Spaces:
Runtime error
Runtime error
| import json | |
| import torch | |
| from tqdm import tqdm | |
| from model_septoken import PromptCondAudioDiffusion | |
| from diffusers import DDIMScheduler, DDPMScheduler | |
| import torchaudio | |
| import librosa | |
| import os | |
| import math | |
| import numpy as np | |
| # from tools.get_mulan import get_mulan | |
| from tools.get_1dvae_large import get_model | |
| import tools.torch_tools as torch_tools | |
| from safetensors.torch import load_file | |
| from third_party.demucs.models.pretrained import get_model_from_yaml | |
| from filelock import FileLock | |
| import kaldiio | |
| # os.path.join(args.model_dir, "htdemucs.pth"), os.path.join(args.model_dir, "htdemucs.yaml") | |
| class Separator: | |
| def __init__(self, dm_model_path='demucs/ckpt/htdemucs.pth', dm_config_path='demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None: | |
| if torch.cuda.is_available() and gpu_id < torch.cuda.device_count(): | |
| self.device = torch.device(f"cuda:{gpu_id}") | |
| else: | |
| self.device = torch.device("cpu") | |
| self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path) | |
| def init_demucs_model(self, model_path, config_path): | |
| model = get_model_from_yaml(config_path, model_path) | |
| model.to(self.device) | |
| model.eval() | |
| return model | |
| def load_audio(self, f): | |
| a, fs = torchaudio.load(f) | |
| if (fs != 48000): | |
| a = torchaudio.functional.resample(a, fs, 48000) | |
| # if a.shape[-1] >= 48000*10: | |
| # a = a[..., :48000*10] | |
| # else: | |
| # a = torch.cat([a, a], -1) | |
| # return a[:, 0:48000*10] | |
| return a | |
| def run(self, audio_path, output_dir='demucs/test_output', ext=".flac"): | |
| name, _ = os.path.splitext(os.path.split(audio_path)[-1]) | |
| output_paths = [] | |
| # lock_path = os.path.join(output_dir, f"{name}.lock") | |
| # with FileLock(lock_path): # 加一个避免多卡访问时死锁 | |
| for stem in self.demucs_model.sources: | |
| output_path = os.path.join(output_dir, f"{name}_{stem}{ext}") | |
| if os.path.exists(output_path): | |
| output_paths.append(output_path) | |
| if len(output_paths) == 1: # 4 | |
| # drums_path, bass_path, other_path, vocal_path = output_paths | |
| vocal_path = output_paths[0] | |
| else: | |
| lock_path = os.path.join(output_dir, f"{name}_separate.lock") | |
| with FileLock(lock_path): | |
| drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device) | |
| full_audio = self.load_audio(audio_path) | |
| vocal_audio = self.load_audio(vocal_path) | |
| minlen = min(full_audio.shape[-1], vocal_audio.shape[-1]) | |
| # bgm_audio = full_audio[:, 0:minlen] - vocal_audio[:, 0:minlen] | |
| bgm_audio = self.load_audio(drums_path) + self.load_audio(bass_path) + self.load_audio(other_path) | |
| for path in [drums_path, bass_path, other_path, vocal_path]: | |
| os.remove(path) | |
| return full_audio, vocal_audio, bgm_audio | |
| class Tango: | |
| def __init__(self, \ | |
| model_path, \ | |
| vae_config, | |
| vae_model, | |
| layer_vocal=7,\ | |
| layer_bgm=3,\ | |
| device="cuda:0"): | |
| self.sample_rate = 48000 | |
| scheduler_name = "configs/scheduler/stable_diffusion_2.1_largenoise_sample.json" | |
| self.device = device | |
| self.vae = get_model(vae_config, vae_model) | |
| self.vae = self.vae.to(device) | |
| self.vae=self.vae.eval() | |
| self.layer_vocal=layer_vocal | |
| self.layer_bgm=layer_bgm | |
| self.MAX_DURATION = 360 | |
| main_config = { | |
| "num_channels":32, | |
| "unet_model_name":None, | |
| "unet_model_config_path":"configs/models/transformer2D_wocross_inch112_1x4_multi_large.json", | |
| "snr_gamma":None, | |
| } | |
| self.model = PromptCondAudioDiffusion(**main_config).to(device) | |
| if model_path.endswith(".safetensors"): | |
| main_weights = load_file(model_path) | |
| else: | |
| main_weights = torch.load(model_path, map_location=device) | |
| self.model.load_state_dict(main_weights, strict=False) | |
| print ("Successfully loaded checkpoint from:", model_path) | |
| self.model.eval() | |
| self.model.init_device_dtype(torch.device(device), torch.float32) | |
| print("scaling factor: ", self.model.normfeat.std) | |
| # self.scheduler = DDIMScheduler.from_pretrained( \ | |
| # scheduler_name, subfolder="scheduler") | |
| # self.scheduler = DDPMScheduler.from_pretrained( \ | |
| # scheduler_name, subfolder="scheduler") | |
| print("Successfully loaded inference scheduler from {}".format(scheduler_name)) | |
| def sound2code(self, orig_vocal, orig_bgm, batch_size=8): | |
| if(orig_vocal.ndim == 2): | |
| audios_vocal = orig_vocal.unsqueeze(0).to(self.device) | |
| elif(orig_vocal.ndim == 3): | |
| audios_vocal = orig_vocal.to(self.device) | |
| else: | |
| assert orig_vocal.ndim in (2,3), orig_vocal.shape | |
| if(orig_bgm.ndim == 2): | |
| audios_bgm = orig_bgm.unsqueeze(0).to(self.device) | |
| elif(orig_bgm.ndim == 3): | |
| audios_bgm = orig_bgm.to(self.device) | |
| else: | |
| assert orig_bgm.ndim in (2,3), orig_bgm.shape | |
| audios_vocal = self.preprocess_audio(audios_vocal) | |
| audios_vocal = audios_vocal.squeeze(0) | |
| audios_bgm = self.preprocess_audio(audios_bgm) | |
| audios_bgm = audios_bgm.squeeze(0) | |
| if audios_vocal.shape[-1] > audios_bgm.shape[-1]: | |
| audios_vocal = audios_vocal[:,:audios_bgm.shape[-1]] | |
| else: | |
| audios_bgm = audios_bgm[:,:audios_vocal.shape[-1]] | |
| orig_length = audios_vocal.shape[-1] | |
| min_samples = int(40 * self.sample_rate) | |
| # 40秒对应10个token | |
| output_len = int(orig_length / float(self.sample_rate) * 25) + 1 | |
| while(audios_vocal.shape[-1] < min_samples): | |
| audios_vocal = torch.cat([audios_vocal, audios_vocal], -1) | |
| audios_bgm = torch.cat([audios_bgm, audios_bgm], -1) | |
| int_max_len=audios_vocal.shape[-1]//min_samples+1 | |
| audios_vocal = torch.cat([audios_vocal, audios_vocal], -1) | |
| audios_bgm = torch.cat([audios_bgm, audios_bgm], -1) | |
| audios_vocal=audios_vocal[:,:int(int_max_len*(min_samples))] | |
| audios_bgm=audios_bgm[:,:int(int_max_len*(min_samples))] | |
| codes_vocal_list=[] | |
| codes_bgm_list=[] | |
| audio_vocal_input = audios_vocal.reshape(2, -1, min_samples).permute(1, 0, 2).reshape(-1, 2, min_samples) | |
| audio_bgm_input = audios_bgm.reshape(2, -1, min_samples).permute(1, 0, 2).reshape(-1, 2, min_samples) | |
| for audio_inx in range(0, audio_vocal_input.shape[0], batch_size): | |
| [codes_vocal,codes_bgm], _, spk_embeds = self.model.fetch_codes_batch((audio_vocal_input[audio_inx:audio_inx+batch_size]), (audio_bgm_input[audio_inx:audio_inx+batch_size]), additional_feats=[],layer_vocal=self.layer_vocal,layer_bgm=self.layer_bgm) | |
| codes_vocal_list.append(codes_vocal) | |
| codes_bgm_list.append(codes_bgm) | |
| codes_vocal = torch.cat(codes_vocal_list, 0).permute(1,0,2).reshape(1, -1)[None] | |
| codes_bgm = torch.cat(codes_bgm_list, 0).permute(1,0,2).reshape(1, -1)[None] | |
| codes_vocal=codes_vocal[:,:,:output_len] | |
| codes_bgm=codes_bgm[:,:,:output_len] | |
| return codes_vocal, codes_bgm | |
| def code2sound(self, codes, prompt_vocal=None, prompt_bgm=None, duration=40, guidance_scale=1.5, num_steps=20, disable_progress=False, chunked=False): | |
| codes_vocal,codes_bgm = codes | |
| codes_vocal = codes_vocal.to(self.device) | |
| codes_bgm = codes_bgm.to(self.device) | |
| min_samples = duration * 25 # 40ms per frame | |
| hop_samples = min_samples // 4 * 3 | |
| ovlp_samples = min_samples - hop_samples | |
| hop_frames = hop_samples | |
| ovlp_frames = ovlp_samples | |
| first_latent = torch.randn(codes_vocal.shape[0], min_samples, 64).to(self.device) | |
| first_latent_length = 0 | |
| first_latent_codes_length = 0 | |
| if (isinstance(prompt_vocal, torch.Tensor)) and (isinstance(prompt_bgm, torch.Tensor)): | |
| # prepare prompt | |
| prompt_vocal = prompt_vocal.to(self.device) | |
| prompt_bgm = prompt_bgm.to(self.device) | |
| if(prompt_vocal.ndim == 3): | |
| assert prompt_vocal.shape[0] == 1, prompt_vocal.shape | |
| prompt_vocal = prompt_vocal[0] | |
| prompt_bgm = prompt_bgm[0] | |
| elif(prompt_vocal.ndim == 1): | |
| prompt_vocal = prompt_vocal.unsqueeze(0).repeat(2,1) | |
| prompt_bgm = prompt_bgm.unsqueeze(0).repeat(2,1) | |
| elif(prompt_vocal.ndim == 2): | |
| if(prompt_vocal.shape[0] == 1): | |
| prompt_vocal = prompt_vocal.repeat(2,1) | |
| prompt_bgm = prompt_bgm.repeat(2,1) | |
| if(prompt_vocal.shape[-1] < int(30 * self.sample_rate)): | |
| # if less than 30s, just choose the first 10s | |
| prompt_vocal = prompt_vocal[:,:int(10*self.sample_rate)] # limit max length to 10.24 | |
| prompt_bgm = prompt_bgm[:,:int(10*self.sample_rate)] # limit max length to 10.24 | |
| else: | |
| # else choose from 20.48s which might includes verse or chorus | |
| prompt_vocal = prompt_vocal[:,int(20*self.sample_rate):int(30*self.sample_rate)] # limit max length to 10.24 | |
| prompt_bgm = prompt_bgm[:,int(20*self.sample_rate):int(30*self.sample_rate)] # limit max length to 10.24 | |
| true_latent = self.vae.encode_audio(prompt_vocal+prompt_bgm).permute(0,2,1) | |
| first_latent[:,0:true_latent.shape[1],:] = true_latent | |
| first_latent_length = true_latent.shape[1] | |
| first_latent_codes = self.sound2code(prompt_vocal, prompt_bgm) | |
| first_latent_codes_vocal = first_latent_codes[0] | |
| first_latent_codes_bgm = first_latent_codes[1] | |
| first_latent_codes_length = first_latent_codes_vocal.shape[-1] | |
| codes_vocal = torch.cat([first_latent_codes_vocal, codes_vocal], -1) | |
| codes_bgm = torch.cat([first_latent_codes_bgm, codes_bgm], -1) | |
| codes_len= codes_vocal.shape[-1] | |
| target_len = int((codes_len - first_latent_codes_length) / 100 * 4 * self.sample_rate) | |
| # target_len = int(codes_len / 100 * 4 * self.sample_rate) | |
| # code repeat | |
| if(codes_len < min_samples): | |
| while(codes_vocal.shape[-1] < min_samples): | |
| codes_vocal = torch.cat([codes_vocal, codes_vocal], -1) | |
| codes_bgm = torch.cat([codes_bgm, codes_bgm], -1) | |
| codes_vocal = codes_vocal[:,:,0:min_samples] | |
| codes_bgm = codes_bgm[:,:,0:min_samples] | |
| codes_len = codes_vocal.shape[-1] | |
| if((codes_len - ovlp_samples) % hop_samples > 0): | |
| len_codes=math.ceil((codes_len - ovlp_samples) / float(hop_samples)) * hop_samples + ovlp_samples | |
| while(codes_vocal.shape[-1] < len_codes): | |
| codes_vocal = torch.cat([codes_vocal, codes_vocal], -1) | |
| codes_bgm = torch.cat([codes_bgm, codes_bgm], -1) | |
| codes_vocal = codes_vocal[:,:,0:len_codes] | |
| codes_bgm = codes_bgm[:,:,0:len_codes] | |
| latent_length = min_samples | |
| latent_list = [] | |
| spk_embeds = torch.zeros([1, 32, 1, 32], device=codes_vocal.device) | |
| with torch.autocast(device_type="cuda", dtype=torch.float16): | |
| for sinx in range(0, codes_vocal.shape[-1]-hop_samples, hop_samples): | |
| codes_vocal_input=codes_vocal[:,:,sinx:sinx+min_samples] | |
| codes_bgm_input=codes_bgm[:,:,sinx:sinx+min_samples] | |
| if(sinx == 0): | |
| incontext_length = first_latent_length | |
| latents = self.model.inference_codes([codes_vocal_input,codes_bgm_input], spk_embeds, first_latent, latent_length, incontext_length=incontext_length, additional_feats=[], guidance_scale=1.5, num_steps = num_steps, disable_progress=disable_progress, scenario='other_seg') | |
| latent_list.append(latents) | |
| else: | |
| true_latent = latent_list[-1][:,:,-ovlp_frames:].permute(0,2,1) | |
| len_add_to_1000 = min_samples - true_latent.shape[-2] | |
| incontext_length = true_latent.shape[-2] | |
| true_latent = torch.cat([true_latent, torch.randn(true_latent.shape[0], len_add_to_1000, true_latent.shape[-1]).to(self.device)], -2) | |
| latents = self.model.inference_codes([codes_vocal_input,codes_bgm_input], spk_embeds, true_latent, latent_length, incontext_length=incontext_length, additional_feats=[], guidance_scale=1.5, num_steps = num_steps, disable_progress=disable_progress, scenario='other_seg') | |
| latent_list.append(latents) | |
| latent_list = [l.float() for l in latent_list] | |
| latent_list[0] = latent_list[0][:,:,first_latent_length:] | |
| min_samples = int(min_samples * self.sample_rate // 1000 * 40) | |
| hop_samples = int(hop_samples * self.sample_rate // 1000 * 40) | |
| ovlp_samples = min_samples - hop_samples | |
| torch.cuda.empty_cache() | |
| with torch.no_grad(): | |
| output = None | |
| for i in range(len(latent_list)): | |
| latent = latent_list[i] | |
| cur_output = self.vae.decode_audio(latent, chunked=chunked)[0].detach().cpu() | |
| if output is None: | |
| output = cur_output | |
| else: | |
| ov_win = torch.from_numpy(np.linspace(0, 1, ovlp_samples)[None, :]) | |
| ov_win = torch.cat([ov_win, 1 - ov_win], -1) | |
| output[:, -ovlp_samples:] = output[:, -ovlp_samples:] * ov_win[:, -ovlp_samples:] + cur_output[:, 0:ovlp_samples] * ov_win[:, 0:ovlp_samples] | |
| output = torch.cat([output, cur_output[:, ovlp_samples:]], -1) | |
| output = output[:, 0:target_len] | |
| return output | |
| def preprocess_audio(self, input_audios_vocal, threshold=0.8): | |
| assert len(input_audios_vocal.shape) == 3, input_audios_vocal.shape | |
| nchan = input_audios_vocal.shape[1] | |
| input_audios_vocal = input_audios_vocal.reshape(input_audios_vocal.shape[0], -1) | |
| norm_value = torch.ones_like(input_audios_vocal[:,0]) | |
| max_volume = input_audios_vocal.abs().max(dim=-1)[0] | |
| norm_value[max_volume>threshold] = max_volume[max_volume>threshold] / threshold | |
| return input_audios_vocal.reshape(input_audios_vocal.shape[0], nchan, -1)/norm_value.unsqueeze(-1).unsqueeze(-1) | |
| def sound2sound(self, orig_vocal,orig_bgm, prompt_vocal=None,prompt_bgm=None, steps=50, disable_progress=False): | |
| codes_vocal, codes_bgm = self.sound2code(orig_vocal,orig_bgm) | |
| codes=[codes_vocal, codes_bgm] | |
| wave = self.code2sound(codes, prompt_vocal,prompt_bgm, guidance_scale=1.5, num_steps=steps, disable_progress=disable_progress) | |
| return wave | |