QAway-to
commited on
Commit
·
0611243
1
Parent(s):
4df42a0
Back to normal app.py v1.5
Browse files- app.py +22 -9
- core/interviewer.py +27 -8
app.py
CHANGED
|
@@ -1,44 +1,57 @@
|
|
| 1 |
# app.py
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
| 3 |
from core.utils import generate_first_question
|
| 4 |
from core.mbti_analyzer import analyze_mbti
|
| 5 |
from core.interviewer import generate_question, session_state
|
| 6 |
|
| 7 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
if not user_text.strip():
|
| 9 |
yield "⚠️ Please enter your answer.", "", prev_count
|
| 10 |
return
|
| 11 |
|
| 12 |
user_id = "default_user"
|
| 13 |
-
|
| 14 |
try:
|
| 15 |
n = int(prev_count.split("/")[0]) + 1
|
| 16 |
except Exception:
|
| 17 |
n = 1
|
| 18 |
counter = f"{n}/8"
|
| 19 |
|
| 20 |
-
# 1️⃣
|
| 21 |
-
yield "⏳ Analyzing personality...", "💭 Interviewer is thinking...", counter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#
|
| 24 |
mbti_gen = analyze_mbti(user_text)
|
| 25 |
mbti_text = ""
|
| 26 |
for chunk in mbti_gen:
|
| 27 |
mbti_text = chunk
|
| 28 |
-
yield mbti_text, "💭 Interviewer is thinking...", counter
|
| 29 |
|
| 30 |
-
#
|
| 31 |
question = generate_question(user_id)
|
| 32 |
|
| 33 |
if question.startswith("✅ All"):
|
| 34 |
yield f"{mbti_text}\n\nSession complete.", "🎯 All MBTI axes covered.", "8/8"
|
| 35 |
return
|
| 36 |
|
| 37 |
-
#
|
| 38 |
yield mbti_text, question, counter
|
| 39 |
|
| 40 |
# --------------------------------------------------------------
|
| 41 |
-
#
|
| 42 |
# --------------------------------------------------------------
|
| 43 |
with gr.Blocks(theme=gr.themes.Soft(), title="MBTI Personality Interviewer") as demo:
|
| 44 |
gr.Markdown(
|
|
|
|
| 1 |
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
+
import asyncio
|
| 4 |
+
from itertools import cycle
|
| 5 |
from core.utils import generate_first_question
|
| 6 |
from core.mbti_analyzer import analyze_mbti
|
| 7 |
from core.interviewer import generate_question, session_state
|
| 8 |
|
| 9 |
+
async def async_loader(progress_fn):
|
| 10 |
+
"""Асинхронный loader-аниматор (вращающиеся точки)."""
|
| 11 |
+
frames = cycle(["⠋", "⠙", "⠹", "⠸", "⠼", "⠴", "⠦", "⠧", "⠇", "⠏"])
|
| 12 |
+
for _ in range(10):
|
| 13 |
+
await asyncio.sleep(0.2)
|
| 14 |
+
progress_fn(next(frames))
|
| 15 |
+
|
| 16 |
+
def analyze_and_ask(user_text, prev_count, progress=gr.Progress(track_tqdm=True)):
|
| 17 |
if not user_text.strip():
|
| 18 |
yield "⚠️ Please enter your answer.", "", prev_count
|
| 19 |
return
|
| 20 |
|
| 21 |
user_id = "default_user"
|
|
|
|
| 22 |
try:
|
| 23 |
n = int(prev_count.split("/")[0]) + 1
|
| 24 |
except Exception:
|
| 25 |
n = 1
|
| 26 |
counter = f"{n}/8"
|
| 27 |
|
| 28 |
+
# 1️⃣ Первое сообщение — мгновенно
|
| 29 |
+
yield "⏳ Analyzing personality...", "💭 Interviewer is thinking... ⠋", counter
|
| 30 |
+
|
| 31 |
+
# 2️⃣ Анимация лоадера в фоне
|
| 32 |
+
loop = asyncio.new_event_loop()
|
| 33 |
+
asyncio.set_event_loop(loop)
|
| 34 |
+
loop.create_task(async_loader(lambda f: None))
|
| 35 |
|
| 36 |
+
# 3️⃣ Анализ MBTI
|
| 37 |
mbti_gen = analyze_mbti(user_text)
|
| 38 |
mbti_text = ""
|
| 39 |
for chunk in mbti_gen:
|
| 40 |
mbti_text = chunk
|
| 41 |
+
yield mbti_text, "💭 Interviewer is thinking... ⠙", counter
|
| 42 |
|
| 43 |
+
# 4️⃣ Генерация вопроса
|
| 44 |
question = generate_question(user_id)
|
| 45 |
|
| 46 |
if question.startswith("✅ All"):
|
| 47 |
yield f"{mbti_text}\n\nSession complete.", "🎯 All MBTI axes covered.", "8/8"
|
| 48 |
return
|
| 49 |
|
| 50 |
+
# 5️⃣ Финальный вывод
|
| 51 |
yield mbti_text, question, counter
|
| 52 |
|
| 53 |
# --------------------------------------------------------------
|
| 54 |
+
# UI
|
| 55 |
# --------------------------------------------------------------
|
| 56 |
with gr.Blocks(theme=gr.themes.Soft(), title="MBTI Personality Interviewer") as demo:
|
| 57 |
gr.Markdown(
|
core/interviewer.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
# core/interviewer.py
|
| 2 |
import random
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 4 |
|
| 5 |
INTERVIEWER_MODEL = "f3nsmart/TinyLlama-MBTI-Interviewer-LoRA"
|
|
@@ -13,7 +14,7 @@ llm_pipe = pipeline(
|
|
| 13 |
"text-generation",
|
| 14 |
model=model,
|
| 15 |
tokenizer=tokenizer,
|
| 16 |
-
max_new_tokens=
|
| 17 |
temperature=0.6,
|
| 18 |
top_p=0.9,
|
| 19 |
)
|
|
@@ -40,14 +41,34 @@ def select_next_category(user_id: str):
|
|
| 40 |
return next_cat
|
| 41 |
|
| 42 |
def build_prompt(category: str):
|
|
|
|
| 43 |
return (
|
| 44 |
-
f"
|
| 45 |
-
f"
|
| 46 |
-
f"
|
|
|
|
| 47 |
)
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
def generate_question(user_id: str) -> str:
|
| 50 |
-
"""
|
| 51 |
if user_id not in session_state:
|
| 52 |
init_session(user_id)
|
| 53 |
|
|
@@ -57,7 +78,5 @@ def generate_question(user_id: str) -> str:
|
|
| 57 |
|
| 58 |
prompt = build_prompt(category)
|
| 59 |
raw = llm_pipe(prompt)[0]["generated_text"]
|
| 60 |
-
question = raw
|
| 61 |
-
if "?" not in question:
|
| 62 |
-
question += "?"
|
| 63 |
return f"({category}) {question}"
|
|
|
|
| 1 |
# core/interviewer.py
|
| 2 |
import random
|
| 3 |
+
import itertools
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 5 |
|
| 6 |
INTERVIEWER_MODEL = "f3nsmart/TinyLlama-MBTI-Interviewer-LoRA"
|
|
|
|
| 14 |
"text-generation",
|
| 15 |
model=model,
|
| 16 |
tokenizer=tokenizer,
|
| 17 |
+
max_new_tokens=70,
|
| 18 |
temperature=0.6,
|
| 19 |
top_p=0.9,
|
| 20 |
)
|
|
|
|
| 41 |
return next_cat
|
| 42 |
|
| 43 |
def build_prompt(category: str):
|
| 44 |
+
# ✅ Новый, более "демонстративный" промпт:
|
| 45 |
return (
|
| 46 |
+
f"You are a friendly MBTI interviewer.\n"
|
| 47 |
+
f"Ask one short, open-ended question that explores {category.lower()}.\n"
|
| 48 |
+
f"Examples: 'What makes you feel most energized in social situations?'\n"
|
| 49 |
+
f"Output only the question, without quotes, without explanations."
|
| 50 |
)
|
| 51 |
|
| 52 |
+
def clean_question(text: str) -> str:
|
| 53 |
+
"""Удаляет инструкции и оставляет только вопрос."""
|
| 54 |
+
text = text.strip()
|
| 55 |
+
|
| 56 |
+
# убираем строки с 'ask', 'instruction' и т.п.
|
| 57 |
+
bad_phrases = ["ask", "instruction", "output only", "question about", "you are"]
|
| 58 |
+
for phrase in bad_phrases:
|
| 59 |
+
if phrase.lower() in text.lower():
|
| 60 |
+
# берём только часть после последнего примера знака '?'
|
| 61 |
+
if '?' in text:
|
| 62 |
+
text = text.split('?')[-1]
|
| 63 |
+
else:
|
| 64 |
+
text = text.replace(phrase, '')
|
| 65 |
+
text = text.strip().strip('"').strip("'")
|
| 66 |
+
if not text.endswith("?"):
|
| 67 |
+
text += "?"
|
| 68 |
+
return text
|
| 69 |
+
|
| 70 |
def generate_question(user_id: str) -> str:
|
| 71 |
+
"""Генерация нового вопроса по категории."""
|
| 72 |
if user_id not in session_state:
|
| 73 |
init_session(user_id)
|
| 74 |
|
|
|
|
| 78 |
|
| 79 |
prompt = build_prompt(category)
|
| 80 |
raw = llm_pipe(prompt)[0]["generated_text"]
|
| 81 |
+
question = clean_question(raw)
|
|
|
|
|
|
|
| 82 |
return f"({category}) {question}"
|