Spaces:
Sleeping
Sleeping
Update app.py with a basic demonstration of loading Llama-3.1-instruct and running a simple eval on some Math
Browse files
app.py
CHANGED
|
@@ -1,7 +1,134 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
demo.launch()
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
import evaluate
|
| 5 |
+
import re
|
| 6 |
+
import matplotlib
|
| 7 |
+
matplotlib.use('Agg') # for non-interactive envs
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import io
|
| 10 |
+
import base64
|
| 11 |
|
| 12 |
+
# ---------------------------------------------------------------------------
|
| 13 |
+
# 1. Define model name and load model/tokenizer
|
| 14 |
+
# ---------------------------------------------------------------------------
|
| 15 |
+
model_name = "meta-llama/Llama-3.2-1B-Instruct" # fictional placeholder
|
| 16 |
+
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 18 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 19 |
+
|
| 20 |
+
# ---------------------------------------------------------------------------
|
| 21 |
+
# 2. Define a tiny "dataset" for demonstration
|
| 22 |
+
# In reality, you'll load a real dataset from HF or custom code.
|
| 23 |
+
# ---------------------------------------------------------------------------
|
| 24 |
+
test_data = [
|
| 25 |
+
{"question": "What is 2+2?", "answer": "4"},
|
| 26 |
+
{"question": "What is 3*3?", "answer": "9"},
|
| 27 |
+
{"question": "What is 10/2?", "answer": "5"},
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
# ---------------------------------------------------------------------------
|
| 31 |
+
# 3. Load a metric (accuracy) from Hugging Face evaluate library
|
| 32 |
+
# ---------------------------------------------------------------------------
|
| 33 |
+
accuracy_metric = evaluate.load("accuracy")
|
| 34 |
+
|
| 35 |
+
# ---------------------------------------------------------------------------
|
| 36 |
+
# 4. Inference helper functions
|
| 37 |
+
# ---------------------------------------------------------------------------
|
| 38 |
+
def generate_answer(question):
|
| 39 |
+
"""
|
| 40 |
+
Generates an answer to the given question using the loaded model.
|
| 41 |
+
"""
|
| 42 |
+
# Simple prompt
|
| 43 |
+
prompt = f"Question: {question}\nAnswer:"
|
| 44 |
+
|
| 45 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
outputs = model.generate(
|
| 48 |
+
**inputs,
|
| 49 |
+
max_new_tokens=30,
|
| 50 |
+
temperature=0.0, # deterministic
|
| 51 |
+
)
|
| 52 |
+
text_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 53 |
+
return text_output
|
| 54 |
+
|
| 55 |
+
def parse_answer(model_output):
|
| 56 |
+
"""
|
| 57 |
+
Heuristic to extract the final numeric answer from model's text.
|
| 58 |
+
You can customize this regex or logic as needed.
|
| 59 |
+
"""
|
| 60 |
+
# Example: find digits (possibly multiple, but we keep the first match)
|
| 61 |
+
match = re.search(r"(\d+)", model_output)
|
| 62 |
+
if match:
|
| 63 |
+
return match.group(1)
|
| 64 |
+
# fallback to entire text if no digits found
|
| 65 |
+
return model_output.strip()
|
| 66 |
+
|
| 67 |
+
# ---------------------------------------------------------------------------
|
| 68 |
+
# 5. Evaluation routine
|
| 69 |
+
# ---------------------------------------------------------------------------
|
| 70 |
+
def run_evaluation():
|
| 71 |
+
predictions = []
|
| 72 |
+
references = []
|
| 73 |
+
|
| 74 |
+
for sample in test_data:
|
| 75 |
+
question = sample["question"]
|
| 76 |
+
reference_answer = sample["answer"]
|
| 77 |
+
|
| 78 |
+
# Model inference
|
| 79 |
+
model_output = generate_answer(question)
|
| 80 |
+
predicted_answer = parse_answer(model_output)
|
| 81 |
+
|
| 82 |
+
predictions.append(predicted_answer)
|
| 83 |
+
references.append(reference_answer)
|
| 84 |
+
|
| 85 |
+
# Normalize answers (simple: just remove spaces/punctuation, lower case)
|
| 86 |
+
def normalize_answer(ans):
|
| 87 |
+
return ans.lower().strip()
|
| 88 |
+
|
| 89 |
+
norm_preds = [normalize_answer(p) for p in predictions]
|
| 90 |
+
norm_refs = [normalize_answer(r) for r in references]
|
| 91 |
+
|
| 92 |
+
# Compute accuracy
|
| 93 |
+
results = accuracy_metric.compute(predictions=norm_preds, references=norm_refs)
|
| 94 |
+
accuracy = results["accuracy"]
|
| 95 |
+
|
| 96 |
+
# Create a simple bar chart: correct vs. incorrect
|
| 97 |
+
correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs))
|
| 98 |
+
incorrect_count = len(test_data) - correct_count
|
| 99 |
+
|
| 100 |
+
fig, ax = plt.subplots()
|
| 101 |
+
ax.bar(["Correct", "Incorrect"], [correct_count, incorrect_count], color=["green", "red"])
|
| 102 |
+
ax.set_title("Evaluation Results")
|
| 103 |
+
ax.set_ylabel("Count")
|
| 104 |
+
ax.set_ylim([0, len(test_data)])
|
| 105 |
+
|
| 106 |
+
# Convert the plot to a base64-encoded PNG for Gradio display
|
| 107 |
+
buf = io.BytesIO()
|
| 108 |
+
plt.savefig(buf, format="png")
|
| 109 |
+
buf.seek(0)
|
| 110 |
+
plt.close(fig)
|
| 111 |
+
data = base64.b64encode(buf.read()).decode("utf-8")
|
| 112 |
+
image_url = f"data:image/png;base64,{data}"
|
| 113 |
+
|
| 114 |
+
# Return text and the plot
|
| 115 |
+
return f"Accuracy: {accuracy:.2f}", image_url
|
| 116 |
+
|
| 117 |
+
# ---------------------------------------------------------------------------
|
| 118 |
+
# 6. Gradio App
|
| 119 |
+
# ---------------------------------------------------------------------------
|
| 120 |
+
with gr.Blocks() as demo:
|
| 121 |
+
gr.Markdown("# Simple Math Evaluation with 'Llama 3.2'")
|
| 122 |
+
|
| 123 |
+
eval_button = gr.Button("Run Evaluation")
|
| 124 |
+
output_text = gr.Textbox(label="Results")
|
| 125 |
+
output_plot = gr.HTML(label="Plot")
|
| 126 |
+
|
| 127 |
+
eval_button.click(
|
| 128 |
+
fn=run_evaluation,
|
| 129 |
+
inputs=None,
|
| 130 |
+
outputs=[output_text, output_plot]
|
| 131 |
+
)
|
| 132 |
|
|
|
|
| 133 |
demo.launch()
|
| 134 |
+
|