Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import numpy as np | |
| class BaseSchedule(): | |
| def __init__(self, *args, force_limits=True, discrete_steps=None, shift=1, **kwargs): | |
| self.setup(*args, **kwargs) | |
| self.limits = None | |
| self.discrete_steps = discrete_steps | |
| self.shift = shift | |
| if force_limits: | |
| self.reset_limits() | |
| def reset_limits(self, shift=1, disable=False): | |
| try: | |
| self.limits = None if disable else self(torch.tensor([1.0, 0.0]), shift=shift).tolist() # min, max | |
| return self.limits | |
| except Exception: | |
| print("WARNING: this schedule doesn't support t and will be unbounded") | |
| return None | |
| def setup(self, *args, **kwargs): | |
| raise NotImplementedError("this method needs to be overriden") | |
| def schedule(self, *args, **kwargs): | |
| raise NotImplementedError("this method needs to be overriden") | |
| def __call__(self, t, *args, shift=1, **kwargs): | |
| if isinstance(t, torch.Tensor): | |
| batch_size = None | |
| if self.discrete_steps is not None: | |
| if t.dtype != torch.long: | |
| t = (t * (self.discrete_steps-1)).round().long() | |
| t = t / (self.discrete_steps-1) | |
| t = t.clamp(0, 1) | |
| else: | |
| batch_size = t | |
| t = None | |
| logSNR = self.schedule(t, batch_size, *args, **kwargs) | |
| if shift*self.shift != 1: | |
| logSNR += 2 * np.log(1/(shift*self.shift)) | |
| if self.limits is not None: | |
| logSNR = logSNR.clamp(*self.limits) | |
| return logSNR | |
| class CosineSchedule(BaseSchedule): | |
| def setup(self, s=0.008, clamp_range=[0.0001, 0.9999], norm_instead=False): | |
| self.s = torch.tensor([s]) | |
| self.clamp_range = clamp_range | |
| self.norm_instead = norm_instead | |
| self.min_var = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2 | |
| def schedule(self, t, batch_size): | |
| if t is None: | |
| t = (1-torch.rand(batch_size)).add(0.001).clamp(0.001, 1.0) | |
| s, min_var = self.s.to(t.device), self.min_var.to(t.device) | |
| var = torch.cos((s + t)/(1+s) * torch.pi * 0.5).clamp(0, 1) ** 2 / min_var | |
| if self.norm_instead: | |
| var = var * (self.clamp_range[1]-self.clamp_range[0]) + self.clamp_range[0] | |
| else: | |
| var = var.clamp(*self.clamp_range) | |
| logSNR = (var/(1-var)).log() | |
| return logSNR | |
| class CosineSchedule2(BaseSchedule): | |
| def setup(self, logsnr_range=[-15, 15]): | |
| self.t_min = np.arctan(np.exp(-0.5 * logsnr_range[1])) | |
| self.t_max = np.arctan(np.exp(-0.5 * logsnr_range[0])) | |
| def schedule(self, t, batch_size): | |
| if t is None: | |
| t = 1-torch.rand(batch_size) | |
| return -2 * (self.t_min + t*(self.t_max-self.t_min)).tan().log() | |
| class SqrtSchedule(BaseSchedule): | |
| def setup(self, s=1e-4, clamp_range=[0.0001, 0.9999], norm_instead=False): | |
| self.s = s | |
| self.clamp_range = clamp_range | |
| self.norm_instead = norm_instead | |
| def schedule(self, t, batch_size): | |
| if t is None: | |
| t = 1-torch.rand(batch_size) | |
| var = 1 - (t + self.s)**0.5 | |
| if self.norm_instead: | |
| var = var * (self.clamp_range[1]-self.clamp_range[0]) + self.clamp_range[0] | |
| else: | |
| var = var.clamp(*self.clamp_range) | |
| logSNR = (var/(1-var)).log() | |
| return logSNR | |
| class RectifiedFlowsSchedule(BaseSchedule): | |
| def setup(self, logsnr_range=[-15, 15]): | |
| self.logsnr_range = logsnr_range | |
| def schedule(self, t, batch_size): | |
| if t is None: | |
| t = 1-torch.rand(batch_size) | |
| logSNR = (((1-t)**2)/(t**2)).log() | |
| logSNR = logSNR.clamp(*self.logsnr_range) | |
| return logSNR | |
| class EDMSampleSchedule(BaseSchedule): | |
| def setup(self, sigma_range=[0.002, 80], p=7): | |
| self.sigma_range = sigma_range | |
| self.p = p | |
| def schedule(self, t, batch_size): | |
| if t is None: | |
| t = 1-torch.rand(batch_size) | |
| smin, smax, p = *self.sigma_range, self.p | |
| sigma = (smax ** (1/p) + (1-t) * (smin ** (1/p) - smax ** (1/p))) ** p | |
| logSNR = (1/sigma**2).log() | |
| return logSNR | |
| class EDMTrainSchedule(BaseSchedule): | |
| def setup(self, mu=-1.2, std=1.2): | |
| self.mu = mu | |
| self.std = std | |
| def schedule(self, t, batch_size): | |
| if t is not None: | |
| raise Exception("EDMTrainSchedule doesn't support passing timesteps: t") | |
| logSNR = -2*(torch.randn(batch_size) * self.std - self.mu) | |
| return logSNR | |
| class LinearSchedule(BaseSchedule): | |
| def setup(self, logsnr_range=[-10, 10]): | |
| self.logsnr_range = logsnr_range | |
| def schedule(self, t, batch_size): | |
| if t is None: | |
| t = 1-torch.rand(batch_size) | |
| logSNR = t * (self.logsnr_range[0]-self.logsnr_range[1]) + self.logsnr_range[1] | |
| return logSNR | |
| # Any schedule that cannot be described easily as a continuous function of t | |
| # It needs to define self.x and self.y in the setup() method | |
| class PiecewiseLinearSchedule(BaseSchedule): | |
| def setup(self): | |
| self.x = None | |
| self.y = None | |
| def piecewise_linear(self, x, xs, ys): | |
| indices = torch.searchsorted(xs[:-1], x) - 1 | |
| x_min, x_max = xs[indices], xs[indices+1] | |
| y_min, y_max = ys[indices], ys[indices+1] | |
| var = y_min + (y_max - y_min) * (x - x_min) / (x_max - x_min) | |
| return var | |
| def schedule(self, t, batch_size): | |
| if t is None: | |
| t = 1-torch.rand(batch_size) | |
| var = self.piecewise_linear(t, self.x.to(t.device), self.y.to(t.device)) | |
| logSNR = (var/(1-var)).log() | |
| return logSNR | |
| class StableDiffusionSchedule(PiecewiseLinearSchedule): | |
| def setup(self, linear_range=[0.00085, 0.012], total_steps=1000): | |
| linear_range_sqrt = [r**0.5 for r in linear_range] | |
| self.x = torch.linspace(0, 1, total_steps+1) | |
| alphas = 1-(linear_range_sqrt[0]*(1-self.x) + linear_range_sqrt[1]*self.x)**2 | |
| self.y = alphas.cumprod(dim=-1) | |
| class AdaptiveTrainSchedule(BaseSchedule): | |
| def setup(self, logsnr_range=[-10, 10], buckets=100, min_probs=0.0): | |
| th = torch.linspace(logsnr_range[0], logsnr_range[1], buckets+1) | |
| self.bucket_ranges = torch.tensor([(th[i], th[i+1]) for i in range(buckets)]) | |
| self.bucket_probs = torch.ones(buckets) | |
| self.min_probs = min_probs | |
| def schedule(self, t, batch_size): | |
| if t is not None: | |
| raise Exception("AdaptiveTrainSchedule doesn't support passing timesteps: t") | |
| norm_probs = ((self.bucket_probs+self.min_probs) / (self.bucket_probs+self.min_probs).sum()) | |
| buckets = torch.multinomial(norm_probs, batch_size, replacement=True) | |
| ranges = self.bucket_ranges[buckets] | |
| logSNR = torch.rand(batch_size) * (ranges[:, 1]-ranges[:, 0]) + ranges[:, 0] | |
| return logSNR | |
| def update_buckets(self, logSNR, loss, beta=0.99): | |
| range_mtx = self.bucket_ranges.unsqueeze(0).expand(logSNR.size(0), -1, -1).to(logSNR.device) | |
| range_mask = (range_mtx[:, :, 0] <= logSNR[:, None]) * (range_mtx[:, :, 1] > logSNR[:, None]).float() | |
| range_idx = range_mask.argmax(-1).cpu() | |
| self.bucket_probs[range_idx] = self.bucket_probs[range_idx] * beta + loss.detach().cpu() * (1-beta) | |
| class InterpolatedSchedule(BaseSchedule): | |
| def setup(self, scheduler1, scheduler2, shifts=[1.0, 1.0]): | |
| self.scheduler1 = scheduler1 | |
| self.scheduler2 = scheduler2 | |
| self.shifts = shifts | |
| def schedule(self, t, batch_size): | |
| if t is None: | |
| t = 1-torch.rand(batch_size) | |
| t = t.clamp(1e-7, 1-1e-7) # avoid infinities multiplied by 0 which cause nan | |
| low_logSNR = self.scheduler1(t, shift=self.shifts[0]) | |
| high_logSNR = self.scheduler2(t, shift=self.shifts[1]) | |
| return low_logSNR * t + high_logSNR * (1-t) | |