QAway-to
commited on
Commit
·
e8b5e7a
1
Parent(s):
7aec9f9
google/flan-t5-small . app.py v1.8
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
# app.py
|
| 2 |
-
import
|
|
|
|
| 3 |
from itertools import cycle
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 5 |
from core.utils import generate_first_question
|
|
@@ -8,41 +9,25 @@ from core.interviewer import generate_question, session_state
|
|
| 8 |
|
| 9 |
|
| 10 |
# --------------------------------------------------------------
|
| 11 |
-
#
|
| 12 |
# --------------------------------------------------------------
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
try:
|
| 30 |
-
tok = AutoTokenizer.from_pretrained(name, token=HF_TOKEN, use_auth_token=HF_TOKEN)
|
| 31 |
-
mdl = AutoModelForSeq2SeqLM.from_pretrained(name, token=HF_TOKEN, use_auth_token=HF_TOKEN)
|
| 32 |
-
print(f"✅ Loaded interviewer model: {name}")
|
| 33 |
-
return pipeline(
|
| 34 |
-
"text2text-generation",
|
| 35 |
-
model=mdl,
|
| 36 |
-
tokenizer=tok,
|
| 37 |
-
max_new_tokens=40,
|
| 38 |
-
num_beams=4,
|
| 39 |
-
no_repeat_ngram_size=4,
|
| 40 |
-
)
|
| 41 |
-
except Exception as e:
|
| 42 |
-
print(f"⚠️ Can't load {name}: {e}")
|
| 43 |
-
raise RuntimeError("❌ No available T5 model could be loaded even publicly.")
|
| 44 |
|
| 45 |
-
QG_PIPE = load_qg_model()
|
| 46 |
|
| 47 |
# --------------------------------------------------------------
|
| 48 |
# 🌀 Асинхронная анимация "Thinking..."
|
|
@@ -53,8 +38,9 @@ async def async_loader(update_fn, delay=0.15):
|
|
| 53 |
update_fn(f"💭 Interviewer is thinking... {frame}")
|
| 54 |
await asyncio.sleep(delay)
|
| 55 |
|
|
|
|
| 56 |
# --------------------------------------------------------------
|
| 57 |
-
#
|
| 58 |
# --------------------------------------------------------------
|
| 59 |
def analyze_and_ask(user_text, prev_count):
|
| 60 |
if not user_text.strip():
|
|
@@ -68,14 +54,17 @@ def analyze_and_ask(user_text, prev_count):
|
|
| 68 |
n = 1
|
| 69 |
counter = f"{n}/8"
|
| 70 |
|
|
|
|
| 71 |
yield "⏳ Analyzing personality...", "💭 Interviewer is thinking... ⠋", counter
|
| 72 |
|
|
|
|
| 73 |
mbti_gen = analyze_mbti(user_text)
|
| 74 |
mbti_text = ""
|
| 75 |
for chunk in mbti_gen:
|
| 76 |
mbti_text = chunk
|
| 77 |
yield mbti_text, "💭 Interviewer is thinking... ⠙", counter
|
| 78 |
|
|
|
|
| 79 |
try:
|
| 80 |
question = generate_question(user_id=user_id, user_answer=user_text, qg_pipe=QG_PIPE)
|
| 81 |
except Exception as e:
|
|
@@ -89,7 +78,7 @@ def analyze_and_ask(user_text, prev_count):
|
|
| 89 |
|
| 90 |
|
| 91 |
# --------------------------------------------------------------
|
| 92 |
-
# 🧱 Gradio
|
| 93 |
# --------------------------------------------------------------
|
| 94 |
with gr.Blocks(theme=gr.themes.Soft(), title="MBTI Personality Interviewer") as demo:
|
| 95 |
gr.Markdown(
|
|
|
|
| 1 |
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import asyncio
|
| 4 |
from itertools import cycle
|
| 5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 6 |
from core.utils import generate_first_question
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
# --------------------------------------------------------------
|
| 12 |
+
# ✅ Всегда используем публичную модель Flan-T5-Small
|
| 13 |
# --------------------------------------------------------------
|
| 14 |
+
QG_MODEL = "google/flan-t5-small"
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(QG_MODEL)
|
| 18 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(QG_MODEL)
|
| 19 |
+
QG_PIPE = pipeline(
|
| 20 |
+
"text2text-generation",
|
| 21 |
+
model=model,
|
| 22 |
+
tokenizer=tokenizer,
|
| 23 |
+
max_new_tokens=40,
|
| 24 |
+
num_beams=4,
|
| 25 |
+
no_repeat_ngram_size=4,
|
| 26 |
+
)
|
| 27 |
+
print(f"✅ Loaded public interviewer model: {QG_MODEL}")
|
| 28 |
+
except Exception as e:
|
| 29 |
+
raise RuntimeError(f"❌ Failed to load {QG_MODEL}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
|
|
|
| 31 |
|
| 32 |
# --------------------------------------------------------------
|
| 33 |
# 🌀 Асинхронная анимация "Thinking..."
|
|
|
|
| 38 |
update_fn(f"💭 Interviewer is thinking... {frame}")
|
| 39 |
await asyncio.sleep(delay)
|
| 40 |
|
| 41 |
+
|
| 42 |
# --------------------------------------------------------------
|
| 43 |
+
# ⚙️ Основная логика
|
| 44 |
# --------------------------------------------------------------
|
| 45 |
def analyze_and_ask(user_text, prev_count):
|
| 46 |
if not user_text.strip():
|
|
|
|
| 54 |
n = 1
|
| 55 |
counter = f"{n}/8"
|
| 56 |
|
| 57 |
+
# мгновенный отклик
|
| 58 |
yield "⏳ Analyzing personality...", "💭 Interviewer is thinking... ⠋", counter
|
| 59 |
|
| 60 |
+
# анализ MBTI
|
| 61 |
mbti_gen = analyze_mbti(user_text)
|
| 62 |
mbti_text = ""
|
| 63 |
for chunk in mbti_gen:
|
| 64 |
mbti_text = chunk
|
| 65 |
yield mbti_text, "💭 Interviewer is thinking... ⠙", counter
|
| 66 |
|
| 67 |
+
# генерация вопроса
|
| 68 |
try:
|
| 69 |
question = generate_question(user_id=user_id, user_answer=user_text, qg_pipe=QG_PIPE)
|
| 70 |
except Exception as e:
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
# --------------------------------------------------------------
|
| 81 |
+
# 🧱 Интерфейс Gradio
|
| 82 |
# --------------------------------------------------------------
|
| 83 |
with gr.Blocks(theme=gr.themes.Soft(), title="MBTI Personality Interviewer") as demo:
|
| 84 |
gr.Markdown(
|