Spaces:
Sleeping
Sleeping
Commit
·
9cecb44
1
Parent(s):
b6ad1b0
Added App with NN
Browse files- .gitignore +3 -0
- README.md +3 -0
- app.py +51 -0
- nn.png +0 -0
- nn.py +196 -0
- requirements.txt +1 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.venv
|
| 2 |
+
__pycache__
|
| 3 |
+
*.json
|
README.md
CHANGED
|
@@ -10,3 +10,6 @@ pinned: false
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 13 |
+
|
| 14 |
+
# References
|
| 15 |
+
* https://www.codingame.com/playgrounds/59631/neural-network-xor-example-from-scratch-no-libs
|
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from nn import train, predict, save_model, sigmoid
|
| 3 |
+
|
| 4 |
+
# INPUTS = [[0,0],[0,1],[1,0],[1,1]]
|
| 5 |
+
# OUTPUTS = [[0],[1],[1],[0]]
|
| 6 |
+
# EPOCHS = 1000000
|
| 7 |
+
# ALPHAS = 20
|
| 8 |
+
|
| 9 |
+
INPUTS = [[0,0],[0,1],[1,0],[1,1]]
|
| 10 |
+
OUTPUTS = [[0],[1],[1],[0]]
|
| 11 |
+
|
| 12 |
+
def runNN(epoch, alpha):
|
| 13 |
+
# Train model
|
| 14 |
+
modelo = train(epochs=epoch, alpha=alpha)
|
| 15 |
+
|
| 16 |
+
print(modelo)
|
| 17 |
+
# Save model to file
|
| 18 |
+
save_model(modelo, "modelo.json")
|
| 19 |
+
|
| 20 |
+
for i in range(4):
|
| 21 |
+
result = predict(INPUTS[i][0],INPUTS[i][1], activation=sigmoid)
|
| 22 |
+
st.write("for input", INPUTS[i], "expected", OUTPUTS[i][0], "predicted", f"{result:4.4}", "which is", "correct" if round(result)==OUTPUTS[i][0] else "incorrect")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def sidebar():
|
| 27 |
+
# Neural network controls
|
| 28 |
+
st.sidebar.header('Neural Network Controls')
|
| 29 |
+
st.sidebar.text('Number of epochs')
|
| 30 |
+
epochs = st.sidebar.slider('Epochs', 1000, 1000000, 100000)
|
| 31 |
+
st.sidebar.text('Learning rate')
|
| 32 |
+
alphas = st.sidebar.slider('Alphas', 1, 100, 20)
|
| 33 |
+
if st.sidebar.button('Run Neural Network'):
|
| 34 |
+
runNN(epochs, alphas)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def app():
|
| 38 |
+
st.title('Simple Neural Network App')
|
| 39 |
+
st.write('This is the Neural Network image we are trying to implement!')
|
| 40 |
+
st.image('nn.png', width=500)
|
| 41 |
+
sidebar()
|
| 42 |
+
|
| 43 |
+
st.markdown('''
|
| 44 |
+
### References
|
| 45 |
+
* https://www.codingame.com/playgrounds/59631/neural-network-xor-example-from-scratch-no-libs
|
| 46 |
+
''')
|
| 47 |
+
|
| 48 |
+
if __name__ == '__main__':
|
| 49 |
+
app()
|
| 50 |
+
|
| 51 |
+
|
nn.png
ADDED
|
nn.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import math
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
INPUTS = [[0,0],[0,1],[1,0],[1,1]]
|
| 6 |
+
OUTPUTS = [[0],[1],[1],[0]]
|
| 7 |
+
EPOCHS = 1000000
|
| 8 |
+
ALPHAS = 20
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
WEPOCHS = EPOCHS // 100
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
VARIANCE_W = 0.5
|
| 15 |
+
VARIANCE_B = 0
|
| 16 |
+
|
| 17 |
+
w11 = random.uniform(-VARIANCE_W,VARIANCE_W)
|
| 18 |
+
w21 = random.uniform(-VARIANCE_W,VARIANCE_W)
|
| 19 |
+
b1 = VARIANCE_B
|
| 20 |
+
|
| 21 |
+
w12 = random.uniform(-VARIANCE_W,VARIANCE_W)
|
| 22 |
+
w22 = random.uniform(-VARIANCE_W,VARIANCE_W)
|
| 23 |
+
b2 = VARIANCE_B
|
| 24 |
+
|
| 25 |
+
w13 = random.uniform(-VARIANCE_W,VARIANCE_W)
|
| 26 |
+
w23 = random.uniform(-VARIANCE_W,VARIANCE_W)
|
| 27 |
+
b3 = VARIANCE_B
|
| 28 |
+
|
| 29 |
+
o1 = random.uniform(-VARIANCE_W,VARIANCE_W)
|
| 30 |
+
o2 = random.uniform(-VARIANCE_W,VARIANCE_W)
|
| 31 |
+
o3 = random.uniform(-VARIANCE_W,VARIANCE_W)
|
| 32 |
+
ob = VARIANCE_B
|
| 33 |
+
|
| 34 |
+
## Tudo a 0.5
|
| 35 |
+
# VARIANCE_W = 0.5
|
| 36 |
+
# VARIANCE_B = 1
|
| 37 |
+
# w11 = VARIANCE_W
|
| 38 |
+
# w21 = VARIANCE_W
|
| 39 |
+
# b1 = VARIANCE_B
|
| 40 |
+
|
| 41 |
+
# w12 = VARIANCE_W
|
| 42 |
+
# w22 = VARIANCE_W
|
| 43 |
+
# b2 = VARIANCE_B
|
| 44 |
+
|
| 45 |
+
# w13 = VARIANCE_W
|
| 46 |
+
# w23 = VARIANCE_W
|
| 47 |
+
# b3 = VARIANCE_B
|
| 48 |
+
|
| 49 |
+
# o1 = VARIANCE_W
|
| 50 |
+
# o2 = VARIANCE_W
|
| 51 |
+
# o3 = VARIANCE_W
|
| 52 |
+
# ob = VARIANCE_B
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def sigmoid(x):
|
| 56 |
+
return 1.0 / (1.0 + math.exp(-x))
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def sigmoid_prime(x): # x already sigmoided
|
| 60 |
+
return x * (1 - x)
|
| 61 |
+
|
| 62 |
+
def relu(x):
|
| 63 |
+
return max(0,x)
|
| 64 |
+
|
| 65 |
+
def relu_prime(x):
|
| 66 |
+
return 1 if x>0 else 0
|
| 67 |
+
|
| 68 |
+
def tanh(x):
|
| 69 |
+
return math.tanh(x)
|
| 70 |
+
|
| 71 |
+
def tanh_prime(x):
|
| 72 |
+
return 1 - x**2
|
| 73 |
+
|
| 74 |
+
def softmax(x):
|
| 75 |
+
return math.exp(x) / (math.exp(x) + 1)
|
| 76 |
+
|
| 77 |
+
def softmax_prime(x):
|
| 78 |
+
return x * (1 - x)
|
| 79 |
+
|
| 80 |
+
def predict(i1, i2, activation=sigmoid):
|
| 81 |
+
s1 = w11 * i1 + w21 * i2 + b1
|
| 82 |
+
# s1 = sigmoid(s1)
|
| 83 |
+
s1 = activation(s1)
|
| 84 |
+
s2 = w12 * i1 + w22 * i2 + b2
|
| 85 |
+
# s2 = sigmoid(s2)
|
| 86 |
+
s2 = activation(s2)
|
| 87 |
+
s3 = w13 * i1 + w23 * i2 + b3
|
| 88 |
+
# s3 = sigmoid(s3)
|
| 89 |
+
s3 = activation(s3)
|
| 90 |
+
|
| 91 |
+
output = s1 * o1 + s2 * o2 + s3 * o3 + ob
|
| 92 |
+
# output = sigmoid(output)
|
| 93 |
+
output = activation(output)
|
| 94 |
+
|
| 95 |
+
return output
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def learn(i1,i2,target, activation, activation_prime, alpha=0.2):
|
| 99 |
+
global w11,w21,b1,w12,w22,b2,w13,w23,b3
|
| 100 |
+
global o1,o2,o3,ob
|
| 101 |
+
|
| 102 |
+
s1 = w11 * i1 + w21 * i2 + b1
|
| 103 |
+
# s1 = sigmoid(s1)
|
| 104 |
+
s1 = activation(s1)
|
| 105 |
+
s2 = w12 * i1 + w22 * i2 + b2
|
| 106 |
+
# s2 = sigmoid(s2)
|
| 107 |
+
s2 = activation(s2)
|
| 108 |
+
s3 = w13 * i1 + w23 * i2 + b3
|
| 109 |
+
# s3 = sigmoid(s3)
|
| 110 |
+
s3 = activation(s3)
|
| 111 |
+
|
| 112 |
+
output = s1 * o1 + s2 * o2 + s3 * o3 + ob
|
| 113 |
+
# output = sigmoid(output)
|
| 114 |
+
output = activation(output)
|
| 115 |
+
|
| 116 |
+
error = target - output
|
| 117 |
+
# derror = error * sigmoid_prime(output)
|
| 118 |
+
derror = error * activation_prime(output)
|
| 119 |
+
|
| 120 |
+
# ds1 = derror * o1 * sigmoid_prime(s1)
|
| 121 |
+
ds1 = derror * o1 * activation_prime(s1)
|
| 122 |
+
# ds2 = derror * o2 * sigmoid_prime(s2)
|
| 123 |
+
ds2 = derror * o2 * activation_prime(s2)
|
| 124 |
+
# ds3 = derror * o3 * sigmoid_prime(s3)
|
| 125 |
+
ds3 = derror * o3 * activation_prime(s3)
|
| 126 |
+
|
| 127 |
+
o1 += alpha * s1 * derror
|
| 128 |
+
o2 += alpha * s2 * derror
|
| 129 |
+
o3 += alpha * s3 * derror
|
| 130 |
+
ob += alpha * derror
|
| 131 |
+
|
| 132 |
+
w11 += alpha * i1 * ds1
|
| 133 |
+
w21 += alpha * i2 * ds1
|
| 134 |
+
b1 += alpha * ds1
|
| 135 |
+
w12 += alpha * i1 * ds2
|
| 136 |
+
w22 += alpha * i2 * ds2
|
| 137 |
+
b2 += alpha * ds2
|
| 138 |
+
w13 += alpha * i1 * ds3
|
| 139 |
+
w23 += alpha * i2 * ds3
|
| 140 |
+
b3 += alpha * ds3
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def train(epochs=EPOCHS, alpha=ALPHAS):
|
| 144 |
+
modelo = None
|
| 145 |
+
for epoch in range(1,epochs+1):
|
| 146 |
+
indexes = [0,1,2,3]
|
| 147 |
+
random.shuffle(indexes)
|
| 148 |
+
for j in indexes:
|
| 149 |
+
learn(INPUTS[j][0],INPUTS[j][1],OUTPUTS[j][0], activation=sigmoid, activation_prime=sigmoid_prime, alpha=alpha)
|
| 150 |
+
|
| 151 |
+
if epoch%WEPOCHS == 0:
|
| 152 |
+
cost = 0
|
| 153 |
+
for j in range(4):
|
| 154 |
+
o = predict(INPUTS[j][0],INPUTS[j][1], activation=sigmoid)
|
| 155 |
+
cost += (OUTPUTS[j][0] - o) ** 2
|
| 156 |
+
cost /= 4
|
| 157 |
+
print("epoch", epoch, "mean squared error:", cost)
|
| 158 |
+
|
| 159 |
+
modelo = {
|
| 160 |
+
"w11": w11,
|
| 161 |
+
"w21": w21,
|
| 162 |
+
"b1": b1,
|
| 163 |
+
"w12": w12,
|
| 164 |
+
"w22": w22,
|
| 165 |
+
"b2": b2,
|
| 166 |
+
"w13": w13,
|
| 167 |
+
"w23": w23,
|
| 168 |
+
"b3": b3,
|
| 169 |
+
"o1": o1,
|
| 170 |
+
"o2": o2,
|
| 171 |
+
"o3": o3,
|
| 172 |
+
"ob": ob
|
| 173 |
+
}
|
| 174 |
+
return modelo
|
| 175 |
+
|
| 176 |
+
def save_model(modelo, filename):
|
| 177 |
+
with open(filename, 'w') as json_file:
|
| 178 |
+
json.dump(modelo, json_file)
|
| 179 |
+
|
| 180 |
+
## Main
|
| 181 |
+
def main():
|
| 182 |
+
# Train model
|
| 183 |
+
modelo = train()
|
| 184 |
+
|
| 185 |
+
print(modelo)
|
| 186 |
+
# Save model to file
|
| 187 |
+
save_model(modelo, "modelo.json")
|
| 188 |
+
|
| 189 |
+
for i in range(4):
|
| 190 |
+
result = predict(INPUTS[i][0],INPUTS[i][1], activation=sigmoid)
|
| 191 |
+
print("for input", INPUTS[i], "expected", OUTPUTS[i][0], "predicted", f"{result:4.4}", "which is", "correct" if round(result)==OUTPUTS[i][0] else "incorrect")
|
| 192 |
+
# print("for input", INPUTS[i], "expected", OUTPUTS[i][0], "predicted", result, "which is", "correct" if round(result)==OUTPUTS[i][0] else "incorrect")
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
if __name__ == "__main__":
|
| 196 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
streamlit
|