Spaces:
Runtime error
Runtime error
| import typing as tp | |
| import torch | |
| import torch.nn as nn | |
| from dataclasses import dataclass, field, fields | |
| from itertools import chain | |
| import warnings | |
| import torch.nn.functional as F | |
| from torch.nn.utils.rnn import pad_sequence | |
| from codeclm.utils.utils import length_to_mask, collate | |
| from codeclm.modules.streaming import StreamingModule | |
| from collections import defaultdict | |
| from copy import deepcopy | |
| ConditionType = tp.Tuple[torch.Tensor, torch.Tensor] # condition, mask | |
| # ================================================================ | |
| # Condition and Condition attributes definitions | |
| # ================================================================ | |
| class AudioCondition(tp.NamedTuple): | |
| wav: torch.Tensor | |
| length: torch.Tensor | |
| sample_rate: tp.List[int] | |
| path: tp.List[tp.Optional[str]] = [] | |
| seek_time: tp.List[tp.Optional[float]] = [] | |
| class ConditioningAttributes: | |
| text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict) | |
| audio: tp.Dict[str, AudioCondition] = field(default_factory=dict) | |
| def __getitem__(self, item): | |
| return getattr(self, item) | |
| def text_attributes(self): | |
| return self.text.keys() | |
| def audio_attributes(self): | |
| return self.audio.keys() | |
| def attributes(self): | |
| return { | |
| "text": self.text_attributes, | |
| "audio": self.audio_attributes, | |
| } | |
| def to_flat_dict(self): | |
| return { | |
| **{f"text.{k}": v for k, v in self.text.items()}, | |
| **{f"audio.{k}": v for k, v in self.audio.items()}, | |
| } | |
| def from_flat_dict(cls, x): | |
| out = cls() | |
| for k, v in x.items(): | |
| kind, att = k.split(".") | |
| out[kind][att] = v | |
| return out | |
| # ================================================================ | |
| # Conditioner (tokenize and encode raw conditions) definitions | |
| # ================================================================ | |
| class BaseConditioner(nn.Module): | |
| """Base model for all conditioner modules. | |
| We allow the output dim to be different than the hidden dim for two reasons: | |
| 1) keep our LUTs small when the vocab is large; | |
| 2) make all condition dims consistent. | |
| Args: | |
| dim (int): Hidden dim of the model. | |
| output_dim (int): Output dim of the conditioner. | |
| """ | |
| def __init__(self, dim: int, output_dim: int, input_token = False, padding_idx=0): | |
| super().__init__() | |
| self.dim = dim | |
| self.output_dim = output_dim | |
| if input_token: | |
| self.output_proj = nn.Embedding(dim, output_dim, padding_idx) | |
| else: | |
| self.output_proj = nn.Linear(dim, output_dim) | |
| def tokenize(self, *args, **kwargs) -> tp.Any: | |
| """Should be any part of the processing that will lead to a synchronization | |
| point, e.g. BPE tokenization with transfer to the GPU. | |
| The returned value will be saved and return later when calling forward(). | |
| """ | |
| raise NotImplementedError() | |
| def forward(self, inputs: tp.Any) -> ConditionType: | |
| """Gets input that should be used as conditioning (e.g, genre, description or a waveform). | |
| Outputs a ConditionType, after the input data was embedded as a dense vector. | |
| Returns: | |
| ConditionType: | |
| - A tensor of size [B, T, D] where B is the batch size, T is the length of the | |
| output embedding and D is the dimension of the embedding. | |
| - And a mask indicating where the padding tokens. | |
| """ | |
| raise NotImplementedError() | |
| class TextConditioner(BaseConditioner): | |
| ... | |
| class QwTokenizerConditioner(TextConditioner): | |
| def __init__(self, output_dim: int, | |
| token_path = "", | |
| max_len = 300, | |
| add_token_list=[]): #"" | |
| from transformers import Qwen2Tokenizer | |
| self.text_tokenizer = Qwen2Tokenizer.from_pretrained(token_path) | |
| if add_token_list != []: | |
| self.text_tokenizer.add_tokens(add_token_list, special_tokens=True) | |
| voc_size = len(self.text_tokenizer.get_vocab()) | |
| # here initialize a output_proj (nn.Embedding) layer | |
| super().__init__(voc_size, output_dim, input_token=True, padding_idx=151643) | |
| self.max_len = max_len | |
| self.padding_idx =' <|endoftext|>' | |
| vocab = self.text_tokenizer.get_vocab() | |
| # struct是全部的结构 | |
| struct_tokens = [i for i in add_token_list if i[0]=='[' and i[-1]==']'] | |
| self.struct_token_ids = [vocab[i] for i in struct_tokens] | |
| self.pad_token_idx = 151643 | |
| self.structure_emb = nn.Embedding(200, output_dim, padding_idx=0) | |
| # self.split_token_id = vocab["."] | |
| print("all structure tokens: ", {self.text_tokenizer.convert_ids_to_tokens(i):i for i in self.struct_token_ids}) | |
| def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]: | |
| x = ['<|im_start|>' + xi if xi is not None else "<|im_start|>" for xi in x] | |
| # x = [xi if xi is not None else "" for xi in x] | |
| inputs = self.text_tokenizer(x, return_tensors="pt", padding=True) | |
| return inputs | |
| def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType: | |
| """ | |
| Add structure embeddings of {verse, chorus, bridge} to text/lyric tokens that | |
| belong to these structures accordingly, | |
| Then delete or keep these structure embeddings. | |
| """ | |
| mask = inputs['attention_mask'] | |
| tokens = inputs['input_ids'] | |
| B = tokens.shape[0] | |
| is_sp_embed = torch.any(torch.stack([tokens == i for i in self.struct_token_ids], dim=-1),dim=-1) | |
| tp_cover_range = torch.zeros_like(tokens) | |
| for b, is_sp in enumerate(is_sp_embed): | |
| sp_list = torch.where(is_sp)[0].tolist() | |
| sp_list.append(mask[b].sum()) | |
| for i, st in enumerate(sp_list[:-1]): | |
| tp_cover_range[b, st: sp_list[i+1]] = tokens[b, st] - 151645 | |
| if self.max_len is not None: | |
| if inputs['input_ids'].shape[-1] > self.max_len: | |
| warnings.warn(f"Max len limit ({self.max_len}) Exceed! \ | |
| {[self.text_tokenizer.convert_ids_to_tokens(i.tolist()) for i in tokens]} will be cut!") | |
| tokens = self.pad_2d_tensor(tokens, self.max_len, self.pad_token_idx).to(self.output_proj.weight.device) | |
| mask = self.pad_2d_tensor(mask, self.max_len, 0).to(self.output_proj.weight.device) | |
| tp_cover_range = self.pad_2d_tensor(tp_cover_range, self.max_len, 0).to(self.output_proj.weight.device) | |
| device = self.output_proj.weight.device | |
| content_embeds = self.output_proj(tokens.to(device)) | |
| structure_embeds = self.structure_emb(tp_cover_range.to(device)) | |
| embeds = content_embeds + structure_embeds | |
| return embeds, embeds, mask | |
| def pad_2d_tensor(self, x, max_len, pad_id): | |
| batch_size, seq_len = x.size() | |
| pad_len = max_len - seq_len | |
| if pad_len > 0: | |
| pad_tensor = torch.full((batch_size, pad_len), pad_id, dtype=x.dtype, device=x.device) | |
| padded_tensor = torch.cat([x, pad_tensor], dim=1) | |
| elif pad_len < 0: | |
| padded_tensor = x[:, :max_len] | |
| else: | |
| padded_tensor = x | |
| return padded_tensor | |
| class QwTextConditioner(TextConditioner): | |
| def __init__(self, output_dim: int, | |
| token_path = "", | |
| max_len = 300): #"" | |
| from transformers import Qwen2Tokenizer | |
| self.text_tokenizer = Qwen2Tokenizer.from_pretrained(token_path) | |
| voc_size = len(self.text_tokenizer.get_vocab()) | |
| # here initialize a output_proj (nn.Embedding) layer | |
| super().__init__(voc_size, output_dim, input_token=True, padding_idx=151643) | |
| self.max_len = max_len | |
| def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]: | |
| x = ['<|im_start|>' + xi if xi is not None else "<|im_start|>" for xi in x] | |
| inputs = self.text_tokenizer(x, return_tensors="pt", padding=True) | |
| return inputs | |
| def forward(self, inputs: tp.Dict[str, torch.Tensor], structure_dur = None) -> ConditionType: | |
| """ | |
| Add structure embeddings of {verse, chorus, bridge} to text/lyric tokens that | |
| belong to these structures accordingly, | |
| Then delete or keep these structure embeddings. | |
| """ | |
| mask = inputs['attention_mask'] | |
| tokens = inputs['input_ids'] | |
| if self.max_len is not None: | |
| if inputs['input_ids'].shape[-1] > self.max_len: | |
| warnings.warn(f"Max len limit ({self.max_len}) Exceed! \ | |
| {[self.text_tokenizer.convert_ids_to_tokens(i.tolist()) for i in tokens]} will be cut!") | |
| tokens = self.pad_2d_tensor(tokens, self.max_len, 151643).to(self.output_proj.weight.device) | |
| mask = self.pad_2d_tensor(mask, self.max_len, 0).to(self.output_proj.weight.device) | |
| embeds = self.output_proj(tokens) | |
| return embeds, embeds, mask | |
| def pad_2d_tensor(self, x, max_len, pad_id): | |
| batch_size, seq_len = x.size() | |
| pad_len = max_len - seq_len | |
| if pad_len > 0: | |
| pad_tensor = torch.full((batch_size, pad_len), pad_id, dtype=x.dtype, device=x.device) | |
| padded_tensor = torch.cat([x, pad_tensor], dim=1) | |
| elif pad_len < 0: | |
| padded_tensor = x[:, :max_len] | |
| else: | |
| padded_tensor = x | |
| return padded_tensor | |
| class AudioConditioner(BaseConditioner): | |
| ... | |
| class QuantizedEmbeddingConditioner(AudioConditioner): | |
| def __init__(self, dim: int, | |
| code_size: int, | |
| code_depth: int, | |
| max_len: int, | |
| **kwargs): | |
| super().__init__(dim, dim, input_token=True) | |
| self.code_depth = code_depth | |
| # add 1 for <s> token | |
| self.emb = nn.ModuleList([nn.Embedding(code_size+2, dim, padding_idx=code_size+1) for _ in range(code_depth)]) | |
| # add End-Of-Text embedding | |
| self.EOT_emb = nn.Parameter(torch.randn(1, dim), requires_grad=True) | |
| self.layer2_EOT_emb = nn.Parameter(torch.randn(1, dim), requires_grad=True) | |
| self.output_proj = None | |
| self.max_len = max_len | |
| self.vocab_size = code_size | |
| def tokenize(self, x: AudioCondition) -> AudioCondition: | |
| """no extra ops""" | |
| # wav, length, sample_rate, path, seek_time = x | |
| # assert length is not None | |
| return x #AudioCondition(wav, length, sample_rate, path, seek_time) | |
| def forward(self, x: AudioCondition): | |
| wav, lengths, *_ = x | |
| B = wav.shape[0] | |
| wav = wav.reshape(B, self.code_depth, -1).long() | |
| if wav.shape[2] < self.max_len - 1: | |
| wav = F.pad(wav, [0, self.max_len - 1 - wav.shape[2]], value=self.vocab_size+1) | |
| else: | |
| wav = wav[:, :, :self.max_len-1] | |
| embeds1 = self.emb[0](wav[:, 0]) | |
| embeds1 = torch.cat((self.EOT_emb.unsqueeze(0).repeat(B, 1, 1), | |
| embeds1), dim=1) | |
| embeds2 = sum([self.emb[k](wav[:, k]) for k in range(1, self.code_depth)]) # B,T,D | |
| embeds2 = torch.cat((self.layer2_EOT_emb.unsqueeze(0).repeat(B, 1, 1), | |
| embeds2), dim=1) | |
| lengths = lengths + 1 | |
| lengths = torch.clamp(lengths, max=self.max_len) | |
| if lengths is not None: | |
| mask = length_to_mask(lengths, max_len=embeds1.shape[1]).int() # type: ignore | |
| else: | |
| mask = torch.ones((B, self.code_depth), device=embeds1.device, dtype=torch.int) | |
| return embeds1, embeds2, mask | |
| # ================================================================ | |
| # Aggregate all conditions and corresponding conditioners | |
| # ================================================================ | |
| class ConditionerProvider(nn.Module): | |
| """Prepare and provide conditions given all the supported conditioners. | |
| Args: | |
| conditioners (dict): Dictionary of conditioners. | |
| device (torch.device or str, optional): Device for conditioners and output condition types. | |
| """ | |
| def __init__(self, conditioners: tp.Dict[str, BaseConditioner]): | |
| super().__init__() | |
| self.conditioners = nn.ModuleDict(conditioners) | |
| def text_conditions(self): | |
| return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)] | |
| def audio_conditions(self): | |
| return [k for k, v in self.conditioners.items() if isinstance(v, AudioConditioner)] | |
| def has_audio_condition(self): | |
| return len(self.audio_conditions) > 0 | |
| def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]: | |
| """Match attributes/audios with existing conditioners in self, and compute tokenize them accordingly. | |
| This should be called before starting any real GPU work to avoid synchronization points. | |
| This will return a dict matching conditioner names to their arbitrary tokenized representations. | |
| Args: | |
| inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing | |
| text and audio conditions. | |
| """ | |
| assert all([isinstance(x, ConditioningAttributes) for x in inputs]), ( | |
| "Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]", | |
| f" but types were {set([type(x) for x in inputs])}") | |
| output = {} | |
| text = self._collate_text(inputs) | |
| audios = self._collate_audios(inputs) | |
| assert set(text.keys() | audios.keys()).issubset(set(self.conditioners.keys())), ( | |
| f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ", | |
| f"got {text.keys(), audios.keys()}") | |
| for attribute, batch in chain(text.items(), audios.items()): | |
| output[attribute] = self.conditioners[attribute].tokenize(batch) | |
| return output | |
| def forward(self, tokenized: tp.Dict[str, tp.Any], structure_dur = None) -> tp.Dict[str, ConditionType]: | |
| """Compute pairs of `(embedding, mask)` using the configured conditioners and the tokenized representations. | |
| The output is for example: | |
| { | |
| "genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])), | |
| "description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])), | |
| ... | |
| } | |
| Args: | |
| tokenized (dict): Dict of tokenized representations as returned by `tokenize()`. | |
| """ | |
| output = {} | |
| for attribute, inputs in tokenized.items(): | |
| if attribute == 'description' and structure_dur is not None: | |
| condition1, condition2, mask = self.conditioners[attribute](inputs, structure_dur = structure_dur) | |
| else: | |
| condition1, condition2, mask = self.conditioners[attribute](inputs) | |
| output[attribute] = (condition1, condition2, mask) | |
| return output | |
| def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]: | |
| """Given a list of ConditioningAttributes objects, compile a dictionary where the keys | |
| are the attributes and the values are the aggregated input per attribute. | |
| For example: | |
| Input: | |
| [ | |
| ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...), | |
| ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, audio=...), | |
| ] | |
| Output: | |
| { | |
| "genre": ["Rock", "Hip-hop"], | |
| "description": ["A rock song with a guitar solo", "A hip-hop verse"] | |
| } | |
| Args: | |
| samples (list of ConditioningAttributes): List of ConditioningAttributes samples. | |
| Returns: | |
| dict[str, list[str, optional]]: A dictionary mapping an attribute name to text batch. | |
| """ | |
| out: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list) | |
| texts = [x.text for x in samples] | |
| for text in texts: | |
| for condition in self.text_conditions: | |
| out[condition].append(text[condition]) | |
| return out | |
| def _collate_audios(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, AudioCondition]: | |
| """Generate a dict where the keys are attributes by which we fetch similar audios, | |
| and the values are Tensors of audios according to said attributes. | |
| *Note*: by the time the samples reach this function, each sample should have some audios | |
| inside the "audio" attribute. It should be either: | |
| 1. A real audio | |
| 2. A null audio due to the sample having no similar audios (nullified by the dataset) | |
| 3. A null audio due to it being dropped in a dropout module (nullified by dropout) | |
| Args: | |
| samples (list of ConditioningAttributes): List of ConditioningAttributes samples. | |
| Returns: | |
| dict[str, WavCondition]: A dictionary mapping an attribute name to wavs. | |
| """ | |
| # import pdb; pdb.set_trace() | |
| wavs = defaultdict(list) | |
| lengths = defaultdict(list) | |
| sample_rates = defaultdict(list) | |
| paths = defaultdict(list) | |
| seek_times = defaultdict(list) | |
| out: tp.Dict[str, AudioCondition] = {} | |
| for sample in samples: | |
| for attribute in self.audio_conditions: | |
| wav, length, sample_rate, path, seek_time = sample.audio[attribute] | |
| assert wav.dim() == 3, f"Got wav with dim={wav.dim()}, but expected 3 [1, C, T]" | |
| assert wav.size(0) == 1, f"Got wav [B, C, T] with shape={wav.shape}, but expected B == 1" | |
| wavs[attribute].append(wav.flatten()) # [C*T] | |
| lengths[attribute].append(length) | |
| sample_rates[attribute].extend(sample_rate) | |
| paths[attribute].extend(path) | |
| seek_times[attribute].extend(seek_time) | |
| # stack all wavs to a single tensor | |
| for attribute in self.audio_conditions: | |
| stacked_wav, _ = collate(wavs[attribute], dim=0) | |
| out[attribute] = AudioCondition( | |
| stacked_wav.unsqueeze(1), | |
| torch.cat(lengths[attribute]), sample_rates[attribute], | |
| paths[attribute], seek_times[attribute]) | |
| return out | |
| class ConditionFuser(StreamingModule): | |
| """Condition fuser handles the logic to combine the different conditions | |
| to the actual model input. | |
| Args: | |
| fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse | |
| each condition. For example: | |
| { | |
| "prepend": ["description"], | |
| "sum": ["genre", "bpm"], | |
| } | |
| """ | |
| FUSING_METHODS = ["sum", "prepend"] #, "cross", "input_interpolate"] (not support in this simplest version) | |
| def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]]): | |
| super().__init__() | |
| assert all([k in self.FUSING_METHODS for k in fuse2cond.keys()] | |
| ), f"Got invalid fuse method, allowed methods: {self.FUSING_METHODS}" | |
| self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond | |
| self.cond2fuse: tp.Dict[str, str] = {} | |
| for fuse_method, conditions in fuse2cond.items(): | |
| for condition in conditions: | |
| self.cond2fuse[condition] = fuse_method | |
| def forward( | |
| self, | |
| input1: torch.Tensor, | |
| input2: torch.Tensor, | |
| conditions: tp.Dict[str, ConditionType] | |
| ) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: | |
| """Fuse the conditions to the provided model input. | |
| Args: | |
| input (torch.Tensor): Transformer input. | |
| conditions (dict[str, ConditionType]): Dict of conditions. | |
| Returns: | |
| tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input | |
| after the conditions have been fused. The second output tensor is the tensor | |
| used for cross-attention or None if no cross attention inputs exist. | |
| """ | |
| #import pdb; pdb.set_trace() | |
| B, T, _ = input1.shape | |
| if 'offsets' in self._streaming_state: | |
| first_step = False | |
| offsets = self._streaming_state['offsets'] | |
| else: | |
| first_step = True | |
| offsets = torch.zeros(input1.shape[0], dtype=torch.long, device=input1.device) | |
| assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \ | |
| f"given conditions contain unknown attributes for fuser, " \ | |
| f"expected {self.cond2fuse.keys()}, got {conditions.keys()}" | |
| # if 'prepend' mode is used, | |
| # the concatenation order will be the SAME with the conditions in config: | |
| # prepend: ['description', 'prompt_audio'] (then goes the input) | |
| fused_input_1 = input1 | |
| fused_input_2 = input2 | |
| for fuse_op in self.fuse2cond.keys(): | |
| fuse_op_conditions = self.fuse2cond[fuse_op] | |
| if fuse_op == 'sum' and len(fuse_op_conditions) > 0: | |
| for cond in fuse_op_conditions: | |
| this_cond_1, this_cond_2, cond_mask = conditions[cond] | |
| fused_input_1 += this_cond_1 | |
| fused_input_2 += this_cond_2 | |
| elif fuse_op == 'prepend' and len(fuse_op_conditions) > 0: | |
| if not first_step: | |
| continue | |
| reverse_list = deepcopy(fuse_op_conditions) | |
| reverse_list.reverse() | |
| for cond in reverse_list: | |
| this_cond_1, this_cond_2, cond_mask = conditions[cond] | |
| fused_input_1 = torch.cat((this_cond_1, fused_input_1), dim=1) # concat along T dim | |
| fused_input_2 = torch.cat((this_cond_2, fused_input_2), dim=1) # concat along T dim | |
| elif fuse_op not in self.FUSING_METHODS: | |
| raise ValueError(f"unknown op ({fuse_op})") | |
| if self._is_streaming: | |
| self._streaming_state['offsets'] = offsets + T | |
| return fused_input_1, fused_input_2 | |
| # ================================================================ | |
| # Condition Dropout | |
| # ================================================================ | |
| class DropoutModule(nn.Module): | |
| """Base module for all dropout modules.""" | |
| def __init__(self, seed: int = 1234): | |
| super().__init__() | |
| self.rng = torch.Generator() | |
| self.rng.manual_seed(seed) | |
| class ClassifierFreeGuidanceDropout(DropoutModule): | |
| """Classifier Free Guidance dropout. | |
| All attributes are dropped with the same probability. | |
| Args: | |
| p (float): Probability to apply condition dropout during training. | |
| seed (int): Random seed. | |
| """ | |
| def __init__(self, p: float, seed: int = 1234): | |
| super().__init__(seed=seed) | |
| self.p = p | |
| def check(self, sample, condition_type, condition): | |
| if condition_type not in ['text', 'audio']: | |
| raise ValueError("dropout_condition got an unexpected condition type!" | |
| f" expected 'text', 'audio' but got '{condition_type}'") | |
| if condition not in getattr(sample, condition_type): | |
| raise ValueError( | |
| "dropout_condition received an unexpected condition!" | |
| f" expected audio={sample.audio.keys()} and text={sample.text.keys()}" | |
| f" but got '{condition}' of type '{condition_type}'!") | |
| def get_null_wav(self, wav, sr=48000) -> AudioCondition: | |
| out = wav * 0 + 16385 | |
| return AudioCondition( | |
| wav=out, | |
| length=torch.Tensor([0]).long(), | |
| sample_rate=[sr],) | |
| def dropout_condition(self, | |
| sample: ConditioningAttributes, | |
| condition_type: str, | |
| condition: str) -> ConditioningAttributes: | |
| """Utility function for nullifying an attribute inside an ConditioningAttributes object. | |
| If the condition is of type "wav", then nullify it using `nullify_condition` function. | |
| If the condition is of any other type, set its value to None. | |
| Works in-place. | |
| """ | |
| self.check(sample, condition_type, condition) | |
| if condition_type == 'audio': | |
| audio_cond = sample.audio[condition] | |
| depth = audio_cond.wav.shape[1] | |
| sample.audio[condition] = self.get_null_wav(audio_cond.wav, sr=audio_cond.sample_rate[0]) | |
| else: | |
| sample.text[condition] = None | |
| return sample | |
| def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]: | |
| """ | |
| Args: | |
| samples (list[ConditioningAttributes]): List of conditions. | |
| Returns: | |
| list[ConditioningAttributes]: List of conditions after all attributes were set to None. | |
| """ | |
| # decide on which attributes to drop in a batched fashion | |
| # drop = torch.rand(1, generator=self.rng).item() < self.p | |
| # if not drop: | |
| # return samples | |
| # nullify conditions of all attributes | |
| samples = deepcopy(samples) | |
| for sample in samples: | |
| drop = torch.rand(1, generator=self.rng).item() | |
| if drop<self.p: | |
| for condition_type in ["audio", "text"]: | |
| for condition in sample.attributes[condition_type]: | |
| self.dropout_condition(sample, condition_type, condition) | |
| return samples | |
| def __repr__(self): | |
| return f"ClassifierFreeGuidanceDropout(p={self.p})" | |
| class ClassifierFreeGuidanceDropoutInference(ClassifierFreeGuidanceDropout): | |
| """Classifier Free Guidance dropout during inference. | |
| All attributes are dropped with the same probability. | |
| Args: | |
| p (float): Probability to apply condition dropout during training. | |
| seed (int): Random seed. | |
| """ | |
| def __init__(self, seed: int = 1234): | |
| super().__init__(p=1, seed=seed) | |
| def dropout_condition_customized(self, | |
| sample: ConditioningAttributes, | |
| condition_type: str, | |
| condition: str, | |
| customized: list = None) -> ConditioningAttributes: | |
| """Utility function for nullifying an attribute inside an ConditioningAttributes object. | |
| If the condition is of type "audio", then nullify it using `nullify_condition` function. | |
| If the condition is of any other type, set its value to None. | |
| Works in-place. | |
| """ | |
| self.check(sample, condition_type, condition) | |
| if condition_type == 'audio': | |
| audio_cond = sample.audio[condition] | |
| depth = audio_cond.wav.shape[1] | |
| sample.audio[condition] = self.get_null_wav(audio_cond.wav, sr=audio_cond.sample_rate[0]) | |
| else: | |
| if customized is None: | |
| sample.text[condition] = None | |
| else: | |
| text_cond = deepcopy(sample.text[condition]) | |
| if "structure" in customized: | |
| for _s in ['[inst]', '[outro]', '[intro]', '[verse]', '[chorus]', '[bridge]']: | |
| text_cond = text_cond.replace(_s, "") | |
| text_cond = text_cond.replace(' , ', '') | |
| text_cond = text_cond.replace(" ", " ") | |
| if '.' in customized: | |
| text_cond = text_cond.replace(" . ", " ") | |
| text_cond = text_cond.replace(".", " ") | |
| sample.text[condition] = text_cond | |
| return sample | |
| def forward(self, samples: tp.List[ConditioningAttributes], | |
| condition_types=["wav", "text"], | |
| customized=None, | |
| ) -> tp.List[ConditioningAttributes]: | |
| """ | |
| 100% dropout some condition attributes (description, prompt_wav) or types (text, wav) of | |
| samples during inference. | |
| Args: | |
| samples (list[ConditioningAttributes]): List of conditions. | |
| Returns: | |
| list[ConditioningAttributes]: List of conditions after all attributes were set to None. | |
| """ | |
| new_samples = deepcopy(samples) | |
| for condition_type in condition_types: | |
| for sample in new_samples: | |
| for condition in sample.attributes[condition_type]: | |
| self.dropout_condition_customized(sample, condition_type, condition, customized) | |
| return new_samples | |
| class AttributeDropout(ClassifierFreeGuidanceDropout): | |
| """Dropout with a given probability per attribute. | |
| This is different from the behavior of ClassifierFreeGuidanceDropout as this allows for attributes | |
| to be dropped out separately. For example, "artist" can be dropped while "genre" remains. | |
| This is in contrast to ClassifierFreeGuidanceDropout where if "artist" is dropped "genre" | |
| must also be dropped. | |
| Args: | |
| p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example: | |
| ... | |
| "genre": 0.1, | |
| "artist": 0.5, | |
| "audio": 0.25, | |
| ... | |
| active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False. | |
| seed (int, optional): Random seed. | |
| """ | |
| def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234): | |
| super().__init__(p=p, seed=seed) | |
| self.active_on_eval = active_on_eval | |
| # construct dict that return the values from p otherwise 0 | |
| self.p = {} | |
| for condition_type, probs in p.items(): | |
| self.p[condition_type] = defaultdict(lambda: 0, probs) | |
| def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]: | |
| """ | |
| Args: | |
| samples (list[ConditioningAttributes]): List of conditions. | |
| Returns: | |
| list[ConditioningAttributes]: List of conditions after certain attributes were set to None. | |
| """ | |
| if not self.training and not self.active_on_eval: | |
| return samples | |
| samples = deepcopy(samples) | |
| for condition_type, ps in self.p.items(): # for condition types [text, wav] | |
| for condition, p in ps.items(): # for attributes of each type (e.g., [artist, genre]) | |
| if torch.rand(1, generator=self.rng).item() < p: | |
| for sample in samples: | |
| self.dropout_condition(sample, condition_type, condition) | |
| return samples | |