Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import json | |
| import copy | |
| import time | |
| import random | |
| import logging | |
| import numpy as np | |
| from typing import Any, Dict, List, Optional, Union | |
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| from diffusers import ( | |
| DiffusionPipeline, | |
| AutoencoderTiny, | |
| AutoencoderKL, | |
| AutoPipelineForImage2Image, | |
| FluxPipeline, | |
| FlowMatchEulerDiscreteScheduler | |
| ) | |
| from huggingface_hub import ( | |
| hf_hub_download, | |
| HfFileSystem, | |
| ModelCard, | |
| snapshot_download | |
| ) | |
| from diffusers.utils import load_image | |
| import spaces | |
| # Import the prompt enhancer generator from enhance.py | |
| from enhance import generate as enhance_generate | |
| # Attempt to import loras from lora.py; otherwise use a default placeholder. | |
| try: | |
| from lora import loras | |
| except ImportError: | |
| loras = [ | |
| {"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""} | |
| ] | |
| #---if workspace = local or colab--- | |
| # (Optional: add Hugging Face login code here) | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.16, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| # FLUX pipeline | |
| def flux_pipe_call_that_returns_an_iterable_of_images( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| max_sequence_length: int = 512, | |
| good_vae: Optional[Any] = None, | |
| ): | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None | |
| prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents_for_image, return_dict=False)[0] | |
| yield self.image_processor.postprocess(image, output_type=output_type)[0] | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| torch.cuda.empty_cache() | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor | |
| image = good_vae.decode(latents, return_dict=False)[0] | |
| self.maybe_free_model_hooks() | |
| torch.cuda.empty_cache() | |
| yield self.image_processor.postprocess(image, output_type=output_type)[0] | |
| #--------------------------------------------------Model Initialization-----------------------------------------------------------------------------------------# | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| base_model = "black-forest-labs/FLUX.1-dev" | |
| # TAEF1 is a very tiny autoencoder which uses the same "latent API" as FLUX.1's VAE. | |
| taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
| good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) | |
| pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) | |
| pipe_i2i = AutoPipelineForImage2Image.from_pretrained( | |
| base_model, | |
| vae=good_vae, | |
| transformer=pipe.transformer, | |
| text_encoder=pipe.text_encoder, | |
| tokenizer=pipe.tokenizer, | |
| text_encoder_2=pipe.text_encoder_2, | |
| tokenizer_2=pipe.tokenizer_2, | |
| torch_dtype=dtype, | |
| ).to(device) | |
| MAX_SEED = 2**32-1 | |
| pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
| class calculateDuration: | |
| def __init__(self, activity_name=""): | |
| self.activity_name = activity_name | |
| def __enter__(self): | |
| self.start_time = time.time() | |
| return self | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| self.end_time = time.time() | |
| self.elapsed_time = self.end_time - self.start_time | |
| if self.activity_name: | |
| print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
| else: | |
| print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
| def update_selection(evt: gr.SelectData, width, height): | |
| selected_lora = loras[evt.index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅" | |
| if "aspect" in selected_lora: | |
| if selected_lora["aspect"] == "portrait": | |
| width = 768 | |
| height = 1024 | |
| elif selected_lora["aspect"] == "landscape": | |
| width = 1024 | |
| height = 768 | |
| else: | |
| width = 1024 | |
| height = 1024 | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, | |
| evt.index, | |
| width, | |
| height, | |
| ) | |
| def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress): | |
| pipe.to("cuda") | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| with calculateDuration("Generating image"): | |
| for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
| prompt=prompt_mash, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| joint_attention_kwargs={"scale": lora_scale}, | |
| output_type="pil", | |
| good_vae=good_vae, | |
| ): | |
| yield img | |
| def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed): | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| pipe_i2i.to("cuda") | |
| image_input = load_image(image_input_path) | |
| final_image = pipe_i2i( | |
| prompt=prompt_mash, | |
| image=image_input, | |
| strength=image_strength, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| joint_attention_kwargs={"scale": lora_scale}, | |
| output_type="pil", | |
| ).images[0] | |
| return final_image | |
| def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer, progress=gr.Progress(track_tqdm=True)): | |
| # Check if a LoRA is selected. | |
| if selected_index is None: | |
| return "You must select a LoRA before proceeding. 🧨", seed, gr.update(visible=False), "" # Return message for image output, update prompt box | |
| selected_lora = loras[selected_index] | |
| lora_path = selected_lora["repo"] | |
| trigger_word = selected_lora["trigger_word"] | |
| # Prepare prompt by appending/prepending trigger word if available. | |
| if trigger_word: | |
| if "trigger_position" in selected_lora and selected_lora["trigger_position"] == "prepend": | |
| prompt_mash = f"{trigger_word} {prompt}" | |
| else: | |
| prompt_mash = f"{prompt} {trigger_word}" | |
| else: | |
| prompt_mash = prompt | |
| # If prompt enhancer is enabled, stream the enhanced prompt. | |
| enhanced_text = "" | |
| if use_enhancer: | |
| for enhanced_chunk in enhance_generate(prompt_mash): | |
| enhanced_text = enhanced_chunk | |
| # Yield intermediate output (no image yet, but update enhanced prompt textbox) | |
| yield None, seed, gr.update(visible=False), enhanced_text | |
| prompt_mash = enhanced_text # Use final enhanced prompt for generation | |
| # Else, leave prompt_mash as is. | |
| with calculateDuration("Unloading LoRA"): | |
| pipe.unload_lora_weights() | |
| pipe_i2i.unload_lora_weights() | |
| with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
| pipe_to_use = pipe_i2i if image_input is not None else pipe | |
| weight_name = selected_lora.get("weights", None) | |
| pipe_to_use.load_lora_weights( | |
| lora_path, | |
| weight_name=weight_name, | |
| low_cpu_mem_usage=True | |
| ) | |
| with calculateDuration("Randomizing seed"): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if image_input is not None: | |
| final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed) | |
| yield final_image, seed, gr.update(visible=False), enhanced_text | |
| else: | |
| image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress) | |
| final_image = None | |
| step_counter = 0 | |
| for image in image_generator: | |
| step_counter += 1 | |
| final_image = image | |
| progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' | |
| yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_text | |
| yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_text | |
| def get_huggingface_safetensors(link): | |
| split_link = link.split("/") | |
| if len(split_link) == 2: | |
| model_card = ModelCard.load(link) | |
| base_model = model_card.data.get("base_model") | |
| print(base_model) | |
| if (base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell"): | |
| raise Exception("Flux LoRA Not Found!") | |
| image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
| trigger_word = model_card.data.get("instance_prompt", "") | |
| image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None | |
| fs = HfFileSystem() | |
| try: | |
| list_of_files = fs.ls(link, detail=False) | |
| for file in list_of_files: | |
| if file.endswith(".safetensors"): | |
| safetensors_name = file.split("/")[-1] | |
| if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): | |
| image_elements = file.split("/") | |
| image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" | |
| except Exception as e: | |
| print(e) | |
| gr.Warning("You didn't include a link nor a valid Hugging Face repository with a *.safetensors LoRA") | |
| raise Exception("Invalid LoRA repository") | |
| return split_link[1], link, safetensors_name, trigger_word, image_url | |
| else: | |
| raise Exception("Invalid LoRA link format") | |
| def check_custom_model(link): | |
| if link.startswith("https://"): | |
| if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): | |
| link_split = link.split("huggingface.co/") | |
| return get_huggingface_safetensors(link_split[1]) | |
| else: | |
| return get_huggingface_safetensors(link) | |
| def add_custom_lora(custom_lora): | |
| global loras | |
| if custom_lora: | |
| try: | |
| title, repo, path, trigger_word, image = check_custom_model(custom_lora) | |
| print(f"Loaded custom LoRA: {repo}") | |
| card = f''' | |
| <div class="custom_lora_card"> | |
| <span>Loaded custom LoRA:</span> | |
| <div class="card_internal"> | |
| <img src="{image}" /> | |
| <div> | |
| <h3>{title}</h3> | |
| <small>{"Using: <code><b>" + trigger_word + "</b></code> as the trigger word" if trigger_word else "No trigger word found. Include it in your prompt"}<br></small> | |
| </div> | |
| </div> | |
| </div> | |
| ''' | |
| existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) | |
| if not existing_item_index: | |
| new_item = { | |
| "image": image, | |
| "title": title, | |
| "repo": repo, | |
| "weights": path, | |
| "trigger_word": trigger_word | |
| } | |
| print(new_item) | |
| existing_item_index = len(loras) | |
| loras.append(new_item) | |
| return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word | |
| except Exception as e: | |
| gr.Warning("Invalid LoRA: either you entered an invalid link or a non-FLUX LoRA") | |
| return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, "" | |
| else: | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
| def remove_custom_lora(): | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
| run_lora.zerogpu = True | |
| css = ''' | |
| /* Title Styling */ | |
| #title { | |
| text-align: center; | |
| margin-bottom: 20px; | |
| } | |
| #title h1 { | |
| font-size: 2.5rem; | |
| margin: 0; | |
| color: #333; | |
| } | |
| /* Button and Column Styling */ | |
| #gen_btn { | |
| width: 100%; | |
| padding: 12px; | |
| font-weight: bold; | |
| border-radius: 5px; | |
| } | |
| #gen_column { | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| } | |
| /* Gallery and List Styling */ | |
| #gallery .grid-wrap { | |
| margin-top: 15px; | |
| } | |
| #lora_list { | |
| background-color: #f5f5f5; | |
| padding: 10px; | |
| border-radius: 4px; | |
| font-size: 0.9rem; | |
| } | |
| .card_internal { | |
| display: flex; | |
| align-items: center; | |
| height: 100px; | |
| margin-top: 10px; | |
| } | |
| .card_internal img { | |
| margin-right: 10px; | |
| } | |
| .styler { | |
| --form-gap-width: 0px !important; | |
| } | |
| /* Progress Bar Styling */ | |
| .progress-container { | |
| width: 100%; | |
| height: 20px; | |
| background-color: #e0e0e0; | |
| border-radius: 10px; | |
| overflow: hidden; | |
| margin-bottom: 20px; | |
| } | |
| .progress-bar { | |
| height: 100%; | |
| background-color: #4f46e5; | |
| transition: width 0.3s ease-in-out; | |
| width: calc(var(--current) / var(--total) * 100%); | |
| } | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Base(), css=css, delete_cache=(60, 60)) as app: | |
| title = gr.HTML( | |
| """<h1>Flux LoRA Generation</h1>""", | |
| elem_id="title", | |
| ) | |
| selected_index = gr.State(None) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox(label="Prompt", lines=1, placeholder=":/ choose the LoRA and type the prompt ") | |
| with gr.Column(scale=1, elem_id="gen_column"): | |
| generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
| with gr.Row(): | |
| with gr.Column(): | |
| selected_info = gr.Markdown("") | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="LoRA DLC's", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery", | |
| show_share_button=False | |
| ) | |
| with gr.Group(): | |
| custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime") | |
| gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") | |
| custom_lora_info = gr.HTML(visible=False) | |
| custom_lora_button = gr.Button("Remove custom LoRA", visible=False) | |
| with gr.Column(): | |
| progress_bar = gr.Markdown(elem_id="progress", visible=False) | |
| result = gr.Image(label="Generated Image") | |
| with gr.Row(): | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input image", type="filepath") | |
| image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) | |
| with gr.Column(): | |
| with gr.Row(): | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
| height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
| with gr.Row(): | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95) | |
| with gr.Row(): | |
| use_enhancer = gr.Checkbox(value=False, label="Use Prompt Enhancer") | |
| show_enhanced_prompt = gr.Checkbox(value=False, label="Display Enhanced Prompt") | |
| enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", visible=False) | |
| # Add the change event so that the enhanced prompt box visibility toggles. | |
| show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show), | |
| inputs=show_enhanced_prompt, | |
| outputs=enhanced_prompt_box) | |
| gallery.select( | |
| update_selection, | |
| inputs=[width, height], | |
| outputs=[prompt, selected_info, selected_index, width, height] | |
| ) | |
| custom_lora.input( | |
| add_custom_lora, | |
| inputs=[custom_lora], | |
| outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt] | |
| ) | |
| custom_lora_button.click( | |
| remove_custom_lora, | |
| outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora] | |
| ) | |
| gr.on( | |
| triggers=[generate_button.click, prompt.submit], | |
| fn=run_lora, | |
| inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer], | |
| outputs=[result, seed, progress_bar, enhanced_prompt_box] | |
| ) | |
| with gr.Row(): | |
| gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>") | |
| app.queue() | |
| app.launch(debug=True) | |