Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
| import torch | |
| import spaces | |
| import os | |
| IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1" | |
| IS_SPACE = os.environ.get("SPACE_ID", None) is not None | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1" | |
| print(f"Using device: {device}") | |
| print(f"low memory: {LOW_MEMORY}") | |
| # Define BitsAndBytesConfig | |
| bnb_config = BitsAndBytesConfig(load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.float16) | |
| # Model name | |
| model_name = "ruslanmv/Medical-Llama3-v2" | |
| # Load tokenizer and model with BitsAndBytesConfig | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, bnb_config=bnb_config) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, config=bnb_config) | |
| # Ensure model is on the correct device | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| # Define the respond function | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| # Format the conversation as a single string for the model | |
| prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
| # Move inputs to device | |
| input_ids = inputs['input_ids'].to(device) | |
| attention_mask = inputs['attention_mask'].to(device) | |
| # Generate the response | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| max_length=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| use_cache=True | |
| ) | |
| # Extract the response | |
| response_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
| # Remove the prompt and system message from the response | |
| response_text = response_text.replace(system_message, '').strip() | |
| response_text = response_text.replace(f"Human: {message}\n\nAssistant: ", '').strip() | |
| return response_text | |
| # Create the Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a Medical AI Assistant. Please be thorough and provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.", label="System message", lines=3), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.8, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| title="Medical AI Assistant", | |
| description="Give me your symptoms and ask me a health problem. The AI will provide informative answers. If the AI doesn't know the answer, it will advise seeking professional help.", | |
| examples=[["I'm a 35-year-old male and for the past few months, I've been experiencing fatigue, increased sensitivity to cold, and dry, itchy skin. Could these symptoms be related to hypothyroidism?"], ["I have a headache and a fever. What should I do?"], ["How can I improve my sleep?"]], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |