QAway-to
commited on
Commit
·
56954f5
1
Parent(s):
7e14c8d
Updated structure
Browse files- app.py +25 -14
- core/interviewer.py +40 -26
- core/mbti_analyzer.py +12 -6
- core/utils.py +3 -18
app.py
CHANGED
|
@@ -1,15 +1,17 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import asyncio
|
| 3 |
from core.utils import generate_first_question
|
| 4 |
from core.mbti_analyzer import analyze_mbti
|
| 5 |
from core.interviewer import generate_question
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
#
|
| 9 |
-
#
|
| 10 |
-
async def
|
| 11 |
if not user_text.strip():
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
try:
|
| 15 |
n = int(prev_count.split("/")[0]) + 1
|
|
@@ -17,18 +19,26 @@ async def analyze_and_ask_async(user_text, prev_count, user_id="default_user"):
|
|
| 17 |
n = 1
|
| 18 |
counter = f"{n}/30"
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
mbti_task = asyncio.create_task(analyze_mbti(user_text))
|
| 21 |
interviewer_task = asyncio.create_task(generate_question(user_id, user_text))
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
with gr.Blocks(theme=gr.themes.Soft(), title="MBTI Personality Interviewer") as demo:
|
| 28 |
-
gr.Markdown(
|
| 29 |
-
"## 🧠 MBTI Personality Interviewer\n"
|
| 30 |
-
"Определи личностный тип и получи следующий вопрос от интервьюера."
|
| 31 |
-
)
|
| 32 |
|
| 33 |
with gr.Row():
|
| 34 |
with gr.Column(scale=1):
|
|
@@ -43,8 +53,9 @@ with gr.Blocks(theme=gr.themes.Soft(), title="MBTI Personality Interviewer") as
|
|
| 43 |
interviewer_out = gr.Textbox(label="💬 Следующий вопрос от интервьюера", lines=3)
|
| 44 |
progress = gr.Textbox(label="⏳ Прогресс", value="0/30")
|
| 45 |
|
| 46 |
-
btn.click(
|
| 47 |
-
demo.load(lambda: ("", generate_first_question(), "0/30"), None, [mbti_out, interviewer_out, progress])
|
| 48 |
|
| 49 |
-
|
|
|
|
| 50 |
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
import asyncio
|
| 4 |
from core.utils import generate_first_question
|
| 5 |
from core.mbti_analyzer import analyze_mbti
|
| 6 |
from core.interviewer import generate_question
|
| 7 |
|
| 8 |
+
# --------------------------------------------------------------
|
| 9 |
+
# Асинхронная функция для стриминга ответов
|
| 10 |
+
# --------------------------------------------------------------
|
| 11 |
+
async def analyze_and_ask_stream(user_text, prev_count, user_id="default_user"):
|
| 12 |
if not user_text.strip():
|
| 13 |
+
yield gr.update(value="⚠️ Введите ответ."), gr.update(), gr.update()
|
| 14 |
+
return
|
| 15 |
|
| 16 |
try:
|
| 17 |
n = int(prev_count.split("/")[0]) + 1
|
|
|
|
| 19 |
n = 1
|
| 20 |
counter = f"{n}/30"
|
| 21 |
|
| 22 |
+
yield gr.update(), gr.update(value="⏳ Анализируем..."), gr.update(value=counter)
|
| 23 |
+
|
| 24 |
+
# Параллельные задачи
|
| 25 |
mbti_task = asyncio.create_task(analyze_mbti(user_text))
|
| 26 |
interviewer_task = asyncio.create_task(generate_question(user_id, user_text))
|
| 27 |
|
| 28 |
+
# Сначала MBTI
|
| 29 |
+
mbti_text = await mbti_task
|
| 30 |
+
yield gr.update(value=mbti_text), gr.update(value="💭 Интервьюер думает..."), gr.update(value=counter)
|
| 31 |
+
|
| 32 |
+
# Затем вопрос
|
| 33 |
+
next_question = await interviewer_task
|
| 34 |
+
yield gr.update(value=mbti_text), gr.update(value=next_question), gr.update(value=counter)
|
| 35 |
|
| 36 |
|
| 37 |
+
# --------------------------------------------------------------
|
| 38 |
+
# Gradio интерфейс
|
| 39 |
+
# --------------------------------------------------------------
|
| 40 |
with gr.Blocks(theme=gr.themes.Soft(), title="MBTI Personality Interviewer") as demo:
|
| 41 |
+
gr.Markdown("## 🧠 MBTI Personality Interviewer\nОпредели личностный тип и получи следующий вопрос от интервьюера.")
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
with gr.Row():
|
| 44 |
with gr.Column(scale=1):
|
|
|
|
| 53 |
interviewer_out = gr.Textbox(label="💬 Следующий вопрос от интервьюера", lines=3)
|
| 54 |
progress = gr.Textbox(label="⏳ Прогресс", value="0/30")
|
| 55 |
|
| 56 |
+
btn.click(analyze_and_ask_stream, inputs=[inp, progress], outputs=[mbti_out, interviewer_out, progress])
|
|
|
|
| 57 |
|
| 58 |
+
# Первый вопрос при загрузке
|
| 59 |
+
demo.load(lambda: ("", generate_first_question(), "0/30"), inputs=None, outputs=[mbti_out, interviewer_out, progress])
|
| 60 |
|
| 61 |
+
demo.queue(streaming=True, max_size=20).launch(server_name="0.0.0.0", server_port=7860)
|
core/interviewer.py
CHANGED
|
@@ -1,22 +1,16 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 3 |
-
from peft import PeftModel
|
| 4 |
-
from core.utils import clean_question
|
| 5 |
-
from core.memory import update_user_context, get_user_context, was_asked
|
| 6 |
|
| 7 |
-
|
| 8 |
-
INTERVIEWER_LORA = "f3nsmart/TinyLlama-MBTI-Interviewer-LoRA"
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 16 |
device_map="auto"
|
| 17 |
)
|
| 18 |
-
model = PeftModel.from_pretrained(base_model, INTERVIEWER_LORA)
|
| 19 |
-
|
| 20 |
llm_pipe = pipeline(
|
| 21 |
"text-generation",
|
| 22 |
model=model,
|
|
@@ -24,29 +18,49 @@ llm_pipe = pipeline(
|
|
| 24 |
max_new_tokens=70,
|
| 25 |
temperature=0.7,
|
| 26 |
top_p=0.9,
|
| 27 |
-
device_map="auto"
|
| 28 |
)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
async def generate_question(user_id: str, user_text: str) -> str:
|
| 32 |
-
"""
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
| 35 |
|
| 36 |
prompt = (
|
| 37 |
f"The following is an MBTI personality interview.\n"
|
| 38 |
f"User: {user_text}\n"
|
| 39 |
f"Interviewer: ask one new, open-ended question starting with 'What', 'Why', 'How', or 'When'. "
|
| 40 |
-
f"
|
| 41 |
-
f"Previous questions: {
|
| 42 |
f"Interviewer:"
|
| 43 |
)
|
| 44 |
|
| 45 |
loop = asyncio.get_event_loop()
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
return cleaned
|
|
|
|
| 1 |
+
# core/interviewer.py
|
| 2 |
+
import asyncio
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
INTERVIEWER_MODEL = "f3nsmart/TinyLlama-MBTI-Interviewer-LoRA"
|
|
|
|
| 6 |
|
| 7 |
+
# Инициализация
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(INTERVIEWER_MODEL)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
+
INTERVIEWER_MODEL,
|
| 11 |
+
torch_dtype="auto",
|
|
|
|
| 12 |
device_map="auto"
|
| 13 |
)
|
|
|
|
|
|
|
| 14 |
llm_pipe = pipeline(
|
| 15 |
"text-generation",
|
| 16 |
model=model,
|
|
|
|
| 18 |
max_new_tokens=70,
|
| 19 |
temperature=0.7,
|
| 20 |
top_p=0.9,
|
|
|
|
| 21 |
)
|
| 22 |
|
| 23 |
+
# Память для пользователей
|
| 24 |
+
user_memory = {}
|
| 25 |
+
|
| 26 |
+
def clean_question(text: str) -> str:
|
| 27 |
+
"""Удаляет инструкции, оставляя только вопрос"""
|
| 28 |
+
text = text.strip().split("\n")[0]
|
| 29 |
+
text = text.strip('"').strip("'")
|
| 30 |
+
bad_tokens = ["user:", "assistant:", "instruction", "interviewer", "system:"]
|
| 31 |
+
for bad in bad_tokens:
|
| 32 |
+
if bad.lower() in text.lower():
|
| 33 |
+
text = text.split(bad)[-1].strip()
|
| 34 |
+
if not text.endswith("?"):
|
| 35 |
+
text += "?"
|
| 36 |
+
if len(text.split()) < 3:
|
| 37 |
+
return "What do you usually enjoy doing in your free time?"
|
| 38 |
+
return text.strip()
|
| 39 |
|
| 40 |
async def generate_question(user_id: str, user_text: str) -> str:
|
| 41 |
+
"""
|
| 42 |
+
Генерирует новый вопрос с учётом предыдущих.
|
| 43 |
+
"""
|
| 44 |
+
prev_qs = user_memory.get(user_id, [])
|
| 45 |
+
prev_joined = "; ".join(prev_qs) if prev_qs else "None"
|
| 46 |
|
| 47 |
prompt = (
|
| 48 |
f"The following is an MBTI personality interview.\n"
|
| 49 |
f"User: {user_text}\n"
|
| 50 |
f"Interviewer: ask one new, open-ended question starting with 'What', 'Why', 'How', or 'When'. "
|
| 51 |
+
f"Avoid repeating or rephrasing previous questions.\n"
|
| 52 |
+
f"Previous questions: {prev_joined}\n"
|
| 53 |
f"Interviewer:"
|
| 54 |
)
|
| 55 |
|
| 56 |
loop = asyncio.get_event_loop()
|
| 57 |
+
raw = await loop.run_in_executor(None, lambda: llm_pipe(prompt)[0]["generated_text"])
|
| 58 |
+
question = clean_question(raw)
|
| 59 |
+
|
| 60 |
+
valid_starts = ("What", "Why", "How", "When")
|
| 61 |
+
if not question.startswith(valid_starts):
|
| 62 |
+
question = "What motivates you to do the things you enjoy most?"
|
| 63 |
|
| 64 |
+
prev_qs.append(question)
|
| 65 |
+
user_memory[user_id] = prev_qs[-10:] # храним последние 10
|
| 66 |
+
return question
|
|
|
core/mbti_analyzer.py
CHANGED
|
@@ -1,11 +1,17 @@
|
|
|
|
|
| 1 |
from transformers import pipeline
|
| 2 |
-
|
| 3 |
|
| 4 |
MBTI_MODEL = "f3nsmart/MBTIclassifier"
|
| 5 |
mbti_pipe = pipeline("text-classification", model=MBTI_MODEL, return_all_scores=True)
|
| 6 |
|
| 7 |
-
async def analyze_mbti(
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# core/mbti_analyzer.py
|
| 2 |
from transformers import pipeline
|
| 3 |
+
import asyncio
|
| 4 |
|
| 5 |
MBTI_MODEL = "f3nsmart/MBTIclassifier"
|
| 6 |
mbti_pipe = pipeline("text-classification", model=MBTI_MODEL, return_all_scores=True)
|
| 7 |
|
| 8 |
+
async def analyze_mbti(user_text: str) -> str:
|
| 9 |
+
"""
|
| 10 |
+
Асинхронный анализ текста на MBTI типы.
|
| 11 |
+
Возвращает 3 лучших типа с их вероятностями.
|
| 12 |
+
"""
|
| 13 |
+
loop = asyncio.get_event_loop()
|
| 14 |
+
res = await loop.run_in_executor(None, lambda: mbti_pipe(user_text)[0])
|
| 15 |
+
res_sorted = sorted(res, key=lambda x: x["score"], reverse=True)
|
| 16 |
+
mbti_text = "\n".join([f"{r['label']} → {r['score']:.3f}" for r in res_sorted[:3]])
|
| 17 |
+
return mbti_text
|
core/utils.py
CHANGED
|
@@ -1,20 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
text = text.strip().split("\n")[0].strip('"').strip("'")
|
| 3 |
-
bad_tokens = ["user:", "assistant:", "instruction", "interviewer", "system:"]
|
| 4 |
-
for bad in bad_tokens:
|
| 5 |
-
if bad.lower() in text.lower():
|
| 6 |
-
text = text.split(bad)[-1].strip()
|
| 7 |
-
if "?" not in text:
|
| 8 |
-
text = text.rstrip(".") + "?"
|
| 9 |
-
if len(text.split()) < 3:
|
| 10 |
-
return "What do you usually enjoy doing in your free time?"
|
| 11 |
-
return text.strip()
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
return "What do you usually enjoy doing in your free time?"
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def format_mbti_output(res):
|
| 19 |
-
res_sorted = sorted(res, key=lambda x: x["score"], reverse=True)
|
| 20 |
-
return "\n".join([f"{r['label']} → {r['score']:.3f}" for r in res_sorted[:3]])
|
|
|
|
| 1 |
+
# core/utils.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
def generate_first_question() -> str:
|
| 4 |
+
"""Первый вопрос фиксированный"""
|
| 5 |
return "What do you usually enjoy doing in your free time?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|