Spaces:
Sleeping
Sleeping
| from dataclasses import dataclass, make_dataclass | |
| from enum import Enum | |
| import pandas as pd | |
| from src.about import Tasks | |
| def fields(raw_class): | |
| if hasattr(raw_class, '__dataclass_fields__'): | |
| # For make_dataclass created classes | |
| if raw_class.__dataclass_fields__: | |
| return [field.type for field in raw_class.__dataclass_fields__.values()] | |
| else: | |
| # For regular @dataclass with empty __dataclass_fields__, check __dict__ | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')] | |
| # Fallback for non-dataclass | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')] | |
| # These classes are for user facing column names, | |
| # to avoid having to change them all around the code | |
| # when a modif is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| never_hidden: bool = False | |
| ## Leaderboard columns | |
| auto_eval_column_dict = [] | |
| # Init | |
| auto_eval_column_dict.append(("model_type_symbol", ColumnContent("T", "str", True, never_hidden=True))) | |
| auto_eval_column_dict.append(("model", ColumnContent("Model", "markdown", True, never_hidden=True))) | |
| # Average score | |
| auto_eval_column_dict.append(("average", ColumnContent("Average", "number", True))) | |
| #Scores | |
| for task in Tasks: | |
| auto_eval_column_dict.append((task.name, ColumnContent(task.value.col_name, "number", True))) | |
| # Model information - simplified to only essential columns | |
| # We use make dataclass to dynamically fill the scores from Tasks | |
| AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
| ## For the queue columns in the submission tab | |
| class EvalQueueColumn: # Queue column | |
| model = ColumnContent("model", "markdown", True) | |
| revision = ColumnContent("revision", "str", True) | |
| precision = ColumnContent("precision", "str", True) | |
| model_type = ColumnContent("model_type", "str", True) | |
| status = ColumnContent("status", "str", True) | |
| ## All the model information that we might need | |
| class ModelDetails: | |
| name: str | |
| display_name: str = "" | |
| symbol: str = "" # emoji | |
| class ModelType(Enum): | |
| ENCODER = ModelDetails(name="encoder", symbol="π€") # BERT-like | |
| DECODER = ModelDetails(name="decoder", symbol="π½") # GPT-like | |
| ENCODER_DECODER = ModelDetails(name="encoder-decoder", symbol="π") # T5-like | |
| Unknown = ModelDetails(name="unknown", symbol="?") | |
| def to_str(self, separator=" "): | |
| return f"{self.value.symbol}{separator}{self.value.name}" | |
| def from_str(type_str): | |
| if "encoder-decoder" in type_str.lower() or "π" in type_str: | |
| return ModelType.ENCODER_DECODER | |
| elif "encoder" in type_str.lower() or "π€" in type_str: | |
| return ModelType.ENCODER | |
| elif "decoder" in type_str.lower() or "π½" in type_str: | |
| return ModelType.DECODER | |
| return ModelType.Unknown | |
| def from_config(config): | |
| """Detect model architecture type from config""" | |
| if hasattr(config, 'model_type'): | |
| model_type = config.model_type.lower() | |
| # Encoder-decoder models | |
| if model_type in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot', 'bigbird_pegasus']: | |
| return ModelType.ENCODER_DECODER | |
| # Decoder-only models (GPT-like) | |
| elif model_type in ['gpt', 'gpt2', 'gpt_neo', 'gpt_neox', 'gptj', 'bloom', 'llama', 'mistral', 'qwen']: | |
| return ModelType.DECODER | |
| # Encoder-only models (BERT-like) | |
| elif model_type in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert']: | |
| return ModelType.ENCODER | |
| # Fallback: detect from architecture class name | |
| if hasattr(config, 'architectures') and config.architectures: | |
| arch_name = config.architectures[0].lower() | |
| if any(name in arch_name for name in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot']): | |
| return ModelType.ENCODER_DECODER | |
| elif any(name in arch_name for name in ['gpt', 'bloom', 'llama', 'mistral', 'qwen']): | |
| return ModelType.DECODER | |
| elif any(name in arch_name for name in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert']): | |
| return ModelType.ENCODER | |
| return ModelType.Unknown | |
| def from_architecture(architecture): | |
| """Detect model type from architecture string""" | |
| if not architecture or architecture == "?": | |
| return ModelType.Unknown | |
| arch_lower = architecture.lower() | |
| # Encoder-decoder patterns | |
| if any(pattern in arch_lower for pattern in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot']): | |
| return ModelType.ENCODER_DECODER | |
| # Decoder patterns (GPT-like) | |
| elif any(pattern in arch_lower for pattern in ['gpt', 'bloom', 'llama', 'mistral', 'qwen', 'causal']): | |
| return ModelType.DECODER | |
| # Encoder patterns (BERT-like) | |
| elif any(pattern in arch_lower for pattern in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert', 'formaskedlm', 'fortokenclassification', 'forsequenceclassification']): | |
| return ModelType.ENCODER | |
| return ModelType.Unknown | |
| class WeightType(Enum): | |
| Original = ModelDetails("Original") | |
| class Precision(Enum): | |
| float16 = ModelDetails("float16") | |
| bfloat16 = ModelDetails("bfloat16") | |
| Unknown = ModelDetails("?") | |
| def from_str(precision): | |
| if precision in ["torch.float16", "float16"]: | |
| return Precision.float16 | |
| if precision in ["torch.bfloat16", "bfloat16"]: | |
| return Precision.bfloat16 | |
| return Precision.Unknown | |
| # Column selection | |
| COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
| EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
| EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
| BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |