Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,300 +1,282 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import requests
|
| 3 |
-
import joblib
|
| 4 |
-
import logging
|
| 5 |
-
import zipfile
|
| 6 |
-
import pandas as pd
|
| 7 |
-
import numpy as np
|
| 8 |
-
import warnings
|
| 9 |
-
from flask import Flask, request, jsonify
|
| 10 |
-
from flask_cors import CORS
|
| 11 |
-
|
| 12 |
-
# Suppress sklearn warnings
|
| 13 |
-
warnings.filterwarnings('ignore', category=UserWarning, module='sklearn')
|
| 14 |
-
|
| 15 |
-
# Configure logging
|
| 16 |
-
logging.basicConfig(level=logging.INFO)
|
| 17 |
-
|
| 18 |
-
# Get model URLs from environment variables
|
| 19 |
-
DIABETES_MODEL_URL = os.getenv("DIABETES_MODEL_URL")
|
| 20 |
-
SCALER_URL = os.getenv("SCALER_URL")
|
| 21 |
-
MULTI_MODEL_URL = os.getenv("MULTI_MODEL_URL")
|
| 22 |
-
|
| 23 |
-
# Local paths for downloaded models
|
| 24 |
-
MODEL_PATHS = {
|
| 25 |
-
"DIABETES_MODEL": "finaliseddiabetes_model.zip",
|
| 26 |
-
"SCALER": "finalisedscaler.zip",
|
| 27 |
-
"MULTI_MODEL": "nodiabetes.zip",
|
| 28 |
-
}
|
| 29 |
-
|
| 30 |
-
# Extracted model names
|
| 31 |
-
EXTRACTED_MODELS = {
|
| 32 |
-
"DIABETES_MODEL": "finaliseddiabetes_model.joblib",
|
| 33 |
-
"SCALER": "finalisedscaler.joblib",
|
| 34 |
-
"MULTI_MODEL": "nodiabetes.joblib",
|
| 35 |
-
}
|
| 36 |
-
|
| 37 |
-
BASE_DIR = os.getcwd()
|
| 38 |
-
|
| 39 |
-
# Flask app initialization
|
| 40 |
-
app = Flask(__name__)
|
| 41 |
-
|
| 42 |
-
# Enable CORS
|
| 43 |
-
CORS(app, resources={
|
| 44 |
-
r"/*": {
|
| 45 |
-
"origins": [
|
| 46 |
-
"http://localhost:3000",
|
| 47 |
-
"https://carelog-diabetes-api.onrender.com",
|
| 48 |
-
"https://carelog-diabetes.vercel.app",
|
| 49 |
-
"http://localhost:5000"
|
| 50 |
-
],
|
| 51 |
-
"methods": ["GET", "POST", "OPTIONS"],
|
| 52 |
-
"allow_headers": ["Content-Type", "Authorization"],
|
| 53 |
-
"supports_credentials": True
|
| 54 |
-
}
|
| 55 |
-
})
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
logging.
|
| 83 |
-
return
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
logging.error(f"
|
| 101 |
-
return
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
if not family_history:
|
| 158 |
-
return 0.0
|
| 159 |
-
genetic_contribution = (first_degree * 0.5) + (second_degree * 0.25)
|
| 160 |
-
return min(genetic_contribution, 1.0)
|
| 161 |
-
|
| 162 |
-
def get_multi_condition_predictions(model, df):
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
'
|
| 170 |
-
'
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
}
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
return
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
if
|
| 203 |
-
return jsonify({'status': 'error', 'error': 'Invalid
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
'
|
| 230 |
-
'
|
| 231 |
-
'
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
df_scaled = models['SCALER'].transform(df_diabetes)
|
| 284 |
-
|
| 285 |
-
prediction, probability = get_diabetes_prediction(models['DIABETES_MODEL'], df_scaled)
|
| 286 |
-
|
| 287 |
-
return jsonify({
|
| 288 |
-
'status': 'success',
|
| 289 |
-
'model': 'diabetes',
|
| 290 |
-
'prediction': prediction,
|
| 291 |
-
'probability': probability,
|
| 292 |
-
'risk_level': 'HIGH' if probability > 70 else 'MODERATE' if probability > 40 else 'LOW'
|
| 293 |
-
})
|
| 294 |
-
|
| 295 |
-
except Exception as e:
|
| 296 |
-
logging.error(f"Error: {e}")
|
| 297 |
-
return jsonify({'status': 'error', 'error': str(e)}), 500
|
| 298 |
-
|
| 299 |
-
if __name__ == '__main__':
|
| 300 |
-
app.run(host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
+
import joblib
|
| 4 |
+
import logging
|
| 5 |
+
import zipfile
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import numpy as np
|
| 8 |
+
import warnings
|
| 9 |
+
from flask import Flask, request, jsonify
|
| 10 |
+
from flask_cors import CORS
|
| 11 |
+
|
| 12 |
+
# Suppress sklearn warnings
|
| 13 |
+
warnings.filterwarnings('ignore', category=UserWarning, module='sklearn')
|
| 14 |
+
|
| 15 |
+
# Configure logging
|
| 16 |
+
logging.basicConfig(level=logging.INFO)
|
| 17 |
+
|
| 18 |
+
# Get model URLs from environment variables
|
| 19 |
+
DIABETES_MODEL_URL = os.getenv("DIABETES_MODEL_URL")
|
| 20 |
+
SCALER_URL = os.getenv("SCALER_URL")
|
| 21 |
+
MULTI_MODEL_URL = os.getenv("MULTI_MODEL_URL")
|
| 22 |
+
|
| 23 |
+
# Local paths for downloaded models
|
| 24 |
+
MODEL_PATHS = {
|
| 25 |
+
"DIABETES_MODEL": "finaliseddiabetes_model.zip",
|
| 26 |
+
"SCALER": "finalisedscaler.zip",
|
| 27 |
+
"MULTI_MODEL": "nodiabetes.zip",
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
# Extracted model names
|
| 31 |
+
EXTRACTED_MODELS = {
|
| 32 |
+
"DIABETES_MODEL": "finaliseddiabetes_model.joblib",
|
| 33 |
+
"SCALER": "finalisedscaler.joblib",
|
| 34 |
+
"MULTI_MODEL": "nodiabetes.joblib",
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
BASE_DIR = os.getcwd()
|
| 38 |
+
|
| 39 |
+
# Flask app initialization
|
| 40 |
+
app = Flask(__name__)
|
| 41 |
+
|
| 42 |
+
# Enable CORS
|
| 43 |
+
CORS(app, resources={
|
| 44 |
+
r"/*": {
|
| 45 |
+
"origins": [
|
| 46 |
+
"http://localhost:3000",
|
| 47 |
+
"https://carelog-diabetes-api.onrender.com",
|
| 48 |
+
"https://carelog-diabetes.vercel.app",
|
| 49 |
+
"http://localhost:5000"
|
| 50 |
+
],
|
| 51 |
+
"methods": ["GET", "POST", "OPTIONS"],
|
| 52 |
+
"allow_headers": ["Content-Type", "Authorization"],
|
| 53 |
+
"supports_credentials": True
|
| 54 |
+
}
|
| 55 |
+
})
|
| 56 |
+
|
| 57 |
+
# Root route for Hugging Face Space
|
| 58 |
+
@app.route('/')
|
| 59 |
+
def index():
|
| 60 |
+
return """
|
| 61 |
+
<h1>Welcome to the Diabetes Health Predictor API 👋</h1>
|
| 62 |
+
<p>This Hugging Face Space provides health risk predictions including diabetes, hypertension, stroke, and cardiovascular conditions.</p>
|
| 63 |
+
<p>Use the <code>/predict</code> endpoint via POST request to get started with your health insights!</p>
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
def download_model(url, zip_filename):
|
| 67 |
+
zip_path = os.path.join(BASE_DIR, zip_filename)
|
| 68 |
+
if not url:
|
| 69 |
+
logging.error(f"URL for {zip_filename} is missing!")
|
| 70 |
+
return False
|
| 71 |
+
try:
|
| 72 |
+
response = requests.get(url, allow_redirects=True)
|
| 73 |
+
if response.status_code == 200:
|
| 74 |
+
with open(zip_path, 'wb') as f:
|
| 75 |
+
f.write(response.content)
|
| 76 |
+
logging.info(f"Downloaded {zip_filename} successfully.")
|
| 77 |
+
return True
|
| 78 |
+
else:
|
| 79 |
+
logging.error(f"Failed to download {zip_filename}. HTTP Status: {response.status_code}")
|
| 80 |
+
return False
|
| 81 |
+
except Exception as e:
|
| 82 |
+
logging.error(f"Error downloading {zip_filename}: {e}")
|
| 83 |
+
return False
|
| 84 |
+
|
| 85 |
+
def extract_if_needed(zip_filename, extracted_filename):
|
| 86 |
+
zip_path = os.path.join(BASE_DIR, zip_filename)
|
| 87 |
+
extracted_path = os.path.join(BASE_DIR, extracted_filename)
|
| 88 |
+
if os.path.exists(extracted_path):
|
| 89 |
+
logging.info(f"{extracted_filename} already exists. Skipping extraction.")
|
| 90 |
+
return True
|
| 91 |
+
if not os.path.exists(zip_path):
|
| 92 |
+
logging.error(f"Zip file missing: {zip_path}")
|
| 93 |
+
return False
|
| 94 |
+
try:
|
| 95 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 96 |
+
zip_ref.extractall(BASE_DIR)
|
| 97 |
+
logging.info(f"Extracted {zip_filename}")
|
| 98 |
+
return True
|
| 99 |
+
except Exception as e:
|
| 100 |
+
logging.error(f"Error extracting {zip_filename}: {e}")
|
| 101 |
+
return False
|
| 102 |
+
|
| 103 |
+
def load_model(model_filename):
|
| 104 |
+
model_path = os.path.join(BASE_DIR, model_filename)
|
| 105 |
+
if not os.path.exists(model_path):
|
| 106 |
+
logging.error(f"Model file not found: {model_path}")
|
| 107 |
+
return None
|
| 108 |
+
try:
|
| 109 |
+
model = joblib.load(model_path)
|
| 110 |
+
logging.info(f"Loaded {model_filename} successfully.")
|
| 111 |
+
return model
|
| 112 |
+
except Exception as e:
|
| 113 |
+
logging.error(f"Error loading {model_filename}: {e}")
|
| 114 |
+
return None
|
| 115 |
+
|
| 116 |
+
def initialize_models():
|
| 117 |
+
models = {}
|
| 118 |
+
for model_key, zip_filename in MODEL_PATHS.items():
|
| 119 |
+
extracted_filename = EXTRACTED_MODELS[model_key]
|
| 120 |
+
if not os.path.exists(os.path.join(BASE_DIR, zip_filename)):
|
| 121 |
+
download_model(globals()[f"{model_key}_URL"], zip_filename)
|
| 122 |
+
extract_if_needed(zip_filename, extracted_filename)
|
| 123 |
+
models[model_key] = load_model(extracted_filename)
|
| 124 |
+
return models
|
| 125 |
+
|
| 126 |
+
models = initialize_models()
|
| 127 |
+
|
| 128 |
+
FEATURE_ORDER = [
|
| 129 |
+
'Pregnancies', 'Glucose', 'BloodPressure', 'Insulin',
|
| 130 |
+
'BMI', 'DiabetesPedigreeFunction', 'Age'
|
| 131 |
+
]
|
| 132 |
+
|
| 133 |
+
def validate_input(value, input_type=float, min_value=0, max_value=None):
|
| 134 |
+
try:
|
| 135 |
+
value = input_type(value)
|
| 136 |
+
if value < min_value:
|
| 137 |
+
return None
|
| 138 |
+
if max_value is not None and value > max_value:
|
| 139 |
+
return None
|
| 140 |
+
return value
|
| 141 |
+
except (ValueError, TypeError):
|
| 142 |
+
return None
|
| 143 |
+
|
| 144 |
+
def validate_blood_pressure(systolic, diastolic):
|
| 145 |
+
systolic = validate_input(systolic, float, 0, 300)
|
| 146 |
+
diastolic = validate_input(diastolic, float, 0, 200)
|
| 147 |
+
if systolic is None or diastolic is None:
|
| 148 |
+
return None, None
|
| 149 |
+
return systolic, diastolic
|
| 150 |
+
|
| 151 |
+
def validate_gender(gender):
|
| 152 |
+
if isinstance(gender, str) and gender.lower() in ['male', 'female']:
|
| 153 |
+
return 1 if gender.lower() == 'male' else 0
|
| 154 |
+
return None
|
| 155 |
+
|
| 156 |
+
def calculate_diabetes_pedigree(family_history, first_degree=0, second_degree=0):
|
| 157 |
+
if not family_history:
|
| 158 |
+
return 0.0
|
| 159 |
+
genetic_contribution = (first_degree * 0.5) + (second_degree * 0.25)
|
| 160 |
+
return min(genetic_contribution, 1.0)
|
| 161 |
+
|
| 162 |
+
def get_multi_condition_predictions(model, df):
|
| 163 |
+
try:
|
| 164 |
+
predictions = model.predict(df)[0]
|
| 165 |
+
probs_list = model.predict_proba(df)
|
| 166 |
+
return {
|
| 167 |
+
'hypertension': bool(predictions[0]),
|
| 168 |
+
'cardiovascular': float(probs_list[1][0][1]),
|
| 169 |
+
'stroke': float(probs_list[2][0][1]),
|
| 170 |
+
'diabetes': float(probs_list[3][0][1])
|
| 171 |
+
}
|
| 172 |
+
except Exception as e:
|
| 173 |
+
logging.error(f"Error in multi-condition prediction: {str(e)}")
|
| 174 |
+
return None
|
| 175 |
+
|
| 176 |
+
def get_diabetes_prediction(model, df):
|
| 177 |
+
try:
|
| 178 |
+
prediction = model.predict(df)[0]
|
| 179 |
+
probability = float(model.predict_proba(df)[0][1] * 100)
|
| 180 |
+
return 'Diabetes' if prediction else 'No Diabetes', probability
|
| 181 |
+
except Exception as e:
|
| 182 |
+
logging.error(f"Error in diabetes prediction: {str(e)}")
|
| 183 |
+
return None, 0.0
|
| 184 |
+
|
| 185 |
+
@app.route('/health', methods=['GET'])
|
| 186 |
+
def health_check():
|
| 187 |
+
return jsonify({'status': 'healthy', 'message': 'Service is running'})
|
| 188 |
+
|
| 189 |
+
@app.route('/predict', methods=['POST'])
|
| 190 |
+
def predict_health():
|
| 191 |
+
try:
|
| 192 |
+
data = request.get_json()
|
| 193 |
+
logging.info(f"Received data: {data}")
|
| 194 |
+
if not data:
|
| 195 |
+
return jsonify({'status': 'error', 'error': 'Invalid JSON payload'}), 400
|
| 196 |
+
|
| 197 |
+
gender = validate_gender(data.get('gender'))
|
| 198 |
+
if gender is None:
|
| 199 |
+
return jsonify({'status': 'error', 'error': 'Invalid gender value. Must be "male" or "female"'}), 400
|
| 200 |
+
|
| 201 |
+
systolic, diastolic = validate_blood_pressure(data.get('systolic'), data.get('diastolic'))
|
| 202 |
+
if systolic is None or diastolic is None:
|
| 203 |
+
return jsonify({'status': 'error', 'error': 'Invalid blood pressure values'}), 400
|
| 204 |
+
|
| 205 |
+
age = validate_input(data.get('age'), float, 0, 120)
|
| 206 |
+
glucose = validate_input(data.get('glucose'), float, 0, 1000)
|
| 207 |
+
bmi = validate_input(data.get('bmi'), float, 0, 100)
|
| 208 |
+
|
| 209 |
+
if any(v is None for v in [age, glucose, bmi]):
|
| 210 |
+
return jsonify({'status': 'error', 'error': 'Invalid values for age, glucose, or BMI'}), 400
|
| 211 |
+
|
| 212 |
+
use_multi_condition = systolic < 90 or diastolic < 60
|
| 213 |
+
|
| 214 |
+
if use_multi_condition:
|
| 215 |
+
df_multi = pd.DataFrame([{
|
| 216 |
+
'Age': age,
|
| 217 |
+
'Gender': gender,
|
| 218 |
+
'Systolic_bp': systolic,
|
| 219 |
+
'Diastolic_bp': diastolic,
|
| 220 |
+
'Glucose': glucose,
|
| 221 |
+
'BMI': bmi
|
| 222 |
+
}])
|
| 223 |
+
|
| 224 |
+
results = get_multi_condition_predictions(models['MULTI_MODEL'], df_multi)
|
| 225 |
+
if results is None:
|
| 226 |
+
return jsonify({'status': 'error', 'error': 'Error in multi-condition prediction'}), 500
|
| 227 |
+
|
| 228 |
+
return jsonify({
|
| 229 |
+
'status': 'success',
|
| 230 |
+
'model': 'multi-condition',
|
| 231 |
+
'predictions': {
|
| 232 |
+
'hypertension': results['hypertension'],
|
| 233 |
+
'cardiovascular_risk': results['cardiovascular'],
|
| 234 |
+
'stroke_risk': results['stroke'],
|
| 235 |
+
'diabetes_risk': results['diabetes']
|
| 236 |
+
}
|
| 237 |
+
})
|
| 238 |
+
|
| 239 |
+
pregnancies = validate_input(data.get('pregnancies', 0 if gender == 1 else None), float, 0, 20)
|
| 240 |
+
insulin = validate_input(data.get('insulin'), float, 0, 1000)
|
| 241 |
+
|
| 242 |
+
family_history = data.get('family_history', False)
|
| 243 |
+
first_degree = validate_input(data.get('first_degree_relatives', 0), float, 0, 10)
|
| 244 |
+
second_degree = validate_input(data.get('second_degree_relatives', 0), float, 0, 20)
|
| 245 |
+
|
| 246 |
+
diabetes_pedigree = calculate_diabetes_pedigree(
|
| 247 |
+
family_history,
|
| 248 |
+
first_degree if first_degree is not None else 0,
|
| 249 |
+
second_degree if second_degree is not None else 0
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
if any(v is None for v in [pregnancies, insulin]):
|
| 253 |
+
return jsonify({'status': 'error', 'error': 'Invalid values for pregnancies or insulin'}), 400
|
| 254 |
+
|
| 255 |
+
df_diabetes = pd.DataFrame([{
|
| 256 |
+
'Pregnancies': pregnancies,
|
| 257 |
+
'Glucose': glucose,
|
| 258 |
+
'BloodPressure': systolic,
|
| 259 |
+
'Insulin': insulin,
|
| 260 |
+
'BMI': bmi,
|
| 261 |
+
'DiabetesPedigreeFunction': diabetes_pedigree,
|
| 262 |
+
'Age': age
|
| 263 |
+
}])
|
| 264 |
+
|
| 265 |
+
df_diabetes = df_diabetes[FEATURE_ORDER]
|
| 266 |
+
df_scaled = models['SCALER'].transform(df_diabetes)
|
| 267 |
+
prediction, probability = get_diabetes_prediction(models['DIABETES_MODEL'], df_scaled)
|
| 268 |
+
|
| 269 |
+
return jsonify({
|
| 270 |
+
'status': 'success',
|
| 271 |
+
'model': 'diabetes',
|
| 272 |
+
'prediction': prediction,
|
| 273 |
+
'probability': probability,
|
| 274 |
+
'risk_level': 'HIGH' if probability > 70 else 'MODERATE' if probability > 40 else 'LOW'
|
| 275 |
+
})
|
| 276 |
+
|
| 277 |
+
except Exception as e:
|
| 278 |
+
logging.error(f"Error: {e}")
|
| 279 |
+
return jsonify({'status': 'error', 'error': str(e)}), 500
|
| 280 |
+
|
| 281 |
+
if __name__ == '__main__':
|
| 282 |
+
app.run(host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|