Spaces:
Runtime error
Runtime error
| import json | |
| import torch | |
| from tqdm import tqdm | |
| from audiocraft.models.loaders import load_compression_model | |
| import torchaudio | |
| import librosa | |
| import os | |
| import math | |
| import numpy as np | |
| class Tango: | |
| def __init__(self, \ | |
| device="cuda:0"): | |
| self.sample_rate = 48000 | |
| self.rsp48to32 = torchaudio.transforms.Resample(48000, 32000).to(device) | |
| self.rsp32to48 = torchaudio.transforms.Resample(32000, 48000).to(device) | |
| encodec = load_compression_model('compression_state_dict.bin', device='cpu').eval() | |
| encodec.set_num_codebooks(1) | |
| self.encodec = encodec.eval().to(device) | |
| self.device = torch.device(device) | |
| print ("Successfully loaded encodec model") | |
| def remix(self, filename, start_step=1000, steps=999, disable_progress=False): | |
| """ Genrate audio without condition. """ | |
| init_audio, _ = librosa.load(filename, sr=self.sample_rate, mono=False) | |
| if(len(init_audio.shape)>1):init_audio = init_audio[0] | |
| init_audio = torch.from_numpy(init_audio)[None,None,:].to(self.device) | |
| init_audio = init_audio[:,:,int(0*self.sample_rate):int(10.24*3*self.sample_rate)] | |
| if(init_audio.shape[-1]<int(10.24*3*self.sample_rate)): | |
| init_audio = torch.cat([init_audio, torch.zeros([1,1,int(10.24*3*self.sample_rate)-init_audio.shape[-1]], device=self.device)],-1) | |
| rsped_audios = self.rsp48to32(init_audio) | |
| codes_rspd = self.encodec.encode(rsped_audios)[0] | |
| codec_audios = self.encodec.decode(codes_rspd, None) | |
| codec_audios = self.rsp32to48(codec_audios) | |
| rsped_audios = self.rsp32to48(rsped_audios) | |
| minlen = min(rsped_audios.shape[-1], codec_audios.shape[-1]) | |
| output = torch.cat([rsped_audios.detach().cpu()[:,0,0:minlen],codec_audios.detach().cpu()[:,0,0:minlen]],0) | |
| return output | |