Spaces:
Running
on
Zero
Running
on
Zero
| # flux_app/enhance.py | |
| import time | |
| from huggingface_hub import InferenceClient | |
| import gradio as gr | |
| # Initialize the inference client with the new LLM | |
| client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
| # Define the system prompt for enhancing user prompts | |
| SYSTEM_PROMPT = ( | |
| "You are a prompt enhancer and your work is to enhance the given prompt under 100 words " | |
| "without changing the essence, only write the enhanced prompt and nothing else." | |
| ) | |
| def format_prompt(message): | |
| """ | |
| Format the input message using the system prompt and a timestamp to ensure uniqueness. | |
| """ | |
| timestamp = time.time() | |
| formatted = ( | |
| f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]" | |
| f"[INST] {message} {timestamp} [/INST]" | |
| ) | |
| return formatted | |
| def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0): | |
| """ | |
| Generate an enhanced prompt using the new LLM. | |
| This function yields intermediate results as they are generated. | |
| """ | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = { | |
| "temperature": temperature, | |
| "max_new_tokens": int(max_new_tokens), | |
| "top_p": top_p, | |
| "repetition_penalty": float(repetition_penalty), | |
| "do_sample": True, | |
| } | |
| formatted_prompt = format_prompt(message) | |
| stream = client.text_generation( | |
| formatted_prompt, | |
| **generate_kwargs, | |
| stream=True, | |
| details=True, | |
| return_full_text=False, | |
| ) | |
| output = "" | |
| for response in stream: | |
| token_text = response.token.text | |
| output += token_text | |
| yield output.strip('</s>') | |
| return output.strip('</s>') | |