Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,55 +4,64 @@ from PIL import Image, ImageDraw, ImageFont
|
|
| 4 |
import gradio as gr
|
| 5 |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
#
|
| 9 |
-
#
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
| 11 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 13 |
|
| 14 |
-
#
|
| 15 |
NSFW_TERMS = [
|
| 16 |
r"\bnsfw\b", r"\bnude\b", r"\bnudity\b", r"\bsex\b", r"\bexplicit\b", r"\bporn\b",
|
| 17 |
-
r"\bboobs\b", r"\bbutt\b", r"\bass\b", r"\
|
| 18 |
r"\b18\+\b", r"\berotic\b", r"\bfetish\b"
|
| 19 |
]
|
| 20 |
NSFW_REGEX = re.compile("|".join(NSFW_TERMS), flags=re.IGNORECASE)
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 26 |
MODEL_ID,
|
| 27 |
-
torch_dtype=DTYPE
|
|
|
|
| 28 |
)
|
|
|
|
|
|
|
| 29 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 30 |
|
| 31 |
-
if
|
| 32 |
pipe = pipe.to("cuda")
|
| 33 |
pipe.enable_attention_slicing()
|
| 34 |
pipe.enable_vae_slicing()
|
| 35 |
else:
|
| 36 |
pipe = pipe.to("cpu")
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
#
|
| 40 |
-
#
|
| 41 |
-
def blocked_tile(reason: str, width=512, height=512) -> Image.Image:
|
| 42 |
-
img = Image.new("RGB", (width, height), (20, 20, 24))
|
| 43 |
-
draw = ImageDraw.Draw(img)
|
| 44 |
-
text = f"BLOCKED\n{reason}"
|
| 45 |
-
try:
|
| 46 |
-
font = ImageFont.truetype("DejaVuSans-Bold.ttf", 28)
|
| 47 |
-
except:
|
| 48 |
-
font = ImageFont.load_default()
|
| 49 |
-
tw, th = draw.multiline_textbbox((0,0), text, font=font)[2:]
|
| 50 |
-
draw.multiline_text(((width - tw)//2, (height - th)//2), text, fill=(255,255,255), font=font, align="center")
|
| 51 |
-
return img
|
| 52 |
-
|
| 53 |
-
def is_prompt_nsfw(prompt: str) -> bool:
|
| 54 |
-
return bool(NSFW_REGEX.search(prompt or ""))
|
| 55 |
-
|
| 56 |
def generate(
|
| 57 |
prompt: str,
|
| 58 |
negative_prompt: str,
|
|
@@ -64,12 +73,16 @@ def generate(
|
|
| 64 |
batch_size: int
|
| 65 |
) -> Tuple[List[Image.Image], str]:
|
| 66 |
if not prompt.strip():
|
| 67 |
-
return [], "Add a prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
|
| 74 |
# Seed
|
| 75 |
if seed < 0:
|
|
@@ -78,7 +91,7 @@ def generate(
|
|
| 78 |
|
| 79 |
out = pipe(
|
| 80 |
prompt=prompt,
|
| 81 |
-
negative_prompt=negative_prompt or None,
|
| 82 |
num_inference_steps=steps,
|
| 83 |
guidance_scale=guidance,
|
| 84 |
width=width,
|
|
@@ -87,29 +100,20 @@ def generate(
|
|
| 87 |
generator=generator
|
| 88 |
)
|
| 89 |
|
| 90 |
-
|
| 91 |
-
flags
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
if flags:
|
| 95 |
-
for i, flagged in enumerate(flags):
|
| 96 |
-
if flagged:
|
| 97 |
-
images[i] = blocked_tile("NSFW content flagged")
|
| 98 |
-
|
| 99 |
-
msg = f"Seed: {seed} • Images: {len(images)}"
|
| 100 |
-
if flags is not None:
|
| 101 |
-
msg += f" • Flagged: {sum(1 for f in flags if f)}"
|
| 102 |
-
return images, msg
|
| 103 |
|
| 104 |
-
#
|
| 105 |
-
# UI
|
| 106 |
-
#
|
| 107 |
-
with gr.Blocks(title="VibeForge —
|
| 108 |
gr.Markdown(
|
| 109 |
"""
|
| 110 |
-
# VibeForge ⚒️
|
| 111 |
-
**
|
| 112 |
-
|
| 113 |
"""
|
| 114 |
)
|
| 115 |
|
|
@@ -117,23 +121,23 @@ NSFW inputs are blocked. Keep it classy and go wild on style, lighting, composit
|
|
| 117 |
with gr.Column(scale=3):
|
| 118 |
prompt = gr.Textbox(
|
| 119 |
label="Prompt",
|
| 120 |
-
placeholder="a
|
| 121 |
)
|
| 122 |
-
negative = gr.Textbox(label="Negative Prompt", placeholder="low quality,
|
| 123 |
with gr.Row():
|
| 124 |
-
steps = gr.Slider(
|
| 125 |
-
guidance = gr.Slider(
|
| 126 |
with gr.Row():
|
| 127 |
-
width = gr.Dropdown(choices=[384, 448, 512
|
| 128 |
-
height = gr.Dropdown(choices=[384, 448, 512
|
| 129 |
with gr.Row():
|
| 130 |
seed = gr.Number(value=-1, label="Seed (-1 = random)", precision=0)
|
| 131 |
-
batch = gr.Slider(1,
|
| 132 |
|
| 133 |
go = gr.Button("Generate", variant="primary")
|
| 134 |
|
| 135 |
with gr.Column(scale=5):
|
| 136 |
-
gallery = gr.Gallery(label="Output", columns=2, height=
|
| 137 |
info = gr.Markdown()
|
| 138 |
|
| 139 |
go.click(
|
|
@@ -143,4 +147,4 @@ NSFW inputs are blocked. Keep it classy and go wild on style, lighting, composit
|
|
| 143 |
)
|
| 144 |
|
| 145 |
if __name__ == "__main__":
|
| 146 |
-
demo.launch()
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
| 6 |
|
| 7 |
+
# =========================
|
| 8 |
+
# SPEED PRESET
|
| 9 |
+
# =========================
|
| 10 |
+
# Use SD Turbo (1.5) – optimized for very few steps on CPU
|
| 11 |
+
DEFAULT_MODEL_ID = "stabilityai/sd-turbo"
|
| 12 |
+
MODEL_ID = os.getenv("MODEL_ID", DEFAULT_MODEL_ID)
|
| 13 |
+
|
| 14 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 16 |
|
| 17 |
+
# Short NSFW guardrail (block, no blur)
|
| 18 |
NSFW_TERMS = [
|
| 19 |
r"\bnsfw\b", r"\bnude\b", r"\bnudity\b", r"\bsex\b", r"\bexplicit\b", r"\bporn\b",
|
| 20 |
+
r"\bboobs\b", r"\bbutt\b", r"\bass\b", r"\bnaked\b", r"\btits\b",
|
| 21 |
r"\b18\+\b", r"\berotic\b", r"\bfetish\b"
|
| 22 |
]
|
| 23 |
NSFW_REGEX = re.compile("|".join(NSFW_TERMS), flags=re.IGNORECASE)
|
| 24 |
|
| 25 |
+
def _blocked_tile(reason: str, w=384, h=384) -> Image.Image:
|
| 26 |
+
img = Image.new("RGB", (w, h), (18, 20, 26))
|
| 27 |
+
d = ImageDraw.Draw(img)
|
| 28 |
+
text = f"BLOCKED\n{reason}"
|
| 29 |
+
try:
|
| 30 |
+
font = ImageFont.truetype("DejaVuSans-Bold.ttf", 26)
|
| 31 |
+
except:
|
| 32 |
+
font = ImageFont.load_default()
|
| 33 |
+
box = d.multiline_textbbox((0,0), text, font=font, align="center")
|
| 34 |
+
tw, th = box[2]-box[0], box[3]-box[1]
|
| 35 |
+
d.multiline_text(((w-tw)//2, (h-th)//2), text, font=font, fill=(255,255,255), align="center")
|
| 36 |
+
return img
|
| 37 |
+
|
| 38 |
+
def _is_nsfw(s: str) -> bool:
|
| 39 |
+
return bool(NSFW_REGEX.search(s or ""))
|
| 40 |
+
|
| 41 |
+
# -------------------------
|
| 42 |
+
# Load pipeline (fast path)
|
| 43 |
+
# -------------------------
|
| 44 |
+
torch.set_grad_enabled(False)
|
| 45 |
+
|
| 46 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 47 |
MODEL_ID,
|
| 48 |
+
torch_dtype=DTYPE,
|
| 49 |
+
safety_checker=None # let model config handle; we block explicitly on prompts
|
| 50 |
)
|
| 51 |
+
|
| 52 |
+
# Turbo still benefits from DPMSolver for CPU
|
| 53 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 54 |
|
| 55 |
+
if DEVICE == "cuda":
|
| 56 |
pipe = pipe.to("cuda")
|
| 57 |
pipe.enable_attention_slicing()
|
| 58 |
pipe.enable_vae_slicing()
|
| 59 |
else:
|
| 60 |
pipe = pipe.to("cpu")
|
| 61 |
|
| 62 |
+
# -------------------------
|
| 63 |
+
# Generate fn (kept lean)
|
| 64 |
+
# -------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
def generate(
|
| 66 |
prompt: str,
|
| 67 |
negative_prompt: str,
|
|
|
|
| 73 |
batch_size: int
|
| 74 |
) -> Tuple[List[Image.Image], str]:
|
| 75 |
if not prompt.strip():
|
| 76 |
+
return [], "Add a prompt first."
|
| 77 |
+
|
| 78 |
+
# block obvious NSFW prompts
|
| 79 |
+
if _is_nsfw(prompt) or _is_nsfw(negative_prompt or ""):
|
| 80 |
+
return [_blocked_tile("NSFW prompt detected", width, height)], "Blocked: NSFW prompt."
|
| 81 |
|
| 82 |
+
# SD-Turbo is designed for tiny step counts + low/zero CFG
|
| 83 |
+
# guard rails on parameters
|
| 84 |
+
steps = max(1, min(int(steps), 12))
|
| 85 |
+
guidance = max(0.0, min(float(guidance), 2.0))
|
| 86 |
|
| 87 |
# Seed
|
| 88 |
if seed < 0:
|
|
|
|
| 91 |
|
| 92 |
out = pipe(
|
| 93 |
prompt=prompt,
|
| 94 |
+
negative_prompt=(negative_prompt or None),
|
| 95 |
num_inference_steps=steps,
|
| 96 |
guidance_scale=guidance,
|
| 97 |
width=width,
|
|
|
|
| 100 |
generator=generator
|
| 101 |
)
|
| 102 |
|
| 103 |
+
imgs = out.images
|
| 104 |
+
# Some sd-turbo configs may not return nsfw flags; we already block on prompt
|
| 105 |
+
msg = f"Model: {MODEL_ID} • Seed: {seed} • Steps: {steps} • CFG: {guidance} • {width}x{height} • Batch: {batch_size}"
|
| 106 |
+
return imgs, msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# -------------------------
|
| 109 |
+
# UI (defaults tuned for CPU)
|
| 110 |
+
# -------------------------
|
| 111 |
+
with gr.Blocks(title="VibeForge — Fast (CPU-friendly) Image Gen") as demo:
|
| 112 |
gr.Markdown(
|
| 113 |
"""
|
| 114 |
+
# VibeForge ⚒️
|
| 115 |
+
**Fast, clean image generation (CPU-friendly).**
|
| 116 |
+
Uses **SD-Turbo** tuned for low steps. NSFW inputs are blocked.
|
| 117 |
"""
|
| 118 |
)
|
| 119 |
|
|
|
|
| 121 |
with gr.Column(scale=3):
|
| 122 |
prompt = gr.Textbox(
|
| 123 |
label="Prompt",
|
| 124 |
+
placeholder="a neon-lit lighthouse on a stormy cliff at night, cinematic, volumetric fog, high contrast"
|
| 125 |
)
|
| 126 |
+
negative = gr.Textbox(label="Negative Prompt", placeholder="low quality, watermark, overexposed")
|
| 127 |
with gr.Row():
|
| 128 |
+
steps = gr.Slider(1, 12, value=4, step=1, label="Steps (SD-Turbo sweet spot: 2-6)")
|
| 129 |
+
guidance = gr.Slider(0.0, 2.0, value=0.5, step=0.1, label="CFG (SD-Turbo likes low)")
|
| 130 |
with gr.Row():
|
| 131 |
+
width = gr.Dropdown(choices=[384, 448, 512], value=384, label="Width")
|
| 132 |
+
height = gr.Dropdown(choices=[384, 448, 512], value=384, label="Height")
|
| 133 |
with gr.Row():
|
| 134 |
seed = gr.Number(value=-1, label="Seed (-1 = random)", precision=0)
|
| 135 |
+
batch = gr.Slider(1, 2, value=1, step=1, label="Batch (keep small on CPU)")
|
| 136 |
|
| 137 |
go = gr.Button("Generate", variant="primary")
|
| 138 |
|
| 139 |
with gr.Column(scale=5):
|
| 140 |
+
gallery = gr.Gallery(label="Output", columns=2, height=448)
|
| 141 |
info = gr.Markdown()
|
| 142 |
|
| 143 |
go.click(
|
|
|
|
| 147 |
)
|
| 148 |
|
| 149 |
if __name__ == "__main__":
|
| 150 |
+
demo.launch()
|