QAway-to
commited on
Commit
·
ac25eb6
1
Parent(s):
b0e8bac
New model. Qwen/Qwen2.5-1.5B-Instruct. v1.1
Browse files
app.py
CHANGED
|
@@ -6,98 +6,128 @@ from transformers import (
|
|
| 6 |
pipeline
|
| 7 |
)
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
# 1️⃣ Настройки
|
| 11 |
-
#
|
|
|
|
|
|
|
| 12 |
MBTI_MODEL = "f3nsmart/MBTIclassifier"
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"text-generation",
|
| 19 |
-
model=
|
| 20 |
-
tokenizer=
|
| 21 |
-
max_new_tokens=
|
| 22 |
temperature=0.7,
|
| 23 |
-
top_p=0.9
|
| 24 |
)
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
# 2️⃣
|
| 28 |
-
#
|
| 29 |
-
def generate_first_question():
|
| 30 |
-
prompt = (
|
| 31 |
-
"Begin a friendly MBTI-style conversation. "
|
| 32 |
-
"Ask one simple, open-ended question about the person's interests or emotions. "
|
| 33 |
-
"Do not mention that you are an AI or interviewer. Output only the question text."
|
| 34 |
-
)
|
| 35 |
-
q = interviewer_pipe(prompt)[0]["generated_text"].strip()
|
| 36 |
-
return q.split("\n")[0] if "?" in q else "What makes you feel most fulfilled in your daily life?"
|
| 37 |
-
|
| 38 |
|
| 39 |
-
def clean_question(text):
|
| 40 |
-
"""
|
|
|
|
|
|
|
| 41 |
text = text.strip()
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
if bad.lower() in text.lower():
|
| 44 |
-
text = text.split(bad
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
if len(text.split()) < 3:
|
| 47 |
-
return
|
| 48 |
-
return text
|
| 49 |
|
|
|
|
| 50 |
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
def analyze_and_ask(user_text, prev_count):
|
|
|
|
|
|
|
|
|
|
| 53 |
if not user_text.strip():
|
| 54 |
return "⚠️ Введите ответ.", "", prev_count
|
| 55 |
|
|
|
|
| 56 |
try:
|
| 57 |
n = int(prev_count.split("/")[0]) + 1
|
| 58 |
except Exception:
|
| 59 |
n = 1
|
| 60 |
counter = f"{n}/30"
|
| 61 |
|
|
|
|
| 62 |
res = mbti_pipe(user_text)[0]
|
| 63 |
res_sorted = sorted(res, key=lambda x: x["score"], reverse=True)
|
| 64 |
mbti_text = "\n".join([f"{r['label']} → {r['score']:.3f}" for r in res_sorted[:3]])
|
| 65 |
|
|
|
|
| 66 |
prompt = (
|
| 67 |
-
f"
|
| 68 |
-
"
|
| 69 |
-
"Avoid
|
|
|
|
| 70 |
)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
| 75 |
return mbti_text, question, counter
|
| 76 |
|
| 77 |
-
#
|
| 78 |
# 3️⃣ Интерфейс Gradio
|
| 79 |
-
#
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
with gr.Row():
|
| 84 |
-
with gr.Column(scale=
|
| 85 |
-
inp = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
btn = gr.Button("Анализировать и задать новый вопрос", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
mbti_out = gr.Textbox(label="📊 Анализ MBTI", lines=5)
|
| 90 |
-
question_out = gr.Textbox(label="💬 Следующий вопрос от интервьюера", lines=3)
|
| 91 |
-
counter = gr.Textbox(label="Прогресс", value="0/30")
|
| 92 |
-
|
| 93 |
-
# Первый вопрос при запуске
|
| 94 |
-
demo.load(fn=generate_first_question, inputs=None, outputs=question_out)
|
| 95 |
|
| 96 |
-
#
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
| 100 |
-
# 4️⃣ Запуск
|
| 101 |
-
# =========================================================
|
| 102 |
-
if __name__ == "__main__":
|
| 103 |
-
demo.launch()
|
|
|
|
| 6 |
pipeline
|
| 7 |
)
|
| 8 |
|
| 9 |
+
# ===============================================================
|
| 10 |
+
# 1️⃣ Настройки и модели
|
| 11 |
+
# ===============================================================
|
| 12 |
+
|
| 13 |
+
# Fine-tuned MBTI Classifier (твоя модель)
|
| 14 |
MBTI_MODEL = "f3nsmart/MBTIclassifier"
|
| 15 |
+
mbti_pipe = pipeline("text-classification", model=MBTI_MODEL, return_all_scores=True)
|
| 16 |
+
|
| 17 |
+
# Модель-интервьюер
|
| 18 |
+
INTERVIEWER_MODEL = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 19 |
|
| 20 |
+
tokenizer_qwen = AutoTokenizer.from_pretrained(INTERVIEWER_MODEL)
|
| 21 |
+
model_qwen = AutoModelForCausalLM.from_pretrained(
|
| 22 |
+
INTERVIEWER_MODEL,
|
| 23 |
+
torch_dtype="auto",
|
| 24 |
+
device_map="auto"
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
llm_pipe = pipeline(
|
| 28 |
"text-generation",
|
| 29 |
+
model=model_qwen,
|
| 30 |
+
tokenizer=tokenizer_qwen,
|
| 31 |
+
max_new_tokens=70,
|
| 32 |
temperature=0.7,
|
| 33 |
+
top_p=0.9,
|
| 34 |
)
|
| 35 |
|
| 36 |
+
# ===============================================================
|
| 37 |
+
# 2️⃣ Вспомогательные функции
|
| 38 |
+
# ===============================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
def clean_question(text: str) -> str:
|
| 41 |
+
"""
|
| 42 |
+
Удаляет все инструкции и оставляет чистый вопрос.
|
| 43 |
+
"""
|
| 44 |
text = text.strip()
|
| 45 |
+
|
| 46 |
+
# Берём только первую строку, если LLM вдруг вывела много
|
| 47 |
+
text = text.split("\n")[0]
|
| 48 |
+
|
| 49 |
+
# Иногда Qwen вставляет кавычки — убираем
|
| 50 |
+
text = text.strip('"').strip("'")
|
| 51 |
+
|
| 52 |
+
# Если модель вывела "User:" / "Assistant:" / "Instruction:" и т.п.
|
| 53 |
+
bad_tokens = ["user:", "assistant:", "instruction", "interviewer", "system:"]
|
| 54 |
+
for bad in bad_tokens:
|
| 55 |
if bad.lower() in text.lower():
|
| 56 |
+
text = text.split(bad)[-1].strip()
|
| 57 |
+
|
| 58 |
+
# Если вопрос не оканчивается знаком вопроса — добавляем
|
| 59 |
+
if "?" not in text:
|
| 60 |
+
text = text.rstrip(".") + "?"
|
| 61 |
+
|
| 62 |
+
# Мини-страховка от мусора
|
| 63 |
if len(text.split()) < 3:
|
| 64 |
+
return "What do you usually enjoy doing in your free time?"
|
|
|
|
| 65 |
|
| 66 |
+
return text.strip()
|
| 67 |
|
| 68 |
+
def generate_first_question():
|
| 69 |
+
"""Первый вопрос фиксированный (без ожидания генерации)"""
|
| 70 |
+
return "What do you usually enjoy doing in your free time?"
|
| 71 |
|
| 72 |
def analyze_and_ask(user_text, prev_count):
|
| 73 |
+
"""
|
| 74 |
+
Основная логика: анализ MBTI + генерация нового вопроса.
|
| 75 |
+
"""
|
| 76 |
if not user_text.strip():
|
| 77 |
return "⚠️ Введите ответ.", "", prev_count
|
| 78 |
|
| 79 |
+
# Прогресс
|
| 80 |
try:
|
| 81 |
n = int(prev_count.split("/")[0]) + 1
|
| 82 |
except Exception:
|
| 83 |
n = 1
|
| 84 |
counter = f"{n}/30"
|
| 85 |
|
| 86 |
+
# Анализ MBTI
|
| 87 |
res = mbti_pipe(user_text)[0]
|
| 88 |
res_sorted = sorted(res, key=lambda x: x["score"], reverse=True)
|
| 89 |
mbti_text = "\n".join([f"{r['label']} → {r['score']:.3f}" for r in res_sorted[:3]])
|
| 90 |
|
| 91 |
+
# Промпт для Qwen — чёткий, чтобы не возвращала инструкцию
|
| 92 |
prompt = (
|
| 93 |
+
f"User said: '{user_text}'.\n"
|
| 94 |
+
"Generate exactly one short, natural, open-ended question about personality, emotions, or preferences. "
|
| 95 |
+
"Avoid meta explanations, instructions, or introductions. "
|
| 96 |
+
"Output only the plain question text without quotes or notes."
|
| 97 |
)
|
| 98 |
+
|
| 99 |
+
# Генерация нового вопроса
|
| 100 |
+
raw = llm_pipe(prompt)[0]["generated_text"]
|
| 101 |
+
question = clean_question(raw)
|
| 102 |
+
|
| 103 |
return mbti_text, question, counter
|
| 104 |
|
| 105 |
+
# ===============================================================
|
| 106 |
# 3️⃣ Интерфейс Gradio
|
| 107 |
+
# ===============================================================
|
| 108 |
+
|
| 109 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="MBTI Personality Interviewer") as demo:
|
| 110 |
+
gr.Markdown(
|
| 111 |
+
"## 🧠 MBTI Personality Interviewer\n"
|
| 112 |
+
"Определи личностный тип и получи следующий вопрос от интервьюера."
|
| 113 |
+
)
|
| 114 |
|
| 115 |
with gr.Row():
|
| 116 |
+
with gr.Column(scale=1):
|
| 117 |
+
inp = gr.Textbox(
|
| 118 |
+
label="Ваш ответ",
|
| 119 |
+
placeholder="Например: I enjoy working with people and organizing events.",
|
| 120 |
+
lines=4
|
| 121 |
+
)
|
| 122 |
btn = gr.Button("Анализировать и задать новый вопрос", variant="primary")
|
| 123 |
+
with gr.Column(scale=1):
|
| 124 |
+
mbti_out = gr.Textbox(label="📊 Анализ MBTI", lines=4)
|
| 125 |
+
interviewer_out = gr.Textbox(label="💬 Следующий вопрос от интервьюера", lines=3)
|
| 126 |
+
progress = gr.Textbox(label="⏳ Прогресс", value="0/30")
|
| 127 |
|
| 128 |
+
btn.click(analyze_and_ask, inputs=[inp, progress], outputs=[mbti_out, interviewer_out, progress])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
# Автоматическая загрузка первого вопроса
|
| 131 |
+
demo.load(lambda: ("", generate_first_question(), "0/30"), inputs=None, outputs=[mbti_out, interviewer_out, progress])
|
| 132 |
|
| 133 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|