Spaces:
Build error
Build error
| from typing import Callable, Tuple | |
| import torch | |
| import torch.nn as nn # pylint: disable=consider-using-from-import | |
| from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor | |
| from TTS.tts.utils.helpers import average_over_durations | |
| class EnergyAdaptor(nn.Module): # pylint: disable=abstract-method | |
| """Variance Adaptor with an added 1D conv layer. Used to | |
| get energy embeddings. | |
| Args: | |
| channels_in (int): Number of in channels for conv layers. | |
| channels_out (int): Number of out channels. | |
| kernel_size (int): Size the kernel for the conv layers. | |
| dropout (float): Probability of dropout. | |
| lrelu_slope (float): Slope for the leaky relu. | |
| emb_kernel_size (int): Size the kernel for the pitch embedding. | |
| Inputs: inputs, mask | |
| - **inputs** (batch, time1, dim): Tensor containing input vector | |
| - **target** (batch, 1, time2): Tensor containing the energy target | |
| - **dr** (batch, time1): Tensor containing aligner durations vector | |
| - **mask** (batch, time1): Tensor containing indices to be masked | |
| Returns: | |
| - **energy prediction** (batch, 1, time1): Tensor produced by energy predictor | |
| - **energy embedding** (batch, channels, time1): Tensor produced energy adaptor | |
| - **average energy target(train only)** (batch, 1, time1): Tensor produced after averaging over durations | |
| """ | |
| def __init__( | |
| self, | |
| channels_in: int, | |
| channels_hidden: int, | |
| channels_out: int, | |
| kernel_size: int, | |
| dropout: float, | |
| lrelu_slope: float, | |
| emb_kernel_size: int, | |
| ): | |
| super().__init__() | |
| self.energy_predictor = VariancePredictor( | |
| channels_in=channels_in, | |
| channels=channels_hidden, | |
| channels_out=channels_out, | |
| kernel_size=kernel_size, | |
| p_dropout=dropout, | |
| lrelu_slope=lrelu_slope, | |
| ) | |
| self.energy_emb = nn.Conv1d( | |
| 1, | |
| channels_hidden, | |
| kernel_size=emb_kernel_size, | |
| padding=int((emb_kernel_size - 1) / 2), | |
| ) | |
| def get_energy_embedding_train( | |
| self, x: torch.Tensor, target: torch.Tensor, dr: torch.IntTensor, mask: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """ | |
| Shapes: | |
| x: :math: `[B, T_src, C]` | |
| target: :math: `[B, 1, T_max2]` | |
| dr: :math: `[B, T_src]` | |
| mask: :math: `[B, T_src]` | |
| """ | |
| energy_pred = self.energy_predictor(x, mask) | |
| energy_pred.unsqueeze_(1) | |
| avg_energy_target = average_over_durations(target, dr) | |
| energy_emb = self.energy_emb(avg_energy_target) | |
| return energy_pred, avg_energy_target, energy_emb | |
| def get_energy_embedding(self, x: torch.Tensor, mask: torch.Tensor, energy_transform: Callable) -> torch.Tensor: | |
| energy_pred = self.energy_predictor(x, mask) | |
| energy_pred.unsqueeze_(1) | |
| if energy_transform is not None: | |
| energy_pred = energy_transform(energy_pred, (~mask).sum(dim=(1, 2)), self.pitch_mean, self.pitch_std) | |
| energy_emb_pred = self.energy_emb(energy_pred) | |
| return energy_emb_pred, energy_pred | |