Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -54,13 +54,23 @@ def preprocess_image(image):
|
|
| 54 |
|
| 55 |
image = cv2.resize(image, (224, 224))
|
| 56 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
def
|
| 60 |
-
image_tensor = preprocess_image(image)
|
|
|
|
| 61 |
with torch.no_grad():
|
| 62 |
outputs = model(image_tensor)
|
| 63 |
-
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Streamlit UI
|
| 66 |
st.title("Face Shape & Glasses Recommender")
|
|
|
|
| 54 |
|
| 55 |
image = cv2.resize(image, (224, 224))
|
| 56 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 57 |
+
|
| 58 |
+
# Use feature extractor with proper batching
|
| 59 |
+
inputs = feature_extractor(
|
| 60 |
+
images=[image], # Pass as a list of images
|
| 61 |
+
return_tensors="pt",
|
| 62 |
+
padding=True # Enable padding as a safety measure
|
| 63 |
+
)
|
| 64 |
+
return inputs['pixel_values']
|
| 65 |
|
| 66 |
+
def predict_face_shape(image):
|
| 67 |
+
image_tensor = preprocess_image(image).to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
| 68 |
+
|
| 69 |
with torch.no_grad():
|
| 70 |
outputs = model(image_tensor)
|
| 71 |
+
predicted_class_idx = torch.argmax(outputs.logits, dim=1).item()
|
| 72 |
+
|
| 73 |
+
return id2label[predicted_class_idx]
|
| 74 |
|
| 75 |
# Streamlit UI
|
| 76 |
st.title("Face Shape & Glasses Recommender")
|