Spaces:
Sleeping
Sleeping
Update mmlu_eval.py
Browse files- mmlu_eval.py +48 -31
mmlu_eval.py
CHANGED
|
@@ -1,63 +1,78 @@
|
|
| 1 |
import torch
|
| 2 |
-
import random
|
| 3 |
import evaluate
|
| 4 |
from datasets import load_dataset
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
-
# Load Accuracy Metric
|
| 9 |
accuracy_metric = evaluate.load("accuracy")
|
| 10 |
-
|
| 11 |
-
# Load MMLU dataset
|
| 12 |
mmlu_dataset = load_dataset("cais/mmlu", "all")
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
@spaces.GPU
|
| 15 |
-
def generate_answer(model, tokenizer, question):
|
| 16 |
"""
|
| 17 |
-
Generates an answer using Mistral's instruction format.
|
| 18 |
"""
|
| 19 |
-
prompt =
|
| 20 |
|
| 21 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 22 |
with torch.no_grad():
|
| 23 |
outputs = model.generate(
|
| 24 |
**inputs,
|
| 25 |
-
max_new_tokens=
|
| 26 |
-
|
|
|
|
| 27 |
pad_token_id=tokenizer.pad_token_id,
|
| 28 |
eos_token_id=tokenizer.eos_token_id
|
| 29 |
)
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
def evaluate_mmlu(model, tokenizer, num_questions_per_task=5):
|
| 33 |
"""
|
| 34 |
-
Evaluates the model on MMLU across all
|
| 35 |
-
|
| 36 |
-
Returns:
|
| 37 |
-
- Overall accuracy
|
| 38 |
-
- Min accuracy task
|
| 39 |
-
- Max accuracy task
|
| 40 |
-
- Two correct examples
|
| 41 |
-
- Two incorrect examples
|
| 42 |
"""
|
| 43 |
results = {}
|
| 44 |
correct_examples = []
|
| 45 |
incorrect_examples = []
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
dataset = mmlu_dataset[task_name]
|
| 50 |
-
|
|
|
|
|
|
|
| 51 |
|
| 52 |
predictions = []
|
| 53 |
references = []
|
| 54 |
|
| 55 |
for sample in sampled_questions:
|
| 56 |
-
print ("SAMPLE", sample)
|
| 57 |
question = sample["question"]
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
| 61 |
predictions.append(model_output)
|
| 62 |
references.append(correct_answer)
|
| 63 |
|
|
@@ -68,10 +83,11 @@ def evaluate_mmlu(model, tokenizer, num_questions_per_task=5):
|
|
| 68 |
incorrect_examples.append((task_name, question, model_output, correct_answer))
|
| 69 |
|
| 70 |
# Compute accuracy for the task
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
| 75 |
results[task_name] = task_accuracy
|
| 76 |
|
| 77 |
# Compute overall statistics
|
|
@@ -85,4 +101,5 @@ def evaluate_mmlu(model, tokenizer, num_questions_per_task=5):
|
|
| 85 |
"max_accuracy_task": (max_task, results[max_task]),
|
| 86 |
"correct_examples": correct_examples,
|
| 87 |
"incorrect_examples": incorrect_examples,
|
| 88 |
-
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
import evaluate
|
| 3 |
from datasets import load_dataset
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import spaces
|
| 6 |
|
|
|
|
| 7 |
accuracy_metric = evaluate.load("accuracy")
|
|
|
|
|
|
|
| 8 |
mmlu_dataset = load_dataset("cais/mmlu", "all")
|
| 9 |
|
| 10 |
+
def format_mmlu_prompt(question, choices):
|
| 11 |
+
"""
|
| 12 |
+
Formats the prompt according to Mistral's official instruction format.
|
| 13 |
+
Source: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
|
| 14 |
+
"""
|
| 15 |
+
formatted_choices = "\n".join([f"{chr(65 + i)}. {choice}" for i, choice in enumerate(choices)])
|
| 16 |
+
prompt = f"""<s>[INST] You are taking a multiple choice test. Select the correct answer by responding with only the letter (A, B, C, or D) of the correct choice.
|
| 17 |
+
|
| 18 |
+
Question: {question}
|
| 19 |
+
|
| 20 |
+
Choices:
|
| 21 |
+
{formatted_choices} [/INST]"""
|
| 22 |
+
return prompt
|
| 23 |
+
|
| 24 |
@spaces.GPU
|
| 25 |
+
def generate_answer(model, tokenizer, question, choices):
|
| 26 |
"""
|
| 27 |
+
Generates an answer using Mistral's instruction format for multiple choice questions.
|
| 28 |
"""
|
| 29 |
+
prompt = format_mmlu_prompt(question, choices)
|
| 30 |
|
| 31 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 32 |
with torch.no_grad():
|
| 33 |
outputs = model.generate(
|
| 34 |
**inputs,
|
| 35 |
+
max_new_tokens=5, # We only need a single letter
|
| 36 |
+
do_sample=False, # Use deterministic greedy decoding
|
| 37 |
+
num_beams=1, # Use simple greedy search
|
| 38 |
pad_token_id=tokenizer.pad_token_id,
|
| 39 |
eos_token_id=tokenizer.eos_token_id
|
| 40 |
)
|
| 41 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
| 42 |
+
# Extract just the letter answer
|
| 43 |
+
for char in response:
|
| 44 |
+
if char in 'ABCD':
|
| 45 |
+
return char
|
| 46 |
+
return response[:1] # Fallback: take first character
|
| 47 |
|
| 48 |
def evaluate_mmlu(model, tokenizer, num_questions_per_task=5):
|
| 49 |
"""
|
| 50 |
+
Evaluates the model on MMLU across all tasks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
"""
|
| 52 |
results = {}
|
| 53 |
correct_examples = []
|
| 54 |
incorrect_examples = []
|
| 55 |
+
|
| 56 |
+
# Filter out 'auxiliary_train' and other non-test splits
|
| 57 |
+
test_tasks = [k for k in mmlu_dataset.keys() if 'test' in k]
|
| 58 |
+
|
| 59 |
+
for task_name in sorted(test_tasks): # Sort tasks for deterministic order
|
| 60 |
dataset = mmlu_dataset[task_name]
|
| 61 |
+
# Instead of random sampling, take the first n questions
|
| 62 |
+
total_questions = min(num_questions_per_task, len(dataset))
|
| 63 |
+
sampled_questions = [dataset[i] for i in range(total_questions)]
|
| 64 |
|
| 65 |
predictions = []
|
| 66 |
references = []
|
| 67 |
|
| 68 |
for sample in sampled_questions:
|
|
|
|
| 69 |
question = sample["question"]
|
| 70 |
+
choices = [sample["choices"][i] for i in range(4)]
|
| 71 |
+
# Convert numeric answer to letter (0->A, 1->B, etc.)
|
| 72 |
+
correct_answer = chr(65 + sample["answer"])
|
| 73 |
+
|
| 74 |
+
model_output = generate_answer(model, tokenizer, question, choices)
|
| 75 |
+
|
| 76 |
predictions.append(model_output)
|
| 77 |
references.append(correct_answer)
|
| 78 |
|
|
|
|
| 83 |
incorrect_examples.append((task_name, question, model_output, correct_answer))
|
| 84 |
|
| 85 |
# Compute accuracy for the task
|
| 86 |
+
task_accuracy = accuracy_metric.compute(
|
| 87 |
+
predictions=predictions,
|
| 88 |
+
references=references
|
| 89 |
+
)["accuracy"]
|
| 90 |
+
|
| 91 |
results[task_name] = task_accuracy
|
| 92 |
|
| 93 |
# Compute overall statistics
|
|
|
|
| 101 |
"max_accuracy_task": (max_task, results[max_task]),
|
| 102 |
"correct_examples": correct_examples,
|
| 103 |
"incorrect_examples": incorrect_examples,
|
| 104 |
+
"all_results": results # Added for detailed analysis
|
| 105 |
+
}
|