test
Browse files- gradio_app.py +43 -84
gradio_app.py
CHANGED
|
@@ -8,11 +8,11 @@ from PIL import Image
|
|
| 8 |
import gradio as gr
|
| 9 |
import trimesh
|
| 10 |
from transparent_background import Remover
|
| 11 |
-
|
| 12 |
import subprocess
|
|
|
|
| 13 |
|
| 14 |
def install_cuda_toolkit():
|
| 15 |
-
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
|
| 16 |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
|
| 17 |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 18 |
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
|
@@ -25,24 +25,22 @@ def install_cuda_toolkit():
|
|
| 25 |
os.environ["CUDA_HOME"],
|
| 26 |
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
|
| 27 |
)
|
| 28 |
-
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
|
| 29 |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 30 |
|
| 31 |
install_cuda_toolkit()
|
| 32 |
|
| 33 |
-
# Import and setup SPAR3D
|
| 34 |
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
|
| 35 |
import spar3d.utils as spar3d_utils
|
| 36 |
from spar3d.system import SPAR3D
|
| 37 |
|
| 38 |
-
# Constants
|
| 39 |
COND_WIDTH = 512
|
| 40 |
COND_HEIGHT = 512
|
| 41 |
COND_DISTANCE = 2.2
|
| 42 |
COND_FOVY = 0.591627
|
| 43 |
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
# Initialize models
|
| 46 |
device = spar3d_utils.get_device()
|
| 47 |
bg_remover = Remover()
|
| 48 |
spar3d_model = SPAR3D.from_pretrained(
|
|
@@ -51,17 +49,14 @@ spar3d_model = SPAR3D.from_pretrained(
|
|
| 51 |
weight_name="model.safetensors"
|
| 52 |
).eval().to(device)
|
| 53 |
|
| 54 |
-
# Initialize camera parameters
|
| 55 |
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
|
| 56 |
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
|
| 57 |
COND_FOVY, COND_HEIGHT, COND_WIDTH
|
| 58 |
)
|
| 59 |
|
| 60 |
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
|
| 61 |
-
"""Create an RGBA image from RGB image and optional mask."""
|
| 62 |
rgba_image = rgb_image.convert('RGBA')
|
| 63 |
if mask is not None:
|
| 64 |
-
# Ensure mask is 2D before converting to alpha
|
| 65 |
if len(mask.shape) > 2:
|
| 66 |
mask = mask.squeeze()
|
| 67 |
alpha = Image.fromarray((mask * 255).astype(np.uint8))
|
|
@@ -69,55 +64,37 @@ def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.
|
|
| 69 |
return rgba_image
|
| 70 |
|
| 71 |
def create_batch(input_image: Image.Image) -> dict[str, Any]:
|
| 72 |
-
"""Prepare image batch for model input."""
|
| 73 |
-
# Resize and convert input image to numpy array
|
| 74 |
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
|
| 75 |
img_array = np.array(resized_image).astype(np.float32) / 255.0
|
| 76 |
|
| 77 |
-
|
| 78 |
-
if img_array.shape[-1] == 4: # RGBA
|
| 79 |
rgb = img_array[..., :3]
|
| 80 |
mask = img_array[..., 3:4]
|
| 81 |
-
else:
|
| 82 |
rgb = img_array
|
| 83 |
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
# Blend RGB with background using mask (all in channel-last format)
|
| 93 |
-
rgb_cond = torch.lerp(bg_tensor, rgb, mask) # [H, W, 3]
|
| 94 |
-
|
| 95 |
-
# Move channels to correct dimension and add batch dimension
|
| 96 |
-
# Important: For SPAR3D image tokenizer, we need [B, H, W, C] format
|
| 97 |
-
rgb_cond = rgb_cond.unsqueeze(0) # [1, H, W, 3]
|
| 98 |
-
mask = mask.unsqueeze(0) # [1, H, W, 1]
|
| 99 |
|
| 100 |
-
# Create the batch dictionary
|
| 101 |
batch = {
|
| 102 |
-
"rgb_cond": rgb_cond,
|
| 103 |
-
"mask_cond": mask,
|
| 104 |
-
"c2w_cond": c2w_cond.unsqueeze(0),
|
| 105 |
-
"intrinsic_cond": intrinsic.unsqueeze(0),
|
| 106 |
-
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
|
| 107 |
}
|
| 108 |
|
| 109 |
-
for k, v in batch.items():
|
| 110 |
-
print(f"[debug] {k} final shape:", v.shape)
|
| 111 |
-
|
| 112 |
return batch
|
| 113 |
|
| 114 |
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
| 115 |
-
"""Process batch through model and generate point cloud."""
|
| 116 |
-
|
| 117 |
batch_size = batch["rgb_cond"].shape[0]
|
| 118 |
assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
|
| 119 |
|
| 120 |
-
# Generate point cloud tokens
|
| 121 |
try:
|
| 122 |
cond_tokens = system.forward_pdiff_cond(batch)
|
| 123 |
except Exception as e:
|
|
@@ -129,7 +106,6 @@ def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
|
| 129 |
print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad)
|
| 130 |
raise
|
| 131 |
|
| 132 |
-
# Sample points
|
| 133 |
sample_iter = system.sampler.sample_batch_progressive(
|
| 134 |
batch_size,
|
| 135 |
cond_tokens,
|
|
@@ -137,38 +113,23 @@ def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
|
| 137 |
device=device
|
| 138 |
)
|
| 139 |
|
| 140 |
-
# Get final samples
|
| 141 |
for x in sample_iter:
|
| 142 |
samples = x["xstart"]
|
| 143 |
|
| 144 |
pc_cond = samples.permute(0, 2, 1).float()
|
| 145 |
-
|
| 146 |
-
# Normalize point cloud
|
| 147 |
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
|
| 148 |
-
|
| 149 |
-
# Subsample to 512 points
|
| 150 |
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
|
| 151 |
-
|
| 152 |
return pc_cond
|
| 153 |
|
| 154 |
@spaces.GPU
|
| 155 |
@torch.inference_mode()
|
| 156 |
-
def generate_and_process_3d(image: Image.Image) ->
|
| 157 |
-
"""Generate image from prompt and convert to 3D model."""
|
| 158 |
-
|
| 159 |
-
# Generate random seed
|
| 160 |
seed = np.random.randint(0, np.iinfo(np.int32).max)
|
| 161 |
|
| 162 |
try:
|
| 163 |
rgb_image = image.convert('RGB')
|
| 164 |
-
|
| 165 |
-
# bg_remover returns a PIL Image already, no need to convert
|
| 166 |
no_bg_image = bg_remover.process(rgb_image)
|
| 167 |
-
print(f"[debug] no_bg_image type: {type(no_bg_image)}, mode: {no_bg_image.mode}")
|
| 168 |
-
|
| 169 |
-
# Convert to RGBA if not already
|
| 170 |
rgba_image = no_bg_image.convert('RGBA')
|
| 171 |
-
print(f"[debug] rgba_image mode: {rgba_image.mode}")
|
| 172 |
|
| 173 |
processed_image = spar3d_utils.foreground_crop(
|
| 174 |
rgba_image,
|
|
@@ -177,15 +138,8 @@ def generate_and_process_3d(image: Image.Image) -> tuple[str | None, Image.Image
|
|
| 177 |
no_crop=False
|
| 178 |
)
|
| 179 |
|
| 180 |
-
# Show the processed image alpha channel for debugging
|
| 181 |
-
alpha = np.array(processed_image)[:, :, 3]
|
| 182 |
-
print(f"[debug] Alpha channel stats - min: {alpha.min()}, max: {alpha.max()}, unique: {np.unique(alpha)}")
|
| 183 |
-
|
| 184 |
-
# Prepare batch for processing
|
| 185 |
batch = create_batch(processed_image)
|
| 186 |
batch = {k: v.to(device) for k, v in batch.items()}
|
| 187 |
-
|
| 188 |
-
# Generate point cloud
|
| 189 |
pc_cond = forward_model(
|
| 190 |
batch,
|
| 191 |
spar3d_model,
|
|
@@ -195,25 +149,24 @@ def generate_and_process_3d(image: Image.Image) -> tuple[str | None, Image.Image
|
|
| 195 |
)
|
| 196 |
batch["pc_cond"] = pc_cond
|
| 197 |
|
| 198 |
-
# Generate mesh
|
| 199 |
with torch.no_grad():
|
| 200 |
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
|
| 201 |
trimesh_mesh, _ = spar3d_model.generate_mesh(
|
| 202 |
batch,
|
| 203 |
-
1024,
|
| 204 |
remesh="none",
|
| 205 |
vertex_count=-1,
|
| 206 |
estimate_illumination=True
|
| 207 |
)
|
| 208 |
trimesh_mesh = trimesh_mesh[0]
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
output_path = os.path.join(
|
| 213 |
-
|
| 214 |
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
|
|
|
|
| 215 |
|
| 216 |
-
return
|
| 217 |
|
| 218 |
except Exception as e:
|
| 219 |
print(f"Error during generation: {str(e)}")
|
|
@@ -221,28 +174,34 @@ def generate_and_process_3d(image: Image.Image) -> tuple[str | None, Image.Image
|
|
| 221 |
traceback.print_exc()
|
| 222 |
return None
|
| 223 |
|
| 224 |
-
# Create Gradio
|
| 225 |
with gr.Blocks() as demo:
|
| 226 |
-
gr.Markdown("This space is based on [Stable Point-Aware 3D](https://huggingface.co/spaces/stabilityai/stable-point-aware-3d) by Stability AI, [Text to 3D](https://huggingface.co/spaces/jbilcke-hf/text-to-3d) by jbilcke-hf.")
|
| 227 |
-
|
| 228 |
with gr.Row():
|
| 229 |
input_img = gr.Image(
|
| 230 |
-
type="pil",
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 237 |
)
|
| 238 |
|
| 239 |
-
#
|
|
|
|
|
|
|
|
|
|
| 240 |
input_img.upload(
|
| 241 |
fn=generate_and_process_3d,
|
| 242 |
inputs=[input_img],
|
| 243 |
-
outputs=[
|
| 244 |
api_name="generate"
|
| 245 |
)
|
| 246 |
|
| 247 |
if __name__ == "__main__":
|
| 248 |
-
demo.queue().launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
import trimesh
|
| 10 |
from transparent_background import Remover
|
| 11 |
+
from pathlib import Path
|
| 12 |
import subprocess
|
| 13 |
+
import uuid
|
| 14 |
|
| 15 |
def install_cuda_toolkit():
|
|
|
|
| 16 |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
|
| 17 |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 18 |
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
|
|
|
| 25 |
os.environ["CUDA_HOME"],
|
| 26 |
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
|
| 27 |
)
|
|
|
|
| 28 |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 29 |
|
| 30 |
install_cuda_toolkit()
|
| 31 |
|
|
|
|
| 32 |
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
|
| 33 |
import spar3d.utils as spar3d_utils
|
| 34 |
from spar3d.system import SPAR3D
|
| 35 |
|
|
|
|
| 36 |
COND_WIDTH = 512
|
| 37 |
COND_HEIGHT = 512
|
| 38 |
COND_DISTANCE = 2.2
|
| 39 |
COND_FOVY = 0.591627
|
| 40 |
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
|
| 41 |
+
OUTPUT_DIR = "output"
|
| 42 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 43 |
|
|
|
|
| 44 |
device = spar3d_utils.get_device()
|
| 45 |
bg_remover = Remover()
|
| 46 |
spar3d_model = SPAR3D.from_pretrained(
|
|
|
|
| 49 |
weight_name="model.safetensors"
|
| 50 |
).eval().to(device)
|
| 51 |
|
|
|
|
| 52 |
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
|
| 53 |
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
|
| 54 |
COND_FOVY, COND_HEIGHT, COND_WIDTH
|
| 55 |
)
|
| 56 |
|
| 57 |
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
|
|
|
|
| 58 |
rgba_image = rgb_image.convert('RGBA')
|
| 59 |
if mask is not None:
|
|
|
|
| 60 |
if len(mask.shape) > 2:
|
| 61 |
mask = mask.squeeze()
|
| 62 |
alpha = Image.fromarray((mask * 255).astype(np.uint8))
|
|
|
|
| 64 |
return rgba_image
|
| 65 |
|
| 66 |
def create_batch(input_image: Image.Image) -> dict[str, Any]:
|
|
|
|
|
|
|
| 67 |
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
|
| 68 |
img_array = np.array(resized_image).astype(np.float32) / 255.0
|
| 69 |
|
| 70 |
+
if img_array.shape[-1] == 4:
|
|
|
|
| 71 |
rgb = img_array[..., :3]
|
| 72 |
mask = img_array[..., 3:4]
|
| 73 |
+
else:
|
| 74 |
rgb = img_array
|
| 75 |
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
|
| 76 |
|
| 77 |
+
rgb = torch.from_numpy(rgb).float()
|
| 78 |
+
mask = torch.from_numpy(mask).float()
|
| 79 |
+
bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3)
|
| 80 |
+
rgb_cond = torch.lerp(bg_tensor, rgb, mask)
|
| 81 |
+
rgb_cond = rgb_cond.unsqueeze(0)
|
| 82 |
+
mask = mask.unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
|
|
|
| 84 |
batch = {
|
| 85 |
+
"rgb_cond": rgb_cond,
|
| 86 |
+
"mask_cond": mask,
|
| 87 |
+
"c2w_cond": c2w_cond.unsqueeze(0),
|
| 88 |
+
"intrinsic_cond": intrinsic.unsqueeze(0),
|
| 89 |
+
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
|
| 90 |
}
|
| 91 |
|
|
|
|
|
|
|
|
|
|
| 92 |
return batch
|
| 93 |
|
| 94 |
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
|
|
|
|
|
|
|
| 95 |
batch_size = batch["rgb_cond"].shape[0]
|
| 96 |
assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
|
| 97 |
|
|
|
|
| 98 |
try:
|
| 99 |
cond_tokens = system.forward_pdiff_cond(batch)
|
| 100 |
except Exception as e:
|
|
|
|
| 106 |
print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad)
|
| 107 |
raise
|
| 108 |
|
|
|
|
| 109 |
sample_iter = system.sampler.sample_batch_progressive(
|
| 110 |
batch_size,
|
| 111 |
cond_tokens,
|
|
|
|
| 113 |
device=device
|
| 114 |
)
|
| 115 |
|
|
|
|
| 116 |
for x in sample_iter:
|
| 117 |
samples = x["xstart"]
|
| 118 |
|
| 119 |
pc_cond = samples.permute(0, 2, 1).float()
|
|
|
|
|
|
|
| 120 |
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
|
|
|
|
|
|
|
| 121 |
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
|
|
|
|
| 122 |
return pc_cond
|
| 123 |
|
| 124 |
@spaces.GPU
|
| 125 |
@torch.inference_mode()
|
| 126 |
+
def generate_and_process_3d(image: Image.Image) -> str:
|
|
|
|
|
|
|
|
|
|
| 127 |
seed = np.random.randint(0, np.iinfo(np.int32).max)
|
| 128 |
|
| 129 |
try:
|
| 130 |
rgb_image = image.convert('RGB')
|
|
|
|
|
|
|
| 131 |
no_bg_image = bg_remover.process(rgb_image)
|
|
|
|
|
|
|
|
|
|
| 132 |
rgba_image = no_bg_image.convert('RGBA')
|
|
|
|
| 133 |
|
| 134 |
processed_image = spar3d_utils.foreground_crop(
|
| 135 |
rgba_image,
|
|
|
|
| 138 |
no_crop=False
|
| 139 |
)
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
batch = create_batch(processed_image)
|
| 142 |
batch = {k: v.to(device) for k, v in batch.items()}
|
|
|
|
|
|
|
| 143 |
pc_cond = forward_model(
|
| 144 |
batch,
|
| 145 |
spar3d_model,
|
|
|
|
| 149 |
)
|
| 150 |
batch["pc_cond"] = pc_cond
|
| 151 |
|
|
|
|
| 152 |
with torch.no_grad():
|
| 153 |
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
|
| 154 |
trimesh_mesh, _ = spar3d_model.generate_mesh(
|
| 155 |
batch,
|
| 156 |
+
1024,
|
| 157 |
remesh="none",
|
| 158 |
vertex_count=-1,
|
| 159 |
estimate_illumination=True
|
| 160 |
)
|
| 161 |
trimesh_mesh = trimesh_mesh[0]
|
| 162 |
|
| 163 |
+
unique_id = str(uuid.uuid4())
|
| 164 |
+
filename = f'model_{unique_id}.glb'
|
| 165 |
+
output_path = os.path.join(OUTPUT_DIR, filename)
|
|
|
|
| 166 |
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
|
| 167 |
+
public_url = f"https://john6666-image-to-3d-test.hf.space/file={output_path}"
|
| 168 |
|
| 169 |
+
return public_url
|
| 170 |
|
| 171 |
except Exception as e:
|
| 172 |
print(f"Error during generation: {str(e)}")
|
|
|
|
| 174 |
traceback.print_exc()
|
| 175 |
return None
|
| 176 |
|
| 177 |
+
# Create Gradio interface
|
| 178 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
| 179 |
with gr.Row():
|
| 180 |
input_img = gr.Image(
|
| 181 |
+
type="pil",
|
| 182 |
+
label=None, # Remove the label
|
| 183 |
+
show_label=False, # Further remove label
|
| 184 |
+
sources="upload",
|
| 185 |
+
image_mode="RGBA",
|
| 186 |
+
elem_id="hidden-upload" # Add an ID for CSS targeting
|
|
|
|
| 187 |
)
|
| 188 |
|
| 189 |
+
# Make all output components invisible
|
| 190 |
+
with gr.Row(visible=False):
|
| 191 |
+
model_url = gr.Textbox(label="Model URL")
|
| 192 |
+
|
| 193 |
input_img.upload(
|
| 194 |
fn=generate_and_process_3d,
|
| 195 |
inputs=[input_img],
|
| 196 |
+
outputs=[model_url],
|
| 197 |
api_name="generate"
|
| 198 |
)
|
| 199 |
|
| 200 |
if __name__ == "__main__":
|
| 201 |
+
demo.queue().launch(
|
| 202 |
+
server_name="0.0.0.0",
|
| 203 |
+
server_port=7860,
|
| 204 |
+
share=True,
|
| 205 |
+
ssr_mode=False,
|
| 206 |
+
allowed_paths=[Path(OUTPUT_DIR).resolve()]
|
| 207 |
+
)
|