Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,12 +4,13 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 4 |
import evaluate
|
| 5 |
import re
|
| 6 |
import matplotlib
|
| 7 |
-
matplotlib.use('Agg')
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import io
|
| 10 |
import base64
|
| 11 |
import os
|
| 12 |
from huggingface_hub import login
|
|
|
|
| 13 |
|
| 14 |
# Read token and login
|
| 15 |
hf_token = os.getenv("HF_TOKEN_READ_WRITE")
|
|
@@ -18,28 +19,26 @@ if hf_token:
|
|
| 18 |
else:
|
| 19 |
print("⚠️ No HF_TOKEN_READ_WRITE found in environment")
|
| 20 |
|
| 21 |
-
# Check GPU availability
|
| 22 |
-
if torch.cuda.is_available():
|
| 23 |
-
print("✅ GPU is available")
|
| 24 |
-
print("GPU Name:", torch.cuda.get_device_name(0))
|
| 25 |
-
else:
|
| 26 |
-
print("❌ No GPU available")
|
| 27 |
-
|
| 28 |
# ---------------------------------------------------------------------------
|
| 29 |
-
# 1.
|
| 30 |
# ---------------------------------------------------------------------------
|
| 31 |
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# ---------------------------------------------------------------------------
|
| 45 |
# 2. Test dataset
|
|
@@ -58,14 +57,17 @@ accuracy_metric = evaluate.load("accuracy")
|
|
| 58 |
# ---------------------------------------------------------------------------
|
| 59 |
# 4. Inference helper functions
|
| 60 |
# ---------------------------------------------------------------------------
|
|
|
|
| 61 |
def generate_answer(question):
|
| 62 |
"""
|
| 63 |
Generates an answer using Mistral's instruction format.
|
| 64 |
"""
|
|
|
|
|
|
|
| 65 |
# Mistral instruction format
|
| 66 |
prompt = f"""<s>[INST] {question} [/INST]"""
|
| 67 |
|
| 68 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
| 69 |
with torch.no_grad():
|
| 70 |
outputs = model.generate(
|
| 71 |
**inputs,
|
|
@@ -91,6 +93,7 @@ def parse_answer(model_output):
|
|
| 91 |
# ---------------------------------------------------------------------------
|
| 92 |
# 5. Evaluation routine
|
| 93 |
# ---------------------------------------------------------------------------
|
|
|
|
| 94 |
def run_evaluation():
|
| 95 |
predictions = []
|
| 96 |
references = []
|
|
@@ -125,10 +128,10 @@ def run_evaluation():
|
|
| 125 |
accuracy = results["accuracy"]
|
| 126 |
|
| 127 |
# Create visualization
|
|
|
|
| 128 |
correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs))
|
| 129 |
incorrect_count = len(test_data) - correct_count
|
| 130 |
|
| 131 |
-
fig, ax = plt.subplots(figsize=(8, 6))
|
| 132 |
bars = ax.bar(["Correct", "Incorrect"],
|
| 133 |
[correct_count, incorrect_count],
|
| 134 |
color=["#2ecc71", "#e74c3c"])
|
|
@@ -142,7 +145,7 @@ def run_evaluation():
|
|
| 142 |
|
| 143 |
ax.set_title("Evaluation Results")
|
| 144 |
ax.set_ylabel("Count")
|
| 145 |
-
ax.set_ylim([0, len(test_data) + 0.5])
|
| 146 |
|
| 147 |
# Convert plot to base64
|
| 148 |
buf = io.BytesIO()
|
|
@@ -176,7 +179,6 @@ def run_evaluation():
|
|
| 176 |
|
| 177 |
details_html += "</table></div>"
|
| 178 |
|
| 179 |
-
# Combine plot and details
|
| 180 |
full_html = f"""
|
| 181 |
<div>
|
| 182 |
<img src="data:image/png;base64,{data}" style="width:100%; max-width:600px;">
|
|
|
|
| 4 |
import evaluate
|
| 5 |
import re
|
| 6 |
import matplotlib
|
| 7 |
+
matplotlib.use('Agg')
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import io
|
| 10 |
import base64
|
| 11 |
import os
|
| 12 |
from huggingface_hub import login
|
| 13 |
+
import spaces
|
| 14 |
|
| 15 |
# Read token and login
|
| 16 |
hf_token = os.getenv("HF_TOKEN_READ_WRITE")
|
|
|
|
| 19 |
else:
|
| 20 |
print("⚠️ No HF_TOKEN_READ_WRITE found in environment")
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# ---------------------------------------------------------------------------
|
| 23 |
+
# 1. Model and tokenizer setup
|
| 24 |
# ---------------------------------------------------------------------------
|
| 25 |
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 26 |
+
tokenizer = None
|
| 27 |
+
model = None
|
| 28 |
|
| 29 |
+
@spaces.GPU
|
| 30 |
+
def load_model():
|
| 31 |
+
global tokenizer, model
|
| 32 |
+
if tokenizer is None:
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
| 34 |
+
if model is None:
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
+
model_name,
|
| 37 |
+
token=hf_token,
|
| 38 |
+
torch_dtype=torch.float16
|
| 39 |
+
)
|
| 40 |
+
model.to('cuda')
|
| 41 |
+
return model, tokenizer
|
| 42 |
|
| 43 |
# ---------------------------------------------------------------------------
|
| 44 |
# 2. Test dataset
|
|
|
|
| 57 |
# ---------------------------------------------------------------------------
|
| 58 |
# 4. Inference helper functions
|
| 59 |
# ---------------------------------------------------------------------------
|
| 60 |
+
@spaces.GPU
|
| 61 |
def generate_answer(question):
|
| 62 |
"""
|
| 63 |
Generates an answer using Mistral's instruction format.
|
| 64 |
"""
|
| 65 |
+
model, tokenizer = load_model()
|
| 66 |
+
|
| 67 |
# Mistral instruction format
|
| 68 |
prompt = f"""<s>[INST] {question} [/INST]"""
|
| 69 |
|
| 70 |
+
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
|
| 71 |
with torch.no_grad():
|
| 72 |
outputs = model.generate(
|
| 73 |
**inputs,
|
|
|
|
| 93 |
# ---------------------------------------------------------------------------
|
| 94 |
# 5. Evaluation routine
|
| 95 |
# ---------------------------------------------------------------------------
|
| 96 |
+
@spaces.GPU(duration=120) # Allow up to 2 minutes for full evaluation
|
| 97 |
def run_evaluation():
|
| 98 |
predictions = []
|
| 99 |
references = []
|
|
|
|
| 128 |
accuracy = results["accuracy"]
|
| 129 |
|
| 130 |
# Create visualization
|
| 131 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
| 132 |
correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs))
|
| 133 |
incorrect_count = len(test_data) - correct_count
|
| 134 |
|
|
|
|
| 135 |
bars = ax.bar(["Correct", "Incorrect"],
|
| 136 |
[correct_count, incorrect_count],
|
| 137 |
color=["#2ecc71", "#e74c3c"])
|
|
|
|
| 145 |
|
| 146 |
ax.set_title("Evaluation Results")
|
| 147 |
ax.set_ylabel("Count")
|
| 148 |
+
ax.set_ylim([0, len(test_data) + 0.5])
|
| 149 |
|
| 150 |
# Convert plot to base64
|
| 151 |
buf = io.BytesIO()
|
|
|
|
| 179 |
|
| 180 |
details_html += "</table></div>"
|
| 181 |
|
|
|
|
| 182 |
full_html = f"""
|
| 183 |
<div>
|
| 184 |
<img src="data:image/png;base64,{data}" style="width:100%; max-width:600px;">
|