Spaces:
Runtime error
Runtime error
root
commited on
Commit
·
3779445
1
Parent(s):
4d12c78
update single track diffusion
Browse files- app.py +10 -3
- codeclm/models/codeclm.py +7 -1
- generate.py +5 -4
- generate.sh +2 -1
- generate_lowmem.py +3 -2
- generate_lowmem.sh +2 -1
- levo_inference.py +3 -3
- tools/gradio/app.py +11 -4
- tools/gradio/levo_inference.py +3 -6
- tools/gradio/levo_inference_lowmem.py +3 -6
app.py
CHANGED
|
@@ -56,7 +56,7 @@ with open(op.join(APP_DIR, 'conf/vocab.yaml'), 'r', encoding='utf-8') as file:
|
|
| 56 |
|
| 57 |
|
| 58 |
# 模拟歌曲生成函数
|
| 59 |
-
def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_coef=None, temperature=None, top_k=None, progress=gr.Progress(track_tqdm=True)):
|
| 60 |
global MODEL
|
| 61 |
global STRUCTS
|
| 62 |
params = {'cfg_coef':cfg_coef, 'temperature':temperature, 'top_k':top_k}
|
|
@@ -105,7 +105,7 @@ def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_co
|
|
| 105 |
progress(0.0, "Start Generation")
|
| 106 |
start = time.time()
|
| 107 |
|
| 108 |
-
audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "ckpt/prompt.pt"), params).cpu().permute(1, 0).float().numpy()
|
| 109 |
|
| 110 |
end = time.time()
|
| 111 |
|
|
@@ -204,7 +204,9 @@ lyrics
|
|
| 204 |
interactive=True,
|
| 205 |
elem_id="top_k",
|
| 206 |
)
|
| 207 |
-
|
|
|
|
|
|
|
| 208 |
|
| 209 |
with gr.Column():
|
| 210 |
output_audio = gr.Audio(label="Generated Song", type="numpy")
|
|
@@ -235,6 +237,11 @@ lyrics
|
|
| 235 |
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k],
|
| 236 |
outputs=[output_audio, output_json]
|
| 237 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
|
| 240 |
# 启动应用
|
|
|
|
| 56 |
|
| 57 |
|
| 58 |
# 模拟歌曲生成函数
|
| 59 |
+
def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_coef=None, temperature=None, top_k=None, gen_type="all", progress=gr.Progress(track_tqdm=True)):
|
| 60 |
global MODEL
|
| 61 |
global STRUCTS
|
| 62 |
params = {'cfg_coef':cfg_coef, 'temperature':temperature, 'top_k':top_k}
|
|
|
|
| 105 |
progress(0.0, "Start Generation")
|
| 106 |
start = time.time()
|
| 107 |
|
| 108 |
+
audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "ckpt/prompt.pt"), gen_type, params).cpu().permute(1, 0).float().numpy()
|
| 109 |
|
| 110 |
end = time.time()
|
| 111 |
|
|
|
|
| 204 |
interactive=True,
|
| 205 |
elem_id="top_k",
|
| 206 |
)
|
| 207 |
+
with gr.Row():
|
| 208 |
+
generate_btn = gr.Button("Generate Song", variant="primary")
|
| 209 |
+
generate_bgm_btn = gr.Button("Generate Pure Music", variant="primary")
|
| 210 |
|
| 211 |
with gr.Column():
|
| 212 |
output_audio = gr.Audio(label="Generated Song", type="numpy")
|
|
|
|
| 237 |
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k],
|
| 238 |
outputs=[output_audio, output_json]
|
| 239 |
)
|
| 240 |
+
generate_bgm_btn.click(
|
| 241 |
+
fn=generate_song,
|
| 242 |
+
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k, gr.State("bgm")],
|
| 243 |
+
outputs=[output_audio, output_json]
|
| 244 |
+
)
|
| 245 |
|
| 246 |
|
| 247 |
# 启动应用
|
codeclm/models/codeclm.py
CHANGED
|
@@ -271,13 +271,19 @@ class CodecLM:
|
|
| 271 |
return gen_tokens
|
| 272 |
|
| 273 |
@torch.no_grad()
|
| 274 |
-
def generate_audio(self, gen_tokens: torch.Tensor, prompt=None, vocal_prompt=None, bgm_prompt=None, chunked=False):
|
| 275 |
"""Generate Audio from tokens"""
|
| 276 |
assert gen_tokens.dim() == 3
|
| 277 |
if self.seperate_tokenizer is not None:
|
| 278 |
gen_tokens_song = gen_tokens[:, [0], :]
|
| 279 |
gen_tokens_vocal = gen_tokens[:, [1], :]
|
| 280 |
gen_tokens_bgm = gen_tokens[:, [2], :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
# gen_audio_song = self.audiotokenizer.decode(gen_tokens_song, prompt)
|
| 282 |
gen_audio_seperate = self.seperate_tokenizer.decode([gen_tokens_vocal, gen_tokens_bgm], vocal_prompt, bgm_prompt, chunked=chunked)
|
| 283 |
return gen_audio_seperate
|
|
|
|
| 271 |
return gen_tokens
|
| 272 |
|
| 273 |
@torch.no_grad()
|
| 274 |
+
def generate_audio(self, gen_tokens: torch.Tensor, prompt=None, vocal_prompt=None, bgm_prompt=None, chunked=False, gen_type="all"):
|
| 275 |
"""Generate Audio from tokens"""
|
| 276 |
assert gen_tokens.dim() == 3
|
| 277 |
if self.seperate_tokenizer is not None:
|
| 278 |
gen_tokens_song = gen_tokens[:, [0], :]
|
| 279 |
gen_tokens_vocal = gen_tokens[:, [1], :]
|
| 280 |
gen_tokens_bgm = gen_tokens[:, [2], :]
|
| 281 |
+
if gen_type == "bgm":
|
| 282 |
+
gen_tokens_vocal = torch.full_like(gen_tokens_vocal, 3142)
|
| 283 |
+
vocal_prompt = None
|
| 284 |
+
elif gen_type == "vocal":
|
| 285 |
+
gen_tokens_bgm = torch.full_like(gen_tokens_bgm, 9670)
|
| 286 |
+
bgm_prompt = None
|
| 287 |
# gen_audio_song = self.audiotokenizer.decode(gen_tokens_song, prompt)
|
| 288 |
gen_audio_seperate = self.seperate_tokenizer.decode([gen_tokens_vocal, gen_tokens_bgm], vocal_prompt, bgm_prompt, chunked=chunked)
|
| 289 |
return gen_audio_seperate
|
generate.py
CHANGED
|
@@ -70,6 +70,7 @@ if __name__ == "__main__":
|
|
| 70 |
ckpt_path = sys.argv[1]
|
| 71 |
input_jsonl = sys.argv[2]
|
| 72 |
save_dir = sys.argv[3]
|
|
|
|
| 73 |
cfg_path = os.path.join(ckpt_path, 'config.yaml')
|
| 74 |
ckpt_path = os.path.join(ckpt_path, 'model.pt')
|
| 75 |
cfg = OmegaConf.load(cfg_path)
|
|
@@ -146,15 +147,15 @@ if __name__ == "__main__":
|
|
| 146 |
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
| 147 |
tokens = model.generate(**generate_inp, return_tokens=True)
|
| 148 |
mid_time = time.time()
|
| 149 |
-
|
| 150 |
with torch.no_grad():
|
| 151 |
if melody_is_wav:
|
| 152 |
-
wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
|
| 153 |
else:
|
| 154 |
-
wav_seperate = model.generate_audio(tokens)
|
| 155 |
end_time = time.time()
|
| 156 |
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
|
| 157 |
-
print(f"process{item['idx']}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}")
|
| 158 |
|
| 159 |
item["idx"] = f"{item['idx']}"
|
| 160 |
item["wav_path"] = target_wav_name
|
|
|
|
| 70 |
ckpt_path = sys.argv[1]
|
| 71 |
input_jsonl = sys.argv[2]
|
| 72 |
save_dir = sys.argv[3]
|
| 73 |
+
gen_type = sys.argv[4] if len(sys.argv) > 4 else "all"
|
| 74 |
cfg_path = os.path.join(ckpt_path, 'config.yaml')
|
| 75 |
ckpt_path = os.path.join(ckpt_path, 'model.pt')
|
| 76 |
cfg = OmegaConf.load(cfg_path)
|
|
|
|
| 147 |
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
| 148 |
tokens = model.generate(**generate_inp, return_tokens=True)
|
| 149 |
mid_time = time.time()
|
| 150 |
+
|
| 151 |
with torch.no_grad():
|
| 152 |
if melody_is_wav:
|
| 153 |
+
wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav, gen_type=gen_type)
|
| 154 |
else:
|
| 155 |
+
wav_seperate = model.generate_audio(tokens, gen_type=gen_type)
|
| 156 |
end_time = time.time()
|
| 157 |
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
|
| 158 |
+
print(f"process{item['idx']} {gen_type}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}")
|
| 159 |
|
| 160 |
item["idx"] = f"{item['idx']}"
|
| 161 |
item["wav_path"] = target_wav_name
|
generate.sh
CHANGED
|
@@ -7,4 +7,5 @@ export PYTHONPATH="$(pwd)/codeclm/tokenizer/":"$(pwd)":"$(pwd)/codeclm/tokenizer
|
|
| 7 |
CKPT_PATH=$1
|
| 8 |
JSONL=$2
|
| 9 |
SAVE_DIR=$3
|
| 10 |
-
|
|
|
|
|
|
| 7 |
CKPT_PATH=$1
|
| 8 |
JSONL=$2
|
| 9 |
SAVE_DIR=$3
|
| 10 |
+
GEN_TYEP=$4
|
| 11 |
+
python3 generate.py $CKPT_PATH $JSONL $SAVE_DIR $GEN_TYEP
|
generate_lowmem.py
CHANGED
|
@@ -71,6 +71,7 @@ if __name__ == "__main__":
|
|
| 71 |
ckpt_path = sys.argv[1]
|
| 72 |
input_jsonl = sys.argv[2]
|
| 73 |
save_dir = sys.argv[3]
|
|
|
|
| 74 |
cfg_path = os.path.join(ckpt_path, 'config.yaml')
|
| 75 |
ckpt_path = os.path.join(ckpt_path, 'model.pt')
|
| 76 |
cfg = OmegaConf.load(cfg_path)
|
|
@@ -220,12 +221,12 @@ if __name__ == "__main__":
|
|
| 220 |
for item in new_items:
|
| 221 |
with torch.no_grad():
|
| 222 |
if 'raw_pmt_wav' in item:
|
| 223 |
-
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True)
|
| 224 |
del item['raw_pmt_wav']
|
| 225 |
del item['raw_vocal_wav']
|
| 226 |
del item['raw_bgm_wav']
|
| 227 |
else:
|
| 228 |
-
wav_seperate = model.generate_audio(item['tokens'], chunked=True)
|
| 229 |
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
|
| 230 |
del item['tokens']
|
| 231 |
del item['pmt_wav']
|
|
|
|
| 71 |
ckpt_path = sys.argv[1]
|
| 72 |
input_jsonl = sys.argv[2]
|
| 73 |
save_dir = sys.argv[3]
|
| 74 |
+
gen_type = sys.argv[4] if len(sys.argv) > 4 else "all"
|
| 75 |
cfg_path = os.path.join(ckpt_path, 'config.yaml')
|
| 76 |
ckpt_path = os.path.join(ckpt_path, 'model.pt')
|
| 77 |
cfg = OmegaConf.load(cfg_path)
|
|
|
|
| 221 |
for item in new_items:
|
| 222 |
with torch.no_grad():
|
| 223 |
if 'raw_pmt_wav' in item:
|
| 224 |
+
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type=gen_type)
|
| 225 |
del item['raw_pmt_wav']
|
| 226 |
del item['raw_vocal_wav']
|
| 227 |
del item['raw_bgm_wav']
|
| 228 |
else:
|
| 229 |
+
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type=gen_type)
|
| 230 |
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
|
| 231 |
del item['tokens']
|
| 232 |
del item['pmt_wav']
|
generate_lowmem.sh
CHANGED
|
@@ -7,4 +7,5 @@ export PYTHONPATH="$(pwd)/codeclm/tokenizer/":"$(pwd)":"$(pwd)/codeclm/tokenizer
|
|
| 7 |
CKPT_PATH=$1
|
| 8 |
JSONL=$2
|
| 9 |
SAVE_DIR=$3
|
| 10 |
-
|
|
|
|
|
|
| 7 |
CKPT_PATH=$1
|
| 8 |
JSONL=$2
|
| 9 |
SAVE_DIR=$3
|
| 10 |
+
GEN_TYEP=$4
|
| 11 |
+
python3 generate_lowmem.py $CKPT_PATH $JSONL $SAVE_DIR $GEN_TYEP
|
levo_inference.py
CHANGED
|
@@ -67,7 +67,7 @@ class LeVoInference(torch.nn.Module):
|
|
| 67 |
|
| 68 |
self.model.set_generation_params(**self.default_params)
|
| 69 |
|
| 70 |
-
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, params = dict()):
|
| 71 |
params = {**self.default_params, **params}
|
| 72 |
self.model.set_generation_params(**params)
|
| 73 |
|
|
@@ -105,8 +105,8 @@ class LeVoInference(torch.nn.Module):
|
|
| 105 |
|
| 106 |
with torch.no_grad():
|
| 107 |
if melody_is_wav:
|
| 108 |
-
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
|
| 109 |
else:
|
| 110 |
-
wav_seperate = self.model.generate_audio(tokens)
|
| 111 |
|
| 112 |
return wav_seperate[0]
|
|
|
|
| 67 |
|
| 68 |
self.model.set_generation_params(**self.default_params)
|
| 69 |
|
| 70 |
+
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, gen_type: str = "all", params = dict()):
|
| 71 |
params = {**self.default_params, **params}
|
| 72 |
self.model.set_generation_params(**params)
|
| 73 |
|
|
|
|
| 105 |
|
| 106 |
with torch.no_grad():
|
| 107 |
if melody_is_wav:
|
| 108 |
+
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav, gen_type=gen_type)
|
| 109 |
else:
|
| 110 |
+
wav_seperate = self.model.generate_audio(tokens, gen_type=gen_type)
|
| 111 |
|
| 112 |
return wav_seperate[0]
|
tools/gradio/app.py
CHANGED
|
@@ -49,7 +49,7 @@ with open(op.join(APP_DIR, 'conf/vocab.yaml'), 'r', encoding='utf-8') as file:
|
|
| 49 |
STRUCTS = yaml.safe_load(file)
|
| 50 |
|
| 51 |
|
| 52 |
-
def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_coef=None, temperature=None, top_k=None, progress=gr.Progress(track_tqdm=True)):
|
| 53 |
global MODEL
|
| 54 |
global STRUCTS
|
| 55 |
params = {'cfg_coef':cfg_coef, 'temperature':temperature, 'top_k':top_k}
|
|
@@ -98,7 +98,7 @@ def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_co
|
|
| 98 |
progress(0.0, "Start Generation")
|
| 99 |
start = time.time()
|
| 100 |
|
| 101 |
-
audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "ckpt/prompt.pt"), params).cpu().permute(1, 0).float().numpy()
|
| 102 |
|
| 103 |
end = time.time()
|
| 104 |
|
|
@@ -119,7 +119,7 @@ def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_co
|
|
| 119 |
# 创建Gradio界面
|
| 120 |
with gr.Blocks(title="SongGeneration Demo Space") as demo:
|
| 121 |
gr.Markdown("# 🎵 SongGeneration Demo Space")
|
| 122 |
-
gr.Markdown("Demo interface for the song generation model. Provide a lyrics, and optionally an audio or text prompt, to generate a custom song.")
|
| 123 |
|
| 124 |
with gr.Row():
|
| 125 |
with gr.Column():
|
|
@@ -197,7 +197,9 @@ lyrics
|
|
| 197 |
interactive=True,
|
| 198 |
elem_id="top_k",
|
| 199 |
)
|
| 200 |
-
|
|
|
|
|
|
|
| 201 |
|
| 202 |
with gr.Column():
|
| 203 |
output_audio = gr.Audio(label="Generated Song", type="numpy")
|
|
@@ -228,6 +230,11 @@ lyrics
|
|
| 228 |
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k],
|
| 229 |
outputs=[output_audio, output_json]
|
| 230 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
|
| 233 |
# 启动应用
|
|
|
|
| 49 |
STRUCTS = yaml.safe_load(file)
|
| 50 |
|
| 51 |
|
| 52 |
+
def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_coef=None, temperature=None, top_k=None, gen_type="all", progress=gr.Progress(track_tqdm=True)):
|
| 53 |
global MODEL
|
| 54 |
global STRUCTS
|
| 55 |
params = {'cfg_coef':cfg_coef, 'temperature':temperature, 'top_k':top_k}
|
|
|
|
| 98 |
progress(0.0, "Start Generation")
|
| 99 |
start = time.time()
|
| 100 |
|
| 101 |
+
audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "ckpt/prompt.pt"), gen_type, params).cpu().permute(1, 0).float().numpy()
|
| 102 |
|
| 103 |
end = time.time()
|
| 104 |
|
|
|
|
| 119 |
# 创建Gradio界面
|
| 120 |
with gr.Blocks(title="SongGeneration Demo Space") as demo:
|
| 121 |
gr.Markdown("# 🎵 SongGeneration Demo Space")
|
| 122 |
+
gr.Markdown("Demo interface for the song generation model. Provide a lyrics, and optionally an audio or text prompt, to generate a custom song. The code is in [GIT](https://github.com/tencent-ailab/SongGeneration)")
|
| 123 |
|
| 124 |
with gr.Row():
|
| 125 |
with gr.Column():
|
|
|
|
| 197 |
interactive=True,
|
| 198 |
elem_id="top_k",
|
| 199 |
)
|
| 200 |
+
with gr.Row():
|
| 201 |
+
generate_btn = gr.Button("Generate Song", variant="primary")
|
| 202 |
+
generate_bgm_btn = gr.Button("Generate Pure Music", variant="primary")
|
| 203 |
|
| 204 |
with gr.Column():
|
| 205 |
output_audio = gr.Audio(label="Generated Song", type="numpy")
|
|
|
|
| 230 |
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k],
|
| 231 |
outputs=[output_audio, output_json]
|
| 232 |
)
|
| 233 |
+
generate_bgm_btn.click(
|
| 234 |
+
fn=generate_song,
|
| 235 |
+
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k, gr.State("bgm")],
|
| 236 |
+
outputs=[output_audio, output_json]
|
| 237 |
+
)
|
| 238 |
|
| 239 |
|
| 240 |
# 启动应用
|
tools/gradio/levo_inference.py
CHANGED
|
@@ -62,7 +62,7 @@ class LeVoInference(torch.nn.Module):
|
|
| 62 |
|
| 63 |
self.model.set_generation_params(**self.default_params)
|
| 64 |
|
| 65 |
-
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, params = dict()):
|
| 66 |
params = {**self.default_params, **params}
|
| 67 |
self.model.set_generation_params(**params)
|
| 68 |
|
|
@@ -97,14 +97,11 @@ class LeVoInference(torch.nn.Module):
|
|
| 97 |
|
| 98 |
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
| 99 |
tokens = self.model.generate(**generate_inp, return_tokens=True)
|
| 100 |
-
|
| 101 |
-
if tokens.shape[-1] > 3000:
|
| 102 |
-
tokens = tokens[..., :3000]
|
| 103 |
|
| 104 |
with torch.no_grad():
|
| 105 |
if melody_is_wav:
|
| 106 |
-
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
|
| 107 |
else:
|
| 108 |
-
wav_seperate = self.model.generate_audio(tokens)
|
| 109 |
|
| 110 |
return wav_seperate[0]
|
|
|
|
| 62 |
|
| 63 |
self.model.set_generation_params(**self.default_params)
|
| 64 |
|
| 65 |
+
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, gen_type: str = "all", params = dict()):
|
| 66 |
params = {**self.default_params, **params}
|
| 67 |
self.model.set_generation_params(**params)
|
| 68 |
|
|
|
|
| 97 |
|
| 98 |
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
| 99 |
tokens = self.model.generate(**generate_inp, return_tokens=True)
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
with torch.no_grad():
|
| 102 |
if melody_is_wav:
|
| 103 |
+
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav, gen_type=gen_type)
|
| 104 |
else:
|
| 105 |
+
wav_seperate = self.model.generate_audio(tokens, gen_type=gen_type)
|
| 106 |
|
| 107 |
return wav_seperate[0]
|
tools/gradio/levo_inference_lowmem.py
CHANGED
|
@@ -40,7 +40,7 @@ class LeVoInference(torch.nn.Module):
|
|
| 40 |
)
|
| 41 |
|
| 42 |
|
| 43 |
-
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, params = dict()):
|
| 44 |
if prompt_audio_path is not None and os.path.exists(prompt_audio_path):
|
| 45 |
separator = Separator()
|
| 46 |
audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg)
|
|
@@ -112,15 +112,12 @@ class LeVoInference(torch.nn.Module):
|
|
| 112 |
max_duration = self.max_duration,
|
| 113 |
seperate_tokenizer = seperate_tokenizer,
|
| 114 |
)
|
| 115 |
-
|
| 116 |
-
if tokens.shape[-1] > 3000:
|
| 117 |
-
tokens = tokens[..., :3000]
|
| 118 |
|
| 119 |
with torch.no_grad():
|
| 120 |
if melody_is_wav:
|
| 121 |
-
wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
|
| 122 |
else:
|
| 123 |
-
wav_seperate = model.generate_audio(tokens)
|
| 124 |
|
| 125 |
del seperate_tokenizer
|
| 126 |
del model
|
|
|
|
| 40 |
)
|
| 41 |
|
| 42 |
|
| 43 |
+
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, gen_type: str = "all", params = dict()):
|
| 44 |
if prompt_audio_path is not None and os.path.exists(prompt_audio_path):
|
| 45 |
separator = Separator()
|
| 46 |
audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg)
|
|
|
|
| 112 |
max_duration = self.max_duration,
|
| 113 |
seperate_tokenizer = seperate_tokenizer,
|
| 114 |
)
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
with torch.no_grad():
|
| 117 |
if melody_is_wav:
|
| 118 |
+
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav, gen_type=gen_type)
|
| 119 |
else:
|
| 120 |
+
wav_seperate = self.model.generate_audio(tokens, gen_type=gen_type)
|
| 121 |
|
| 122 |
del seperate_tokenizer
|
| 123 |
del model
|