Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,109 +1,111 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import os
|
| 5 |
from huggingface_hub import login
|
| 6 |
-
from toy_dataset_eval import evaluate_toy_dataset
|
| 7 |
from mmlu_pro_eval_adapted import evaluate_mmlu_pro
|
| 8 |
import spaces
|
| 9 |
import pandas as pd
|
| 10 |
-
import time
|
|
|
|
| 11 |
|
| 12 |
# Read token and login
|
| 13 |
hf_token = os.getenv("HF_READ_WRITE_TOKEN")
|
| 14 |
if hf_token:
|
| 15 |
login(hf_token)
|
| 16 |
else:
|
| 17 |
-
print("⚠️ No
|
| 18 |
|
| 19 |
# ---------------------------------------------------------------------------
|
| 20 |
-
# 1. Model
|
| 21 |
# ---------------------------------------------------------------------------
|
| 22 |
model_name = "mistralai/Mistral-7B-v0.1"
|
| 23 |
-
|
| 24 |
-
model = None
|
| 25 |
-
model_loaded = False
|
| 26 |
-
|
| 27 |
# ---------------------------------------------------------------------------
|
| 28 |
-
#
|
| 29 |
# ---------------------------------------------------------------------------
|
| 30 |
-
@spaces.GPU(duration=
|
| 31 |
def run_mmlu_evaluation(all_subjects, num_subjects, num_shots, all_questions, num_questions, progress=gr.Progress()):
|
| 32 |
"""
|
| 33 |
Runs the MMLU evaluation with the specified parameters.
|
| 34 |
|
| 35 |
Args:
|
| 36 |
all_subjects (bool): Whether to evaluate all subjects
|
| 37 |
-
num_subjects (int): Number of subjects to evaluate (1-
|
| 38 |
num_shots (int): Number of few-shot examples (0-5)
|
| 39 |
all_questions (bool): Whether to evaluate all questions per subject
|
| 40 |
-
num_questions (int): Number of examples per subject (1-
|
| 41 |
progress (gr.Progress): Progress indicator
|
| 42 |
"""
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
num_questions = -1
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
f"* Best Performance: {max_subject} ({max_acc:.3f})\n"
|
| 94 |
-
f"* Worst Performance: {min_subject} ({min_acc:.3f})\n"
|
| 95 |
-
f"* Evaluation completed in {elapsed_time:.2f} seconds\n"
|
| 96 |
-
)
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
# ---------------------------------------------------------------------------
|
| 106 |
-
#
|
| 107 |
# ---------------------------------------------------------------------------
|
| 108 |
with gr.Blocks() as demo:
|
| 109 |
gr.Markdown("# Mistral-7B on MMLU-Pro Evaluation Demo")
|
|
@@ -117,13 +119,13 @@ with gr.Blocks() as demo:
|
|
| 117 |
with gr.Row():
|
| 118 |
all_subjects_checkbox = gr.Checkbox(
|
| 119 |
label="Evaluate All Subjects",
|
| 120 |
-
value=False,
|
| 121 |
info="When checked, evaluates all 14 MMLU-Pro subjects"
|
| 122 |
)
|
| 123 |
num_subjects_slider = gr.Slider(
|
| 124 |
minimum=1,
|
| 125 |
maximum=14,
|
| 126 |
-
value=14,
|
| 127 |
step=1,
|
| 128 |
label="Number of Subjects",
|
| 129 |
info="Number of subjects to evaluate (1-14). They will be loaded in alphabetical order.",
|
|
@@ -134,16 +136,16 @@ with gr.Blocks() as demo:
|
|
| 134 |
num_shots_slider = gr.Slider(
|
| 135 |
minimum=0,
|
| 136 |
maximum=5,
|
| 137 |
-
value=5,
|
| 138 |
step=1,
|
| 139 |
label="Number of Few-shot Examples",
|
| 140 |
-
info="Number of examples to use for few-shot learning (0-5).
|
| 141 |
)
|
| 142 |
|
| 143 |
with gr.Row():
|
| 144 |
all_questions_checkbox = gr.Checkbox(
|
| 145 |
label="Evaluate All Questions",
|
| 146 |
-
value=False,
|
| 147 |
info="When checked, evaluates all available questions for each subject"
|
| 148 |
)
|
| 149 |
questions_info_text = gr.Markdown(visible=False, value="**All 12,032 questions across all subjects will be evaluated**")
|
|
@@ -151,33 +153,32 @@ with gr.Blocks() as demo:
|
|
| 151 |
with gr.Row(elem_id="questions_selection_row"):
|
| 152 |
questions_container = gr.Column(scale=1, elem_id="questions_slider_container")
|
| 153 |
|
| 154 |
-
# Move the slider into the container for easier visibility toggling
|
| 155 |
with questions_container:
|
| 156 |
num_questions_slider = gr.Slider(
|
| 157 |
minimum=1,
|
| 158 |
maximum=40,
|
| 159 |
-
value=20,
|
| 160 |
step=1,
|
| 161 |
label="Questions per Subject",
|
| 162 |
-
info="Choose a subset of questions (1-40) per subject. They will be loaded in order of question_id
|
| 163 |
interactive=True
|
| 164 |
)
|
| 165 |
|
| 166 |
with gr.Row():
|
| 167 |
with gr.Column(scale=1):
|
| 168 |
eval_mmlu_button = gr.Button("Run MMLU-Pro Evaluation", variant="primary", interactive=True)
|
| 169 |
-
cancel_mmlu_button = gr.Button("Cancel
|
| 170 |
results_output = gr.Markdown(label="Evaluation Results")
|
| 171 |
|
| 172 |
with gr.Row():
|
| 173 |
results_table = gr.DataFrame(interactive=True, label="Detailed Results (Sortable)", visible=True)
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
| 175 |
# Update num_subjects_slider interactivity based on all_subjects checkbox
|
| 176 |
def update_subjects_slider(checked):
|
| 177 |
-
|
| 178 |
-
return gr.update(value=14, interactive=False)
|
| 179 |
-
else:
|
| 180 |
-
return gr.update(interactive=True)
|
| 181 |
|
| 182 |
all_subjects_checkbox.change(
|
| 183 |
fn=update_subjects_slider,
|
|
@@ -199,45 +200,75 @@ with gr.Blocks() as demo:
|
|
| 199 |
)
|
| 200 |
|
| 201 |
# Function to disable UI components during evaluation
|
| 202 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
return [
|
| 204 |
-
|
| 205 |
-
gr.update(interactive=False
|
| 206 |
-
gr.update(interactive=False
|
| 207 |
-
gr.update(interactive=False
|
| 208 |
-
gr.update(interactive=False
|
|
|
|
| 209 |
gr.update(interactive=False), # eval_mmlu_button
|
| 210 |
-
gr.update(visible=True)
|
|
|
|
|
|
|
| 211 |
]
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
# Function to handle cancel button click
|
| 214 |
-
def cancel_evaluation():
|
| 215 |
-
# This doesn't actually
|
| 216 |
-
#
|
|
|
|
| 217 |
return [
|
| 218 |
-
|
| 219 |
-
gr.update(interactive=True
|
| 220 |
-
gr.update(interactive=True
|
| 221 |
-
gr.update(interactive=True
|
| 222 |
-
gr.update(interactive=True
|
|
|
|
| 223 |
gr.update(interactive=True), # eval_mmlu_button
|
| 224 |
-
gr.update(visible=False),
|
| 225 |
-
"⚠️ Evaluation canceled by user", # results_output
|
| 226 |
-
None
|
| 227 |
]
|
| 228 |
|
| 229 |
-
# Connect MMLU evaluation button
|
| 230 |
eval_mmlu_button.click(
|
| 231 |
-
fn=
|
| 232 |
-
inputs=
|
| 233 |
outputs=[
|
|
|
|
| 234 |
all_subjects_checkbox,
|
| 235 |
num_subjects_slider,
|
| 236 |
num_shots_slider,
|
| 237 |
all_questions_checkbox,
|
| 238 |
num_questions_slider,
|
| 239 |
eval_mmlu_button,
|
| 240 |
-
cancel_mmlu_button
|
|
|
|
|
|
|
| 241 |
]
|
| 242 |
).then(
|
| 243 |
fn=run_mmlu_evaluation,
|
|
@@ -259,13 +290,18 @@ with gr.Blocks() as demo:
|
|
| 259 |
all_questions_checkbox,
|
| 260 |
num_questions_slider
|
| 261 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
)
|
| 263 |
|
| 264 |
# Connect cancel button
|
| 265 |
cancel_mmlu_button.click(
|
| 266 |
fn=cancel_evaluation,
|
| 267 |
-
inputs=
|
| 268 |
outputs=[
|
|
|
|
| 269 |
all_subjects_checkbox,
|
| 270 |
num_subjects_slider,
|
| 271 |
num_shots_slider,
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
from huggingface_hub import login
|
|
|
|
| 4 |
from mmlu_pro_eval_adapted import evaluate_mmlu_pro
|
| 5 |
import spaces
|
| 6 |
import pandas as pd
|
| 7 |
+
import time
|
| 8 |
+
import traceback
|
| 9 |
|
| 10 |
# Read token and login
|
| 11 |
hf_token = os.getenv("HF_READ_WRITE_TOKEN")
|
| 12 |
if hf_token:
|
| 13 |
login(hf_token)
|
| 14 |
else:
|
| 15 |
+
print("⚠️ No HF_READ_WRITE_TOKEN found in environment")
|
| 16 |
|
| 17 |
# ---------------------------------------------------------------------------
|
| 18 |
+
# 1. Model configuration
|
| 19 |
# ---------------------------------------------------------------------------
|
| 20 |
model_name = "mistralai/Mistral-7B-v0.1"
|
| 21 |
+
|
|
|
|
|
|
|
|
|
|
| 22 |
# ---------------------------------------------------------------------------
|
| 23 |
+
# 2. MMLU-Pro Evaluation
|
| 24 |
# ---------------------------------------------------------------------------
|
| 25 |
+
@spaces.GPU(duration=180) # Extended to 3 minutes for larger evaluations
|
| 26 |
def run_mmlu_evaluation(all_subjects, num_subjects, num_shots, all_questions, num_questions, progress=gr.Progress()):
|
| 27 |
"""
|
| 28 |
Runs the MMLU evaluation with the specified parameters.
|
| 29 |
|
| 30 |
Args:
|
| 31 |
all_subjects (bool): Whether to evaluate all subjects
|
| 32 |
+
num_subjects (int): Number of subjects to evaluate (1-14)
|
| 33 |
num_shots (int): Number of few-shot examples (0-5)
|
| 34 |
all_questions (bool): Whether to evaluate all questions per subject
|
| 35 |
+
num_questions (int): Number of examples per subject (1-40 or all)
|
| 36 |
progress (gr.Progress): Progress indicator
|
| 37 |
"""
|
| 38 |
+
try:
|
| 39 |
+
# Convert parameters if needed
|
| 40 |
+
if all_subjects:
|
| 41 |
+
num_subjects = -1
|
| 42 |
+
|
| 43 |
+
if all_questions:
|
| 44 |
+
num_questions = -1
|
|
|
|
| 45 |
|
| 46 |
+
# Run evaluation with timing
|
| 47 |
+
start_time = time.time()
|
| 48 |
+
results = evaluate_mmlu_pro(
|
| 49 |
+
model_name,
|
| 50 |
+
num_subjects=num_subjects,
|
| 51 |
+
num_questions=num_questions,
|
| 52 |
+
num_shots=num_shots,
|
| 53 |
+
)
|
| 54 |
+
elapsed_time = time.time() - start_time
|
| 55 |
|
| 56 |
+
# Format results
|
| 57 |
+
overall_acc = results["overall_accuracy"]
|
| 58 |
+
min_subject, min_acc = results["min_accuracy_subject"]
|
| 59 |
+
max_subject, max_acc = results["max_accuracy_subject"]
|
| 60 |
+
|
| 61 |
+
# Create DataFrame from results table
|
| 62 |
+
results_df = pd.DataFrame(results["full_accuracy_table"])
|
| 63 |
+
|
| 64 |
+
# Calculate totals for the overall row
|
| 65 |
+
total_samples = results_df['Num_samples'].sum()
|
| 66 |
+
total_correct = results_df['Num_correct'].sum()
|
| 67 |
+
|
| 68 |
+
# Create overall row
|
| 69 |
+
overall_row = pd.DataFrame({
|
| 70 |
+
'Subject': ['**Overall**'],
|
| 71 |
+
'Num_samples': [total_samples],
|
| 72 |
+
'Num_correct': [total_correct],
|
| 73 |
+
'Accuracy': [overall_acc]
|
| 74 |
+
})
|
| 75 |
+
|
| 76 |
+
# Concatenate overall row with results
|
| 77 |
+
results_df = pd.concat([overall_row, results_df], ignore_index=True)
|
| 78 |
+
|
| 79 |
+
# Format the report
|
| 80 |
+
report = (
|
| 81 |
+
f"### Overall Results\n"
|
| 82 |
+
f"* Overall Accuracy: {overall_acc:.3f}\n"
|
| 83 |
+
f"* Best Performance: {max_subject} ({max_acc:.3f})\n"
|
| 84 |
+
f"* Worst Performance: {min_subject} ({min_acc:.3f})\n"
|
| 85 |
+
f"* Evaluation completed in {elapsed_time:.2f} seconds\n"
|
| 86 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
# Return values that re-enable UI components after completion
|
| 89 |
+
return (report, results_df,
|
| 90 |
+
gr.update(interactive=True), gr.update(visible=False),
|
| 91 |
+
gr.update(interactive=True), gr.update(interactive=True),
|
| 92 |
+
gr.update(interactive=True), gr.update(interactive=True),
|
| 93 |
+
gr.update(interactive=True))
|
| 94 |
+
|
| 95 |
+
except Exception as e:
|
| 96 |
+
# Handle errors gracefully
|
| 97 |
+
error_trace = traceback.format_exc()
|
| 98 |
+
error_message = f"### Error during evaluation\n```\n{error_trace}\n```"
|
| 99 |
+
|
| 100 |
+
# Re-enable UI components on error
|
| 101 |
+
return (error_message, None,
|
| 102 |
+
gr.update(interactive=True), gr.update(visible=False),
|
| 103 |
+
gr.update(interactive=True), gr.update(interactive=True),
|
| 104 |
+
gr.update(interactive=True), gr.update(interactive=True),
|
| 105 |
+
gr.update(interactive=True))
|
| 106 |
|
| 107 |
# ---------------------------------------------------------------------------
|
| 108 |
+
# 3. Gradio Interface
|
| 109 |
# ---------------------------------------------------------------------------
|
| 110 |
with gr.Blocks() as demo:
|
| 111 |
gr.Markdown("# Mistral-7B on MMLU-Pro Evaluation Demo")
|
|
|
|
| 119 |
with gr.Row():
|
| 120 |
all_subjects_checkbox = gr.Checkbox(
|
| 121 |
label="Evaluate All Subjects",
|
| 122 |
+
value=False,
|
| 123 |
info="When checked, evaluates all 14 MMLU-Pro subjects"
|
| 124 |
)
|
| 125 |
num_subjects_slider = gr.Slider(
|
| 126 |
minimum=1,
|
| 127 |
maximum=14,
|
| 128 |
+
value=14,
|
| 129 |
step=1,
|
| 130 |
label="Number of Subjects",
|
| 131 |
info="Number of subjects to evaluate (1-14). They will be loaded in alphabetical order.",
|
|
|
|
| 136 |
num_shots_slider = gr.Slider(
|
| 137 |
minimum=0,
|
| 138 |
maximum=5,
|
| 139 |
+
value=5,
|
| 140 |
step=1,
|
| 141 |
label="Number of Few-shot Examples",
|
| 142 |
+
info="Number of examples to use for few-shot learning (0-5)."
|
| 143 |
)
|
| 144 |
|
| 145 |
with gr.Row():
|
| 146 |
all_questions_checkbox = gr.Checkbox(
|
| 147 |
label="Evaluate All Questions",
|
| 148 |
+
value=False,
|
| 149 |
info="When checked, evaluates all available questions for each subject"
|
| 150 |
)
|
| 151 |
questions_info_text = gr.Markdown(visible=False, value="**All 12,032 questions across all subjects will be evaluated**")
|
|
|
|
| 153 |
with gr.Row(elem_id="questions_selection_row"):
|
| 154 |
questions_container = gr.Column(scale=1, elem_id="questions_slider_container")
|
| 155 |
|
|
|
|
| 156 |
with questions_container:
|
| 157 |
num_questions_slider = gr.Slider(
|
| 158 |
minimum=1,
|
| 159 |
maximum=40,
|
| 160 |
+
value=20,
|
| 161 |
step=1,
|
| 162 |
label="Questions per Subject",
|
| 163 |
+
info="Choose a subset of questions (1-40) per subject. They will be loaded in order of question_id.",
|
| 164 |
interactive=True
|
| 165 |
)
|
| 166 |
|
| 167 |
with gr.Row():
|
| 168 |
with gr.Column(scale=1):
|
| 169 |
eval_mmlu_button = gr.Button("Run MMLU-Pro Evaluation", variant="primary", interactive=True)
|
| 170 |
+
cancel_mmlu_button = gr.Button("Cancel Evaluation", variant="stop", visible=False)
|
| 171 |
results_output = gr.Markdown(label="Evaluation Results")
|
| 172 |
|
| 173 |
with gr.Row():
|
| 174 |
results_table = gr.DataFrame(interactive=True, label="Detailed Results (Sortable)", visible=True)
|
| 175 |
+
|
| 176 |
+
# Track evaluation state - used to prevent multiple evaluations
|
| 177 |
+
evaluation_state = gr.State({"running": False})
|
| 178 |
+
|
| 179 |
# Update num_subjects_slider interactivity based on all_subjects checkbox
|
| 180 |
def update_subjects_slider(checked):
|
| 181 |
+
return gr.update(interactive=not checked)
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
all_subjects_checkbox.change(
|
| 184 |
fn=update_subjects_slider,
|
|
|
|
| 200 |
)
|
| 201 |
|
| 202 |
# Function to disable UI components during evaluation
|
| 203 |
+
def start_evaluation(state):
|
| 204 |
+
if state["running"]:
|
| 205 |
+
return [
|
| 206 |
+
state,
|
| 207 |
+
gr.update(interactive=False),
|
| 208 |
+
gr.update(interactive=False),
|
| 209 |
+
gr.update(interactive=False),
|
| 210 |
+
gr.update(interactive=False),
|
| 211 |
+
gr.update(interactive=False),
|
| 212 |
+
gr.update(interactive=False),
|
| 213 |
+
gr.update(visible=False),
|
| 214 |
+
"Evaluation already in progress. Please wait.",
|
| 215 |
+
None
|
| 216 |
+
]
|
| 217 |
+
|
| 218 |
+
# Update state to running
|
| 219 |
+
state["running"] = True
|
| 220 |
+
|
| 221 |
return [
|
| 222 |
+
state,
|
| 223 |
+
gr.update(interactive=False), # all_subjects_checkbox
|
| 224 |
+
gr.update(interactive=False), # num_subjects_slider
|
| 225 |
+
gr.update(interactive=False), # num_shots_slider
|
| 226 |
+
gr.update(interactive=False), # all_questions_checkbox
|
| 227 |
+
gr.update(interactive=False), # num_questions_slider
|
| 228 |
gr.update(interactive=False), # eval_mmlu_button
|
| 229 |
+
gr.update(visible=True), # cancel_mmlu_button
|
| 230 |
+
"Starting evaluation...", # results_output
|
| 231 |
+
None # results_table
|
| 232 |
]
|
| 233 |
|
| 234 |
+
# Function to reset UI after evaluation
|
| 235 |
+
def finish_evaluation(state):
|
| 236 |
+
state["running"] = False
|
| 237 |
+
return state
|
| 238 |
+
|
| 239 |
# Function to handle cancel button click
|
| 240 |
+
def cancel_evaluation(state):
|
| 241 |
+
# Note: This doesn't actually stop the evaluation process
|
| 242 |
+
# It only updates the UI state to appear canceled
|
| 243 |
+
state["running"] = False
|
| 244 |
return [
|
| 245 |
+
state,
|
| 246 |
+
gr.update(interactive=True), # all_subjects_checkbox
|
| 247 |
+
gr.update(interactive=True), # num_subjects_slider
|
| 248 |
+
gr.update(interactive=True), # num_shots_slider
|
| 249 |
+
gr.update(interactive=True), # all_questions_checkbox
|
| 250 |
+
gr.update(interactive=True), # num_questions_slider
|
| 251 |
gr.update(interactive=True), # eval_mmlu_button
|
| 252 |
+
gr.update(visible=False), # cancel_mmlu_button
|
| 253 |
+
"⚠️ Evaluation canceled by user (note: backend process may continue running)", # results_output
|
| 254 |
+
None # results_table
|
| 255 |
]
|
| 256 |
|
| 257 |
+
# Connect MMLU evaluation button with state tracking
|
| 258 |
eval_mmlu_button.click(
|
| 259 |
+
fn=start_evaluation,
|
| 260 |
+
inputs=[evaluation_state],
|
| 261 |
outputs=[
|
| 262 |
+
evaluation_state,
|
| 263 |
all_subjects_checkbox,
|
| 264 |
num_subjects_slider,
|
| 265 |
num_shots_slider,
|
| 266 |
all_questions_checkbox,
|
| 267 |
num_questions_slider,
|
| 268 |
eval_mmlu_button,
|
| 269 |
+
cancel_mmlu_button,
|
| 270 |
+
results_output,
|
| 271 |
+
results_table
|
| 272 |
]
|
| 273 |
).then(
|
| 274 |
fn=run_mmlu_evaluation,
|
|
|
|
| 290 |
all_questions_checkbox,
|
| 291 |
num_questions_slider
|
| 292 |
]
|
| 293 |
+
).then(
|
| 294 |
+
fn=finish_evaluation,
|
| 295 |
+
inputs=[evaluation_state],
|
| 296 |
+
outputs=[evaluation_state]
|
| 297 |
)
|
| 298 |
|
| 299 |
# Connect cancel button
|
| 300 |
cancel_mmlu_button.click(
|
| 301 |
fn=cancel_evaluation,
|
| 302 |
+
inputs=[evaluation_state],
|
| 303 |
outputs=[
|
| 304 |
+
evaluation_state,
|
| 305 |
all_subjects_checkbox,
|
| 306 |
num_subjects_slider,
|
| 307 |
num_shots_slider,
|