Spaces:
Sleeping
Sleeping
| from dataclasses import dataclass, make_dataclass | |
| from enum import Enum | |
| import pandas as pd | |
| from src.about import Tasks | |
| def fields(raw_class): | |
| if hasattr(raw_class, '__dataclass_fields__'): | |
| # For make_dataclass created classes | |
| if raw_class.__dataclass_fields__: | |
| return [field.type for field in raw_class.__dataclass_fields__.values()] | |
| else: | |
| # For regular @dataclass with empty __dataclass_fields__, check __dict__ | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')] | |
| # Fallback for non-dataclass | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')] | |
| # These classes are for user facing column names, | |
| # to avoid having to change them all around the code | |
| # when a modif is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| never_hidden: bool = False | |
| ## Leaderboard columns | |
| auto_eval_column_dict = [] | |
| # Init | |
| auto_eval_column_dict.append(("model_type_symbol", ColumnContent("T", "str", True, never_hidden=True))) | |
| auto_eval_column_dict.append(("model", ColumnContent("Model", "markdown", True, never_hidden=True))) | |
| # Average score | |
| auto_eval_column_dict.append(("average", ColumnContent("Average", "number", True))) | |
| #Scores | |
| for task in Tasks: | |
| auto_eval_column_dict.append((task.name, ColumnContent(task.value.col_name, "number", True))) | |
| # Model information - simplified to only essential columns | |
| # We use make dataclass to dynamically fill the scores from Tasks | |
| AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
| ## For the queue columns in the submission tab | |
| class EvalQueueColumn: # Queue column | |
| model = ColumnContent("model", "markdown", True) | |
| revision = ColumnContent("revision", "str", True) | |
| precision = ColumnContent("precision", "str", True) | |
| status = ColumnContent("status", "str", True) | |
| ## All the model information that we might need | |
| class ModelDetails: | |
| name: str | |
| display_name: str = "" | |
| symbol: str = "" # emoji | |
| class ModelType(Enum): | |
| FT = ModelDetails(name="fine-tuned", symbol="🔶") | |
| Unknown = ModelDetails(name="", symbol="?") | |
| def to_str(self, separator=" "): | |
| return f"{self.value.symbol}{separator}{self.value.name}" | |
| def from_str(type): | |
| if "fine-tuned" in type or "🔶" in type: | |
| return ModelType.FT | |
| return ModelType.Unknown | |
| def from_config(config): | |
| """Determine model type from configuration - for NER models, most will be fine-tuned""" | |
| if hasattr(config, 'num_labels') and config.num_labels > 2: | |
| return ModelType.FT # Fine-tuned for NER | |
| return ModelType.Unknown | |
| class WeightType(Enum): | |
| Original = ModelDetails("Original") | |
| class Precision(Enum): | |
| float16 = ModelDetails("float16") | |
| bfloat16 = ModelDetails("bfloat16") | |
| Unknown = ModelDetails("?") | |
| def from_str(precision): | |
| if precision in ["torch.float16", "float16"]: | |
| return Precision.float16 | |
| if precision in ["torch.bfloat16", "bfloat16"]: | |
| return Precision.bfloat16 | |
| return Precision.Unknown | |
| # Column selection | |
| COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
| EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
| EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
| BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |