Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import spaces | |
| import torch | |
| import time | |
| import gradio as gr | |
| from PIL import Image | |
| from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
| from typing import List | |
| from functools import lru_cache | |
| MODEL_ID = "remyxai/SpaceThinker-Qwen2.5VL-3B" | |
| def load_model(): | |
| print("Loading model and processor...") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| ).to(device) | |
| processor = AutoProcessor.from_pretrained(MODEL_ID) | |
| return model, processor | |
| def process_image(image_path_or_obj): | |
| if isinstance(image_path_or_obj, str): | |
| image = Image.open(image_path_or_obj).convert("RGB") | |
| elif isinstance(image_path_or_obj, Image.Image): | |
| image = image_path_or_obj.convert("RGB") | |
| else: | |
| raise ValueError("process_image expects a file path (str) or PIL.Image") | |
| max_width = 512 | |
| if image.width > max_width: | |
| aspect_ratio = image.height / image.width | |
| new_height = int(max_width * aspect_ratio) | |
| image = image.resize((max_width, new_height), Image.Resampling.LANCZOS) | |
| return image | |
| def get_latest_image(history): | |
| for item in reversed(history): | |
| if item["role"] == "user" and isinstance(item["content"], tuple): | |
| return item["content"][0] | |
| return None | |
| def only_assistant_text(full_text: str) -> str: | |
| if "assistant" in full_text: | |
| parts = full_text.split("assistant", 1) | |
| result = parts[-1].strip() | |
| result = result.lstrip(":").strip() | |
| return result | |
| return full_text.strip() | |
| def run_inference(image, prompt): | |
| model, processor = load_model() | |
| system_msg = ( | |
| "You are VL-Thinking π€, a helpful assistant with excellent reasoning ability. " | |
| "You should first think about the reasoning process and then provide the answer. " | |
| "Use <think>...</think> and <answer>...</answer> tags." | |
| ) | |
| conversation = [ | |
| { | |
| "role": "system", | |
| "content": [{"type": "text", "text": system_msg}], | |
| }, | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": prompt}, | |
| ], | |
| }, | |
| ] | |
| text_input = processor.apply_chat_template( | |
| conversation, tokenize=False, add_generation_prompt=True | |
| ) | |
| inputs = processor(text=[text_input], images=[image], return_tensors="pt").to(model.device) | |
| generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
| output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| return only_assistant_text(output_text) | |
| def add_message(history, user_input): | |
| if not isinstance(history, list): | |
| history = [] | |
| files = user_input.get("files", []) | |
| text = user_input.get("text", "") | |
| for f in files: | |
| history.append({"role": "user", "content": (f,)}) | |
| if text: | |
| history.append({"role": "user", "content": text}) | |
| return history, gr.MultimodalTextbox(value=None) | |
| def inference_interface(history): | |
| if not history: | |
| return history, gr.MultimodalTextbox(value=None) | |
| user_text = "" | |
| user_idx = -1 | |
| for idx in range(len(history) - 1, -1, -1): | |
| msg = history[idx] | |
| if msg["role"] == "user" and isinstance(msg["content"], str): | |
| user_text = msg["content"] | |
| user_idx = idx | |
| break | |
| if user_idx == -1: | |
| return history, gr.MultimodalTextbox(value=None) | |
| latest_image = get_latest_image(history) | |
| if not latest_image: | |
| return history, gr.MultimodalTextbox(value=None) | |
| pil_image = process_image(latest_image) | |
| assistant_reply = run_inference(pil_image, user_text) | |
| history.append({"role": "assistant", "content": assistant_reply}) | |
| return history, gr.MultimodalTextbox(value=None) | |
| def build_demo(): | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# SpaceThinker-Qwen2.5VL-3B Image Prompt Chatbot") | |
| chatbot = gr.Chatbot([], type="messages", line_breaks=True) | |
| chat_input = gr.MultimodalTextbox( | |
| interactive=True, | |
| file_types=["image"], | |
| placeholder="Enter text and upload an image.", | |
| show_label=True | |
| ) | |
| submit_event = chat_input.submit( | |
| fn=add_message, | |
| inputs=[chatbot, chat_input], | |
| outputs=[chatbot, chat_input] | |
| ) | |
| submit_event.then( | |
| fn=inference_interface, | |
| inputs=[chatbot], | |
| outputs=[chatbot, chat_input] | |
| ) | |
| with gr.Row(): | |
| send_button = gr.Button("Send") | |
| clear_button = gr.ClearButton([chatbot, chat_input]) | |
| send_click = send_button.click( | |
| fn=add_message, | |
| inputs=[chatbot, chat_input], | |
| outputs=[chatbot, chat_input] | |
| ) | |
| send_click.then( | |
| fn=inference_interface, | |
| inputs=[chatbot], | |
| outputs=[chatbot, chat_input] | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| { | |
| "text": "Give me the height of the man in the red hat in feet.", | |
| "files": ["./examples/warehouse_rgb.jpg"] | |
| } | |
| ], | |
| inputs=[chat_input], | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = build_demo() | |
| demo.launch(share=True) | |

