Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import evaluate | |
| import re | |
| import matplotlib | |
| matplotlib.use('Agg') # for non-interactive envs | |
| import matplotlib.pyplot as plt | |
| import io | |
| import base64 | |
| import os | |
| from huggingface_hub import login | |
| # Read token and login | |
| hf_token = os.getenv("HF_TOKEN_READ_WRITE") | |
| if hf_token: | |
| login(hf_token) | |
| else: | |
| print("⚠️ No HF_TOKEN_READ_WRITE found in environment") | |
| # Check GPU availability | |
| if torch.cuda.is_available(): | |
| print("✅ GPU is available") | |
| print("GPU Name:", torch.cuda.get_device_name(0)) | |
| else: | |
| print("❌ No GPU available") | |
| # --------------------------------------------------------------------------- | |
| # 1. Define model name and load model/tokenizer | |
| # --------------------------------------------------------------------------- | |
| model_name = "mistralai/Mistral-7B-Instruct-v0.3" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| token=hf_token, | |
| torch_dtype=torch.float16, | |
| device_map="auto" | |
| ) | |
| print(f"✅ Model loaded on {device}") | |
| # --------------------------------------------------------------------------- | |
| # 2. Test dataset | |
| # --------------------------------------------------------------------------- | |
| test_data = [ | |
| {"question": "What is 2+2?", "answer": "4"}, | |
| {"question": "What is 3*3?", "answer": "9"}, | |
| {"question": "What is 10/2?", "answer": "5"}, | |
| ] | |
| # --------------------------------------------------------------------------- | |
| # 3. Load metric | |
| # --------------------------------------------------------------------------- | |
| accuracy_metric = evaluate.load("accuracy") | |
| # --------------------------------------------------------------------------- | |
| # 4. Inference helper functions | |
| # --------------------------------------------------------------------------- | |
| def generate_answer(question): | |
| """ | |
| Generates an answer using Mistral's instruction format. | |
| """ | |
| # Mistral instruction format | |
| prompt = f"""<s>[INST] {question} [/INST]""" | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=50, | |
| temperature=0.0, # deterministic | |
| pad_token_id=tokenizer.pad_token_id, | |
| eos_token_id=tokenizer.eos_token_id | |
| ) | |
| text_output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Remove the original question from the output | |
| return text_output.replace(question, "").strip() | |
| def parse_answer(model_output): | |
| """ | |
| Extract numeric answer from model's text output. | |
| """ | |
| # Look for numbers (including decimals) | |
| match = re.search(r"(-?\d*\.?\d+)", model_output) | |
| if match: | |
| return match.group(1) | |
| return model_output.strip() | |
| # --------------------------------------------------------------------------- | |
| # 5. Evaluation routine | |
| # --------------------------------------------------------------------------- | |
| def run_evaluation(): | |
| predictions = [] | |
| references = [] | |
| raw_outputs = [] # Store full model outputs for display | |
| for sample in test_data: | |
| question = sample["question"] | |
| reference_answer = sample["answer"] | |
| # Model inference | |
| model_output = generate_answer(question) | |
| predicted_answer = parse_answer(model_output) | |
| predictions.append(predicted_answer) | |
| references.append(reference_answer) | |
| raw_outputs.append({ | |
| "question": question, | |
| "model_output": model_output, | |
| "parsed_answer": predicted_answer, | |
| "reference": reference_answer | |
| }) | |
| # Normalize answers | |
| def normalize_answer(ans): | |
| return str(ans).lower().strip() | |
| norm_preds = [normalize_answer(p) for p in predictions] | |
| norm_refs = [normalize_answer(r) for r in references] | |
| # Compute accuracy | |
| results = accuracy_metric.compute(predictions=norm_preds, references=norm_refs) | |
| accuracy = results["accuracy"] | |
| # Create visualization | |
| correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs)) | |
| incorrect_count = len(test_data) - correct_count | |
| fig, ax = plt.subplots(figsize=(8, 6)) | |
| bars = ax.bar(["Correct", "Incorrect"], | |
| [correct_count, incorrect_count], | |
| color=["#2ecc71", "#e74c3c"]) | |
| # Add value labels on bars | |
| for bar in bars: | |
| height = bar.get_height() | |
| ax.text(bar.get_x() + bar.get_width()/2., height, | |
| f'{int(height)}', | |
| ha='center', va='bottom') | |
| ax.set_title("Evaluation Results") | |
| ax.set_ylabel("Count") | |
| ax.set_ylim([0, len(test_data) + 0.5]) # Add some padding at top | |
| # Convert plot to base64 | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format="png", bbox_inches='tight', dpi=300) | |
| buf.seek(0) | |
| plt.close(fig) | |
| data = base64.b64encode(buf.read()).decode("utf-8") | |
| # Create detailed results HTML | |
| details_html = """ | |
| <div style="margin-top: 20px;"> | |
| <h3>Detailed Results:</h3> | |
| <table style="width:100%; border-collapse: collapse;"> | |
| <tr style="background-color: #f5f5f5;"> | |
| <th style="padding: 8px; border: 1px solid #ddd;">Question</th> | |
| <th style="padding: 8px; border: 1px solid #ddd;">Model Output</th> | |
| <th style="padding: 8px; border: 1px solid #ddd;">Parsed Answer</th> | |
| <th style="padding: 8px; border: 1px solid #ddd;">Reference</th> | |
| </tr> | |
| """ | |
| for result in raw_outputs: | |
| details_html += f""" | |
| <tr> | |
| <td style="padding: 8px; border: 1px solid #ddd;">{result['question']}</td> | |
| <td style="padding: 8px; border: 1px solid #ddd;">{result['model_output']}</td> | |
| <td style="padding: 8px; border: 1px solid #ddd;">{result['parsed_answer']}</td> | |
| <td style="padding: 8px; border: 1px solid #ddd;">{result['reference']}</td> | |
| </tr> | |
| """ | |
| details_html += "</table></div>" | |
| # Combine plot and details | |
| full_html = f""" | |
| <div> | |
| <img src="data:image/png;base64,{data}" style="width:100%; max-width:600px;"> | |
| {details_html} | |
| </div> | |
| """ | |
| return f"Accuracy: {accuracy:.2f}", full_html | |
| # --------------------------------------------------------------------------- | |
| # 6. Gradio Interface | |
| # --------------------------------------------------------------------------- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Mistral-7B Math Evaluation Demo") | |
| gr.Markdown(""" | |
| This demo evaluates Mistral-7B on basic math problems. | |
| Press the button below to run the evaluation. | |
| """) | |
| eval_button = gr.Button("Run Evaluation", variant="primary") | |
| output_text = gr.Textbox(label="Results") | |
| output_plot = gr.HTML(label="Visualization and Details") | |
| eval_button.click( | |
| fn=run_evaluation, | |
| inputs=None, | |
| outputs=[output_text, output_plot] | |
| ) | |
| demo.launch() |