
)
|
| 92 |
+
export_box = gr.File(label="📂 Файл для Power BI")
|
| 93 |
+
|
| 94 |
+
def run_pipeline(indicator):
|
| 95 |
+
summary, file_path = generate_financial_summary(indicator)
|
| 96 |
+
return summary, file_path
|
| 97 |
|
| 98 |
+
generate_btn.click(
|
| 99 |
+
fn=run_pipeline,
|
| 100 |
+
inputs=indicator_dropdown,
|
| 101 |
+
outputs=[summary_box, export_box],
|
|
|
|
| 102 |
show_progress=True,
|
| 103 |
)
|
| 104 |
|
| 105 |
+
gr.Markdown(
|
| 106 |
+
"<center><small>Developed with ❤️ for Financial RAG prototyping • Powered by Hugging Face</small></center>"
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
if __name__ == "__main__":
|
| 110 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|