Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import time
|
| 6 |
+
from typing import List, Dict
|
| 7 |
+
import pandas as pd
|
| 8 |
+
|
| 9 |
+
# Initialize Streamlit app
|
| 10 |
+
st.set_page_config(
|
| 11 |
+
page_title="IntraTalent Resume Processor",
|
| 12 |
+
page_icon="π",
|
| 13 |
+
layout="wide"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
def save_uploaded_file(uploaded_file) -> str:
|
| 17 |
+
"""Save uploaded file to temporary directory and return path."""
|
| 18 |
+
try:
|
| 19 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
|
| 20 |
+
tmp_file.write(uploaded_file.getvalue())
|
| 21 |
+
return tmp_file.name
|
| 22 |
+
except Exception as e:
|
| 23 |
+
st.error(f"Error saving file: {e}")
|
| 24 |
+
return None
|
| 25 |
+
|
| 26 |
+
def process_resumes(uploaded_files: List[st.UploadedFile]) -> Dict:
|
| 27 |
+
"""Process multiple resumes and return results."""
|
| 28 |
+
results = {}
|
| 29 |
+
progress_bar = st.progress(0)
|
| 30 |
+
|
| 31 |
+
for idx, file in enumerate(uploaded_files):
|
| 32 |
+
if file.type != "application/pdf":
|
| 33 |
+
st.warning(f"Skipping {file.name}: Not a PDF file")
|
| 34 |
+
continue
|
| 35 |
+
|
| 36 |
+
temp_path = save_uploaded_file(file)
|
| 37 |
+
if temp_path:
|
| 38 |
+
try:
|
| 39 |
+
name, projects = parse_resume(temp_path)
|
| 40 |
+
results[file.name] = {
|
| 41 |
+
"name": name,
|
| 42 |
+
"projects": projects
|
| 43 |
+
}
|
| 44 |
+
# Update progress
|
| 45 |
+
progress_bar.progress((idx + 1) / len(uploaded_files))
|
| 46 |
+
except Exception as e:
|
| 47 |
+
st.error(f"Error processing {file.name}: {e}")
|
| 48 |
+
finally:
|
| 49 |
+
# Clean up temporary file
|
| 50 |
+
os.unlink(temp_path)
|
| 51 |
+
|
| 52 |
+
return results
|
| 53 |
+
|
| 54 |
+
def display_results(results: Dict):
|
| 55 |
+
"""Display processed resume results in an organized manner."""
|
| 56 |
+
if not results:
|
| 57 |
+
return
|
| 58 |
+
|
| 59 |
+
st.subheader("Processed Resumes")
|
| 60 |
+
|
| 61 |
+
for filename, data in results.items():
|
| 62 |
+
with st.expander(f"π {data['name']} ({filename})"):
|
| 63 |
+
if data['projects']:
|
| 64 |
+
df = pd.DataFrame(data['projects'])
|
| 65 |
+
st.dataframe(
|
| 66 |
+
df,
|
| 67 |
+
column_config={
|
| 68 |
+
"name": "Project Name",
|
| 69 |
+
"description": "Description"
|
| 70 |
+
},
|
| 71 |
+
hide_index=True
|
| 72 |
+
)
|
| 73 |
+
else:
|
| 74 |
+
st.info("No projects found in this resume")
|
| 75 |
+
|
| 76 |
+
def main():
|
| 77 |
+
st.title("IntraTalent Resume Processor")
|
| 78 |
+
|
| 79 |
+
# File uploader section
|
| 80 |
+
st.header("Upload Resumes")
|
| 81 |
+
uploaded_files = st.file_uploader(
|
| 82 |
+
"Upload up to 10 resumes (PDF only)",
|
| 83 |
+
type=['pdf'],
|
| 84 |
+
accept_multiple_files=True,
|
| 85 |
+
key="resume_uploader"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# Validate number of files
|
| 89 |
+
if len(uploaded_files) > 10:
|
| 90 |
+
st.error("Maximum 10 files allowed. Please remove some files.")
|
| 91 |
+
return
|
| 92 |
+
|
| 93 |
+
# Process button
|
| 94 |
+
if uploaded_files and st.button("Process Resumes"):
|
| 95 |
+
with st.spinner("Processing resumes..."):
|
| 96 |
+
results = process_resumes(uploaded_files)
|
| 97 |
+
st.session_state['processed_results'] = results
|
| 98 |
+
display_results(results)
|
| 99 |
+
|
| 100 |
+
# Query section
|
| 101 |
+
st.header("Search Projects")
|
| 102 |
+
query = st.text_area(
|
| 103 |
+
"Enter your project requirements",
|
| 104 |
+
placeholder="Example: Looking for team members with experience in machine learning and computer vision...",
|
| 105 |
+
height=100
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
if query and st.button("Search"):
|
| 109 |
+
if 'processed_results' not in st.session_state:
|
| 110 |
+
st.warning("Please process some resumes first!")
|
| 111 |
+
return
|
| 112 |
+
|
| 113 |
+
with st.spinner("Searching for matches..."):
|
| 114 |
+
# Here you would implement the embedding and similarity search
|
| 115 |
+
# Using the code from your original script
|
| 116 |
+
st.success("Search completed!")
|
| 117 |
+
# Display results in a nice format
|
| 118 |
+
st.subheader("Top Matches")
|
| 119 |
+
# Placeholder for search results
|
| 120 |
+
st.info("Feature coming soon: Will display matching projects and candidates based on similarity search")
|
| 121 |
+
|
| 122 |
+
if __name__ == "__main__":
|
| 123 |
+
main()
|