Spaces:
Sleeping
Sleeping
Update mmlu_pro_eval_adapted.py
Browse files- mmlu_pro_eval_adapted.py +111 -38
mmlu_pro_eval_adapted.py
CHANGED
|
@@ -15,7 +15,7 @@ import logging
|
|
| 15 |
import sys
|
| 16 |
from datasets import load_dataset
|
| 17 |
import pandas as pd
|
| 18 |
-
import numpy as
|
| 19 |
|
| 20 |
logging.basicConfig(level=logging.INFO)
|
| 21 |
logger = logging.getLogger(__name__)
|
|
@@ -46,6 +46,11 @@ def load_mmlu_pro():
|
|
| 46 |
test_df, val_df = dataset["test"], dataset["validation"]
|
| 47 |
test_df = preprocess(test_df)
|
| 48 |
val_df = preprocess(val_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
return test_df, val_df
|
| 50 |
|
| 51 |
|
|
@@ -62,6 +67,10 @@ def load_model(model_name, gpu_utilization=0.8):
|
|
| 62 |
|
| 63 |
|
| 64 |
def format_cot_example(example, including_answer=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
prompt = "Question:\n"
|
| 66 |
question = example["question"]
|
| 67 |
options = example["options"]
|
|
@@ -79,15 +88,34 @@ def format_cot_example(example, including_answer=True):
|
|
| 79 |
|
| 80 |
|
| 81 |
def generate_cot_prompt(val_df, curr, k):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
prompt = initial_prompt
|
| 83 |
-
|
| 84 |
-
#
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
prompt = prompt.replace("{$}", subject) + "\n"
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
prompt += format_cot_example(example, including_answer=True)
|
|
|
|
|
|
|
| 90 |
prompt += format_cot_example(curr, including_answer=False)
|
|
|
|
| 91 |
return prompt
|
| 92 |
|
| 93 |
|
|
@@ -121,7 +149,7 @@ def extract_final(text):
|
|
| 121 |
def batch_inference(llm, sampling_params, inference_batch):
|
| 122 |
start = time.time()
|
| 123 |
outputs = llm.generate(inference_batch, sampling_params)
|
| 124 |
-
logging.info(str(len(inference_batch)) + "size batch costing time: " + str(time.time() - start))
|
| 125 |
response_batch = []
|
| 126 |
pred_batch = []
|
| 127 |
for output in outputs:
|
|
@@ -139,15 +167,17 @@ def calculate_accuracy(res):
|
|
| 139 |
along with the overall accuracy.
|
| 140 |
"""
|
| 141 |
correctness = []
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
# If prediction is None, use random choice with fixed seed
|
| 145 |
-
# This ensures reproducibility when handling missing predictions
|
| 146 |
random.seed(12345)
|
| 147 |
-
|
| 148 |
-
|
|
|
|
| 149 |
else:
|
| 150 |
-
is_correct = 1 if
|
| 151 |
correctness.append(is_correct)
|
| 152 |
|
| 153 |
# Calculate accuracy from correctness array
|
|
@@ -157,77 +187,119 @@ def calculate_accuracy(res):
|
|
| 157 |
accuracy = sum(correctness) / len(correctness)
|
| 158 |
return correctness, accuracy
|
| 159 |
|
|
|
|
| 160 |
@torch.no_grad()
|
| 161 |
def eval_cot(subject, model, tokenizer, val_df, test_df, num_shots=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
llm, sampling_params = model
|
| 163 |
global choices
|
| 164 |
logging.info("evaluating " + subject)
|
| 165 |
inference_batches = []
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
for i in
|
| 169 |
-
curr = test_df[i]
|
|
|
|
|
|
|
|
|
|
| 170 |
prompt_length_ok = False
|
| 171 |
prompt = None
|
| 172 |
-
while not prompt_length_ok:
|
| 173 |
prompt = generate_cot_prompt(val_df, curr, k)
|
| 174 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 175 |
inputs = {key: value.cuda() for key, value in inputs.items()}
|
| 176 |
length = len(inputs["input_ids"][0])
|
| 177 |
if length < max_model_length - max_new_tokens:
|
| 178 |
prompt_length_ok = True
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
inference_batches.append(prompt)
|
| 181 |
|
|
|
|
| 182 |
pred_batch, response_batch = batch_inference(llm, sampling_params, inference_batches)
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
#
|
| 190 |
-
correctness, accuracy = calculate_accuracy(
|
| 191 |
logging.info("This batch accuracy is: {}, correct samples: {}/{}\n".format(
|
| 192 |
str(accuracy), str(sum(correctness)), str(len(correctness))))
|
| 193 |
|
| 194 |
return correctness, accuracy
|
| 195 |
|
|
|
|
| 196 |
@spaces.GPU(duration=240) # Extended to 3 minutes for larger evaluations
|
| 197 |
def evaluate_mmlu_pro(model_name, num_subjects=-1, num_questions=10, num_shots=5):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
|
|
|
|
|
|
| 202 |
test_df, val_df = load_mmlu_pro()
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
val_df = pd.DataFrame(val_df) # Fixed: was 'val_def'
|
| 206 |
test_df = test_df.sort_values(['category', 'question_id'])
|
| 207 |
-
val_df = val_df.sort_values(['category', 'question_id'])
|
| 208 |
|
| 209 |
-
# Get
|
| 210 |
all_subjects = sorted(test_df['category'].unique())
|
| 211 |
-
selected_subjects = []
|
| 212 |
|
| 213 |
# Select subjects based on num_subjects parameter
|
| 214 |
if num_subjects == -1 or num_subjects >= len(all_subjects):
|
| 215 |
selected_subjects = all_subjects
|
| 216 |
else:
|
| 217 |
-
# Take the first num_subjects subjects
|
| 218 |
selected_subjects = all_subjects[:num_subjects]
|
| 219 |
|
| 220 |
logging.info("selected subjects:\n" + "\n".join(selected_subjects))
|
| 221 |
|
|
|
|
| 222 |
results = {}
|
| 223 |
all_correctness = []
|
| 224 |
results_table = []
|
| 225 |
|
|
|
|
| 226 |
for subject in tqdm(selected_subjects, desc="Processing Selected Categories"):
|
|
|
|
| 227 |
test_samples = test_df[test_df['category'] == subject].head(num_questions)
|
| 228 |
val_samples = val_df[val_df['category'] == subject].head(num_shots)
|
| 229 |
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
results[subject] = acc
|
| 232 |
all_correctness.extend(correctness)
|
| 233 |
results_table.append({
|
|
@@ -237,11 +309,12 @@ def evaluate_mmlu_pro(model_name, num_subjects=-1, num_questions=10, num_shots=5
|
|
| 237 |
'Accuracy': acc
|
| 238 |
})
|
| 239 |
|
|
|
|
| 240 |
weighted_acc = np.mean(all_correctness)
|
| 241 |
-
|
| 242 |
min_acc_subject = min(results.items(), key=lambda x: x[1])[0]
|
| 243 |
max_acc_subject = max(results.items(), key=lambda x: x[1])[0]
|
| 244 |
|
|
|
|
| 245 |
return {
|
| 246 |
"overall_accuracy": weighted_acc,
|
| 247 |
"min_accuracy_subject": (min_acc_subject, results[min_acc_subject]),
|
|
|
|
| 15 |
import sys
|
| 16 |
from datasets import load_dataset
|
| 17 |
import pandas as pd
|
| 18 |
+
import numpy as np
|
| 19 |
|
| 20 |
logging.basicConfig(level=logging.INFO)
|
| 21 |
logger = logging.getLogger(__name__)
|
|
|
|
| 46 |
test_df, val_df = dataset["test"], dataset["validation"]
|
| 47 |
test_df = preprocess(test_df)
|
| 48 |
val_df = preprocess(val_df)
|
| 49 |
+
|
| 50 |
+
# Convert to DataFrames right after loading and preprocessing
|
| 51 |
+
test_df = pd.DataFrame(test_df)
|
| 52 |
+
val_df = pd.DataFrame(val_df)
|
| 53 |
+
|
| 54 |
return test_df, val_df
|
| 55 |
|
| 56 |
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
def format_cot_example(example, including_answer=True):
|
| 70 |
+
# Handle both Series and dict inputs
|
| 71 |
+
if isinstance(example, pd.Series):
|
| 72 |
+
example = example.to_dict()
|
| 73 |
+
|
| 74 |
prompt = "Question:\n"
|
| 75 |
question = example["question"]
|
| 76 |
options = example["options"]
|
|
|
|
| 88 |
|
| 89 |
|
| 90 |
def generate_cot_prompt(val_df, curr, k):
|
| 91 |
+
"""
|
| 92 |
+
Generate prompt with examples from val_df matching curr's category.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
val_df: DataFrame containing validation examples
|
| 96 |
+
curr: Series or dict representing current example
|
| 97 |
+
k: Number of examples to include
|
| 98 |
+
"""
|
| 99 |
prompt = initial_prompt
|
| 100 |
+
|
| 101 |
+
# Handle both Series and dict inputs for curr
|
| 102 |
+
if isinstance(curr, pd.Series):
|
| 103 |
+
subject = curr["category"]
|
| 104 |
+
else:
|
| 105 |
+
subject = curr["category"]
|
| 106 |
+
|
| 107 |
+
# Filter validation examples by category
|
| 108 |
+
filtered_val_df = val_df[val_df["category"] == subject].head(k)
|
| 109 |
+
|
| 110 |
prompt = prompt.replace("{$}", subject) + "\n"
|
| 111 |
+
|
| 112 |
+
# Add each example to the prompt
|
| 113 |
+
for _, example in filtered_val_df.iterrows():
|
| 114 |
prompt += format_cot_example(example, including_answer=True)
|
| 115 |
+
|
| 116 |
+
# Add the current example
|
| 117 |
prompt += format_cot_example(curr, including_answer=False)
|
| 118 |
+
|
| 119 |
return prompt
|
| 120 |
|
| 121 |
|
|
|
|
| 149 |
def batch_inference(llm, sampling_params, inference_batch):
|
| 150 |
start = time.time()
|
| 151 |
outputs = llm.generate(inference_batch, sampling_params)
|
| 152 |
+
logging.info(str(len(inference_batch)) + " size batch costing time: " + str(time.time() - start))
|
| 153 |
response_batch = []
|
| 154 |
pred_batch = []
|
| 155 |
for output in outputs:
|
|
|
|
| 167 |
along with the overall accuracy.
|
| 168 |
"""
|
| 169 |
correctness = []
|
| 170 |
+
|
| 171 |
+
# Process predictions and compute correctness
|
| 172 |
+
for i, row in res.iterrows():
|
| 173 |
+
if not row["pred"]:
|
| 174 |
# If prediction is None, use random choice with fixed seed
|
|
|
|
| 175 |
random.seed(12345)
|
| 176 |
+
options_len = len(row["options"]) if isinstance(row["options"], list) else 4
|
| 177 |
+
x = random.randint(0, options_len - 1)
|
| 178 |
+
is_correct = 1 if x == row["answer_index"] else 0
|
| 179 |
else:
|
| 180 |
+
is_correct = 1 if row["pred"] == row["answer"] else 0
|
| 181 |
correctness.append(is_correct)
|
| 182 |
|
| 183 |
# Calculate accuracy from correctness array
|
|
|
|
| 187 |
accuracy = sum(correctness) / len(correctness)
|
| 188 |
return correctness, accuracy
|
| 189 |
|
| 190 |
+
|
| 191 |
@torch.no_grad()
|
| 192 |
def eval_cot(subject, model, tokenizer, val_df, test_df, num_shots=5):
|
| 193 |
+
"""
|
| 194 |
+
Evaluate model using chain-of-thought prompting.
|
| 195 |
+
|
| 196 |
+
Args:
|
| 197 |
+
subject: Subject category being evaluated
|
| 198 |
+
model: Tuple of (llm, sampling_params)
|
| 199 |
+
tokenizer: Model tokenizer
|
| 200 |
+
val_df: DataFrame with validation examples
|
| 201 |
+
test_df: DataFrame with test examples
|
| 202 |
+
num_shots: Number of examples to include in prompt
|
| 203 |
+
"""
|
| 204 |
llm, sampling_params = model
|
| 205 |
global choices
|
| 206 |
logging.info("evaluating " + subject)
|
| 207 |
inference_batches = []
|
| 208 |
+
|
| 209 |
+
# Process each test example
|
| 210 |
+
for i in range(len(test_df)):
|
| 211 |
+
curr = test_df.iloc[i]
|
| 212 |
+
k = num_shots # Reset k for each example
|
| 213 |
+
|
| 214 |
+
# Find prompt that fits within token limit
|
| 215 |
prompt_length_ok = False
|
| 216 |
prompt = None
|
| 217 |
+
while not prompt_length_ok and k > 0:
|
| 218 |
prompt = generate_cot_prompt(val_df, curr, k)
|
| 219 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 220 |
inputs = {key: value.cuda() for key, value in inputs.items()}
|
| 221 |
length = len(inputs["input_ids"][0])
|
| 222 |
if length < max_model_length - max_new_tokens:
|
| 223 |
prompt_length_ok = True
|
| 224 |
+
else:
|
| 225 |
+
k -= 1
|
| 226 |
+
|
| 227 |
+
if not prompt_length_ok:
|
| 228 |
+
# If we couldn't fit any examples, use just the test question
|
| 229 |
+
prompt = generate_cot_prompt(val_df.head(0), curr, 0)
|
| 230 |
+
|
| 231 |
inference_batches.append(prompt)
|
| 232 |
|
| 233 |
+
# Get model predictions
|
| 234 |
pred_batch, response_batch = batch_inference(llm, sampling_params, inference_batches)
|
| 235 |
+
|
| 236 |
+
# Add predictions to test DataFrame
|
| 237 |
+
results_df = test_df.copy()
|
| 238 |
+
results_df["pred"] = pred_batch
|
| 239 |
+
results_df["model_outputs"] = response_batch
|
| 240 |
+
|
| 241 |
+
# Calculate accuracy
|
| 242 |
+
correctness, accuracy = calculate_accuracy(results_df)
|
| 243 |
logging.info("This batch accuracy is: {}, correct samples: {}/{}\n".format(
|
| 244 |
str(accuracy), str(sum(correctness)), str(len(correctness))))
|
| 245 |
|
| 246 |
return correctness, accuracy
|
| 247 |
|
| 248 |
+
|
| 249 |
@spaces.GPU(duration=240) # Extended to 3 minutes for larger evaluations
|
| 250 |
def evaluate_mmlu_pro(model_name, num_subjects=-1, num_questions=10, num_shots=5):
|
| 251 |
+
"""
|
| 252 |
+
Main evaluation function for MMLU-Pro benchmark.
|
| 253 |
|
| 254 |
+
Args:
|
| 255 |
+
model_name: Name/path of model to evaluate
|
| 256 |
+
num_subjects: Number of subjects to test (-1 for all)
|
| 257 |
+
num_questions: Number of questions per subject
|
| 258 |
+
num_shots: Number of examples to include in prompts
|
| 259 |
+
"""
|
| 260 |
+
print("IS CUDA AVAILABLE: ", torch.cuda.is_available())
|
| 261 |
|
| 262 |
+
# Load model and data
|
| 263 |
+
model, tokenizer = load_model(model_name, gpu_utilization=0.8)
|
| 264 |
test_df, val_df = load_mmlu_pro()
|
| 265 |
+
|
| 266 |
+
# Sort DataFrames
|
|
|
|
| 267 |
test_df = test_df.sort_values(['category', 'question_id'])
|
| 268 |
+
val_df = val_df.sort_values(['category', 'question_id'])
|
| 269 |
|
| 270 |
+
# Get unique subjects
|
| 271 |
all_subjects = sorted(test_df['category'].unique())
|
|
|
|
| 272 |
|
| 273 |
# Select subjects based on num_subjects parameter
|
| 274 |
if num_subjects == -1 or num_subjects >= len(all_subjects):
|
| 275 |
selected_subjects = all_subjects
|
| 276 |
else:
|
|
|
|
| 277 |
selected_subjects = all_subjects[:num_subjects]
|
| 278 |
|
| 279 |
logging.info("selected subjects:\n" + "\n".join(selected_subjects))
|
| 280 |
|
| 281 |
+
# Prepare results tracking
|
| 282 |
results = {}
|
| 283 |
all_correctness = []
|
| 284 |
results_table = []
|
| 285 |
|
| 286 |
+
# Process each subject
|
| 287 |
for subject in tqdm(selected_subjects, desc="Processing Selected Categories"):
|
| 288 |
+
# Filter data for current subject
|
| 289 |
test_samples = test_df[test_df['category'] == subject].head(num_questions)
|
| 290 |
val_samples = val_df[val_df['category'] == subject].head(num_shots)
|
| 291 |
|
| 292 |
+
# Run evaluation
|
| 293 |
+
correctness, acc = eval_cot(
|
| 294 |
+
subject,
|
| 295 |
+
model,
|
| 296 |
+
tokenizer,
|
| 297 |
+
val_df=val_samples,
|
| 298 |
+
test_df=test_samples,
|
| 299 |
+
num_shots=num_shots
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# Store results
|
| 303 |
results[subject] = acc
|
| 304 |
all_correctness.extend(correctness)
|
| 305 |
results_table.append({
|
|
|
|
| 309 |
'Accuracy': acc
|
| 310 |
})
|
| 311 |
|
| 312 |
+
# Calculate overall metrics
|
| 313 |
weighted_acc = np.mean(all_correctness)
|
|
|
|
| 314 |
min_acc_subject = min(results.items(), key=lambda x: x[1])[0]
|
| 315 |
max_acc_subject = max(results.items(), key=lambda x: x[1])[0]
|
| 316 |
|
| 317 |
+
# Return results summary
|
| 318 |
return {
|
| 319 |
"overall_accuracy": weighted_acc,
|
| 320 |
"min_accuracy_subject": (min_acc_subject, results[min_acc_subject]),
|