Spaces:
Running
Running
| import pathlib | |
| from os import path | |
| import torch | |
| from diffusers import ( | |
| AutoPipelineForText2Image, | |
| LCMScheduler, | |
| StableDiffusionPipeline, | |
| ) | |
| def load_lcm_weights( | |
| pipeline, | |
| use_local_model, | |
| lcm_lora_id, | |
| ): | |
| kwargs = { | |
| "local_files_only": use_local_model, | |
| "weight_name": "pytorch_lora_weights.safetensors", | |
| } | |
| pipeline.load_lora_weights( | |
| lcm_lora_id, | |
| **kwargs, | |
| adapter_name="lcm", | |
| ) | |
| def get_lcm_lora_pipeline( | |
| base_model_id: str, | |
| lcm_lora_id: str, | |
| use_local_model: bool, | |
| torch_data_type: torch.dtype, | |
| pipeline_args={}, | |
| ): | |
| if pathlib.Path(base_model_id).suffix == ".safetensors": | |
| # SD 1.5 models only | |
| # When loading a .safetensors model, the pipeline has to be created | |
| # with StableDiffusionPipeline() since it's the only class that | |
| # defines the method from_single_file(); afterwards a new pipeline | |
| # is created using AutoPipelineForText2Image() for ControlNet | |
| # support, in case ControlNet is enabled | |
| if not path.exists(base_model_id): | |
| raise FileNotFoundError( | |
| f"Model file not found,Please check your model path: {base_model_id}" | |
| ) | |
| print("Using single file Safetensors model (Supported models - SD 1.5 models)") | |
| dummy_pipeline = StableDiffusionPipeline.from_single_file( | |
| base_model_id, | |
| torch_dtype=torch_data_type, | |
| safety_checker=None, | |
| local_files_only=use_local_model, | |
| use_safetensors=True, | |
| ) | |
| pipeline = AutoPipelineForText2Image.from_pipe( | |
| dummy_pipeline, | |
| **pipeline_args, | |
| ) | |
| del dummy_pipeline | |
| else: | |
| pipeline = AutoPipelineForText2Image.from_pretrained( | |
| base_model_id, | |
| torch_dtype=torch_data_type, | |
| local_files_only=use_local_model, | |
| **pipeline_args, | |
| ) | |
| load_lcm_weights( | |
| pipeline, | |
| use_local_model, | |
| lcm_lora_id, | |
| ) | |
| # Always fuse LCM-LoRA | |
| # pipeline.fuse_lora() | |
| if "lcm" in lcm_lora_id.lower() or "hypersd" in lcm_lora_id.lower(): | |
| print("LCM LoRA model detected so using recommended LCMScheduler") | |
| pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) | |
| # pipeline.unet.to(memory_format=torch.channels_last) | |
| return pipeline | |