QAway-to
commited on
Commit
·
c8cd73e
1
Parent(s):
b7e18a3
New version v1.8
Browse files
app.py
CHANGED
|
@@ -1,103 +1,92 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
analyzer = pipeline("text-classification", model=model, tokenizer=tokenizer, return_all_scores=True)
|
| 9 |
-
|
| 10 |
-
# === 2️⃣ Интервьюер (Phi-3-mini) ===
|
| 11 |
-
q_gen = pipeline(
|
| 12 |
-
"text-generation",
|
| 13 |
-
model="microsoft/Phi-3-mini-4k-instruct",
|
| 14 |
-
temperature=0.6,
|
| 15 |
-
top_p=0.9,
|
| 16 |
-
max_new_tokens=80
|
| 17 |
)
|
| 18 |
-
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
if not user_input.strip():
|
| 26 |
-
return
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
textarea {height: 100px !important;}
|
| 83 |
-
""") as demo:
|
| 84 |
-
gr.Markdown("## 🧠 Adaptive MBTI Classifier\n### Context-aware interviewer with memory and unique questions.")
|
| 85 |
-
|
| 86 |
-
state = gr.State([])
|
| 87 |
-
|
| 88 |
-
question = gr.Textbox(
|
| 89 |
-
label="Вопрос",
|
| 90 |
-
value="Let's start: How do you usually spend your free time?",
|
| 91 |
-
interactive=False,
|
| 92 |
-
elem_id="question"
|
| 93 |
-
)
|
| 94 |
-
inp = gr.Textbox(label="Ваш ответ", placeholder="Type your answer here...", elem_id="inp")
|
| 95 |
-
out = gr.Textbox(label="Результат анализа", elem_id="out")
|
| 96 |
-
progress = gr.Markdown("**0/30**", elem_id="progress")
|
| 97 |
-
|
| 98 |
-
btn = gr.Button("Ответить")
|
| 99 |
-
btn.click(fn=mbti_interview,
|
| 100 |
-
inputs=[inp, state],
|
| 101 |
-
outputs=[state, out, question, progress])
|
| 102 |
-
|
| 103 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import concurrent.futures
|
| 3 |
+
import time
|
| 4 |
+
from transformers import (
|
| 5 |
+
AutoTokenizer,
|
| 6 |
+
AutoModelForSequenceClassification,
|
| 7 |
+
pipeline,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
)
|
| 9 |
+
# =========================================================
|
| 10 |
+
# 1. Настройка моделей
|
| 11 |
+
# =========================================================
|
| 12 |
+
|
| 13 |
+
# Твоя fine-tuned MBTI модель
|
| 14 |
+
MBTI_MODEL_ID = "f3nsmart/MBTIclassifier"
|
| 15 |
+
|
| 16 |
+
# Генератор вопросов — лёгкая LLM
|
| 17 |
+
LLM_MODEL_ID = "microsoft/Phi-3-mini-4k-instruct" # можно заменить на другую
|
| 18 |
+
|
| 19 |
+
# Загружаем классификатор
|
| 20 |
+
mbti_tokenizer = AutoTokenizer.from_pretrained(MBTI_MODEL_ID)
|
| 21 |
+
mbti_model = AutoModelForSequenceClassification.from_pretrained(MBTI_MODEL_ID)
|
| 22 |
+
analyzer = pipeline("text-classification", model=mbti_model, tokenizer=mbti_tokenizer, return_all_scores=True)
|
| 23 |
+
|
| 24 |
+
# Загружаем генератор вопросов
|
| 25 |
+
q_gen = pipeline("text-generation", model=LLM_MODEL_ID)
|
| 26 |
+
|
| 27 |
+
# =========================================================
|
| 28 |
+
# 2. Основная функция
|
| 29 |
+
# =========================================================
|
| 30 |
+
def classify_and_ask(user_input):
|
| 31 |
+
"""
|
| 32 |
+
Параллельно выполняет:
|
| 33 |
+
- классификацию текста по MBTI,
|
| 34 |
+
- генерацию нового открытого вопроса.
|
| 35 |
+
"""
|
| 36 |
if not user_input.strip():
|
| 37 |
+
return "⚠️ Введите текст.", "⚠️ Вопрос не сформирован."
|
| 38 |
+
|
| 39 |
+
start_time = time.perf_counter()
|
| 40 |
+
|
| 41 |
+
# === Параллельная обработка ===
|
| 42 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 43 |
+
future_analysis = executor.submit(lambda: analyzer(user_input))
|
| 44 |
+
future_question = executor.submit(lambda: q_gen(
|
| 45 |
+
f"You are a friendly HR interviewer for an MBTI test. "
|
| 46 |
+
f"Generate ONE open-ended and meaningful question starting with 'How', 'Why', 'What', or 'When'. "
|
| 47 |
+
f"Do NOT repeat or refer to previous answers.\nUser said: {user_input}\n"
|
| 48 |
+
))
|
| 49 |
+
|
| 50 |
+
analysis_result = future_analysis.result()
|
| 51 |
+
question_result = future_question.result()
|
| 52 |
+
|
| 53 |
+
elapsed = time.perf_counter() - start_time
|
| 54 |
+
print(f"⏱ Время обработки запроса: {elapsed:.2f} сек")
|
| 55 |
+
|
| 56 |
+
# === Обработка результатов анализа ===
|
| 57 |
+
results = sorted(analysis_result[0], key=lambda x: x["score"], reverse=True)
|
| 58 |
+
top = "\n".join([f"{r['label']} → {r['score']:.3f}" for r in results[:3]])
|
| 59 |
+
|
| 60 |
+
# === Обработка сгенерированного вопроса ===
|
| 61 |
+
raw = question_result[0]["generated_text"].replace("\n", " ").strip()
|
| 62 |
+
question = raw.split("?")[0].split("Question:")[-1].strip().capitalize() + "?"
|
| 63 |
+
|
| 64 |
+
return top, question
|
| 65 |
+
|
| 66 |
+
# =========================================================
|
| 67 |
+
# 3. Интерфейс Gradio
|
| 68 |
+
# =========================================================
|
| 69 |
+
with gr.Blocks(title="MBTI Interactive Interview") as demo:
|
| 70 |
+
gr.Markdown("## 🧠 MBTI Personality Interviewer\n"
|
| 71 |
+
"Определи личностный тип и получи следующий вопрос от интервьюера.")
|
| 72 |
+
|
| 73 |
+
with gr.Row():
|
| 74 |
+
with gr.Column(scale=1):
|
| 75 |
+
inp = gr.Textbox(
|
| 76 |
+
label="Введите свой ответ",
|
| 77 |
+
placeholder="Например: I enjoy working with people and organizing events.",
|
| 78 |
+
lines=4
|
| 79 |
+
)
|
| 80 |
+
btn = gr.Button("Анализировать и задать новый вопрос")
|
| 81 |
+
|
| 82 |
+
with gr.Column(scale=1):
|
| 83 |
+
out_analysis = gr.Textbox(label="📊 Анализ MBTI", lines=6)
|
| 84 |
+
out_question = gr.Textbox(label="💬 Следующий вопрос от интервьюера", lines=3)
|
| 85 |
+
|
| 86 |
+
btn.click(fn=classify_and_ask, inputs=inp, outputs=[out_analysis, out_question])
|
| 87 |
+
|
| 88 |
+
# =========================================================
|
| 89 |
+
# 4. Запуск
|
| 90 |
+
# =========================================================
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|