Spaces:
Sleeping
Sleeping
Commit
·
13c1f49
1
Parent(s):
333c10b
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import pandas as pd
|
|
| 3 |
import numpy as np
|
| 4 |
from sklearn.preprocessing import MultiLabelBinarizer
|
| 5 |
from keras.models import load_model
|
| 6 |
-
import time
|
| 7 |
|
| 8 |
# Load the trained model
|
| 9 |
model = load_model('model.h5')
|
|
@@ -29,25 +28,18 @@ def predict_disease(symptoms):
|
|
| 29 |
user_symptoms = [symptoms.split(',')]
|
| 30 |
user_X = mlb.transform(user_symptoms)
|
| 31 |
|
| 32 |
-
# Show loading animation
|
| 33 |
-
prediction.update("Loading...")
|
| 34 |
-
time.sleep(1)
|
| 35 |
-
|
| 36 |
# Make the prediction
|
| 37 |
-
|
| 38 |
-
predicted_disease = disease_list[np.argmax(
|
| 39 |
predicted_antibiotics = data.loc[data['Disease'] == predicted_disease, 'Antibiotics'].values[0]
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
result = f"Disease: {predicted_disease}\nAntibiotics: {predicted_antibiotics}\n\nModel accuracy on testing set: {accuracy_percent}"
|
| 44 |
-
prediction.update(result)
|
| 45 |
|
| 46 |
# Define the Gradio interface
|
| 47 |
inputs = gr.inputs.Textbox(label="Symptoms")
|
| 48 |
-
outputs = gr.outputs.Textbox(label="Prediction")
|
| 49 |
-
|
| 50 |
-
gradio_interface = gr.Interface(predict_disease, inputs, outputs, title="Disease Prediction App", live=True, outputs=[outputs, prediction])
|
| 51 |
|
| 52 |
# Launch the Gradio interface
|
| 53 |
gradio_interface.launch()
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
from sklearn.preprocessing import MultiLabelBinarizer
|
| 5 |
from keras.models import load_model
|
|
|
|
| 6 |
|
| 7 |
# Load the trained model
|
| 8 |
model = load_model('model.h5')
|
|
|
|
| 28 |
user_symptoms = [symptoms.split(',')]
|
| 29 |
user_X = mlb.transform(user_symptoms)
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Make the prediction
|
| 32 |
+
prediction = model.predict(np.expand_dims(user_X, axis=2))
|
| 33 |
+
predicted_disease = disease_list[np.argmax(prediction)]
|
| 34 |
predicted_antibiotics = data.loc[data['Disease'] == predicted_disease, 'Antibiotics'].values[0]
|
| 35 |
|
| 36 |
+
# Return the prediction and accuracy
|
| 37 |
+
return f"Disease: {predicted_disease}\nAntibiotics: {predicted_antibiotics}", f"Model accuracy on testing set: {accuracy:.3f}"
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# Define the Gradio interface
|
| 40 |
inputs = gr.inputs.Textbox(label="Symptoms")
|
| 41 |
+
outputs = [gr.outputs.Textbox(label="Prediction"), gr.outputs.Textbox(label="Accuracy")]
|
| 42 |
+
gradio_interface = gr.Interface(predict_disease, inputs, outputs, title="Disease Prediction App")
|
|
|
|
| 43 |
|
| 44 |
# Launch the Gradio interface
|
| 45 |
gradio_interface.launch()
|