Spaces:
Runtime error
Runtime error
kexinhuang12345
commited on
Commit
·
3caf072
1
Parent(s):
aa0703f
update
Browse files- app.py +168 -16
- src/about.py +27 -4
- src/display/utils.py +35 -1
- src/populate.py +19 -4
- src/submission/submit.py +8 -1
app.py
CHANGED
|
@@ -11,18 +11,24 @@ from src.about import (
|
|
| 11 |
INTRODUCTION_TEXT,
|
| 12 |
LLM_BENCHMARKS_TEXT,
|
| 13 |
TITLE,
|
| 14 |
-
nc_tasks
|
|
|
|
|
|
|
| 15 |
)
|
| 16 |
from src.display.css_html_js import custom_css
|
| 17 |
from src.display.utils import (
|
| 18 |
BENCHMARK_COLS,
|
| 19 |
COLS,
|
| 20 |
COLS_NC,
|
|
|
|
|
|
|
| 21 |
EVAL_COLS,
|
| 22 |
EVAL_TYPES,
|
| 23 |
NUMERIC_INTERVALS,
|
| 24 |
TYPES,
|
| 25 |
AutoEvalColumn_NodeClassification,
|
|
|
|
|
|
|
| 26 |
#AutoEvalColumn,
|
| 27 |
ModelType,
|
| 28 |
TASK_LIST,
|
|
@@ -56,9 +62,6 @@ except Exception:
|
|
| 56 |
restart_space()
|
| 57 |
|
| 58 |
|
| 59 |
-
original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, nc_tasks)
|
| 60 |
-
leaderboard_df = original_df.copy()
|
| 61 |
-
|
| 62 |
# Searching and filtering
|
| 63 |
def update_table(
|
| 64 |
hidden_df: pd.DataFrame,
|
|
@@ -72,7 +75,7 @@ def update_table(
|
|
| 72 |
|
| 73 |
|
| 74 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 75 |
-
return df[(df[
|
| 76 |
|
| 77 |
|
| 78 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
@@ -81,7 +84,7 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
| 81 |
]
|
| 82 |
# We use COLS to maintain sorting
|
| 83 |
filtered_df = df[
|
| 84 |
-
always_here_cols + [c for c in
|
| 85 |
]
|
| 86 |
return filtered_df
|
| 87 |
|
|
@@ -99,7 +102,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 99 |
if len(final_df) > 0:
|
| 100 |
filtered_df = pd.concat(final_df)
|
| 101 |
filtered_df = filtered_df.drop_duplicates(
|
| 102 |
-
subset=[
|
| 103 |
)
|
| 104 |
|
| 105 |
return filtered_df
|
|
@@ -112,14 +115,14 @@ def filter_models(
|
|
| 112 |
if show_deleted:
|
| 113 |
filtered_df = df
|
| 114 |
else: # Show only still on the hub models
|
| 115 |
-
filtered_df = df[df[
|
| 116 |
|
| 117 |
#type_emoji = [t[0] for t in type_query]
|
| 118 |
#filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 119 |
#filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 120 |
|
| 121 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 122 |
-
params_column = pd.to_numeric(df[
|
| 123 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 124 |
filtered_df = filtered_df.loc[mask]
|
| 125 |
|
|
@@ -132,6 +135,155 @@ with demo:
|
|
| 132 |
|
| 133 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 134 |
with gr.TabItem("🏅 Node Classification Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
with gr.Row():
|
| 136 |
with gr.Column():
|
| 137 |
with gr.Row():
|
|
@@ -144,12 +296,12 @@ with demo:
|
|
| 144 |
shown_columns = gr.CheckboxGroup(
|
| 145 |
choices=[
|
| 146 |
c.name
|
| 147 |
-
for c in fields(
|
| 148 |
if not c.hidden and not c.never_hidden
|
| 149 |
],
|
| 150 |
value=[
|
| 151 |
c.name
|
| 152 |
-
for c in fields(
|
| 153 |
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 154 |
],
|
| 155 |
label="Select columns to show",
|
|
@@ -158,13 +310,13 @@ with demo:
|
|
| 158 |
)
|
| 159 |
|
| 160 |
print(leaderboard_df)
|
| 161 |
-
print(fields(
|
| 162 |
leaderboard_table = gr.components.Dataframe(
|
| 163 |
value=leaderboard_df[
|
| 164 |
-
[c.name for c in fields(
|
| 165 |
+ shown_columns.value
|
| 166 |
],
|
| 167 |
-
headers=[c.name for c in fields(
|
| 168 |
datatype=TYPES,
|
| 169 |
elem_id="leaderboard-table",
|
| 170 |
interactive=False,
|
|
@@ -173,8 +325,8 @@ with demo:
|
|
| 173 |
|
| 174 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 175 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 176 |
-
value=original_df[
|
| 177 |
-
headers=
|
| 178 |
datatype=TYPES,
|
| 179 |
visible=False,
|
| 180 |
)
|
|
|
|
| 11 |
INTRODUCTION_TEXT,
|
| 12 |
LLM_BENCHMARKS_TEXT,
|
| 13 |
TITLE,
|
| 14 |
+
nc_tasks,
|
| 15 |
+
nr_tasks,
|
| 16 |
+
lp_tasks,
|
| 17 |
)
|
| 18 |
from src.display.css_html_js import custom_css
|
| 19 |
from src.display.utils import (
|
| 20 |
BENCHMARK_COLS,
|
| 21 |
COLS,
|
| 22 |
COLS_NC,
|
| 23 |
+
COLS_NR,
|
| 24 |
+
COLS_LP,
|
| 25 |
EVAL_COLS,
|
| 26 |
EVAL_TYPES,
|
| 27 |
NUMERIC_INTERVALS,
|
| 28 |
TYPES,
|
| 29 |
AutoEvalColumn_NodeClassification,
|
| 30 |
+
AutoEvalColumn_NodeRegression,
|
| 31 |
+
AutoEvalColumn_LinkPrediction,
|
| 32 |
#AutoEvalColumn,
|
| 33 |
ModelType,
|
| 34 |
TASK_LIST,
|
|
|
|
| 62 |
restart_space()
|
| 63 |
|
| 64 |
|
|
|
|
|
|
|
|
|
|
| 65 |
# Searching and filtering
|
| 66 |
def update_table(
|
| 67 |
hidden_df: pd.DataFrame,
|
|
|
|
| 75 |
|
| 76 |
|
| 77 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 78 |
+
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
| 79 |
|
| 80 |
|
| 81 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
|
|
| 84 |
]
|
| 85 |
# We use COLS to maintain sorting
|
| 86 |
filtered_df = df[
|
| 87 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
| 88 |
]
|
| 89 |
return filtered_df
|
| 90 |
|
|
|
|
| 102 |
if len(final_df) > 0:
|
| 103 |
filtered_df = pd.concat(final_df)
|
| 104 |
filtered_df = filtered_df.drop_duplicates(
|
| 105 |
+
subset=[AutoEvalColumn.model.name]
|
| 106 |
)
|
| 107 |
|
| 108 |
return filtered_df
|
|
|
|
| 115 |
if show_deleted:
|
| 116 |
filtered_df = df
|
| 117 |
else: # Show only still on the hub models
|
| 118 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 119 |
|
| 120 |
#type_emoji = [t[0] for t in type_query]
|
| 121 |
#filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 122 |
#filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 123 |
|
| 124 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 125 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 126 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 127 |
filtered_df = filtered_df.loc[mask]
|
| 128 |
|
|
|
|
| 135 |
|
| 136 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 137 |
with gr.TabItem("🏅 Node Classification Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
| 138 |
+
COLS = COLS_NC
|
| 139 |
+
AutoEvalColumn = AutoEvalColumn_NodeClassification
|
| 140 |
+
original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Node Classification")
|
| 141 |
+
leaderboard_df = original_df.copy()
|
| 142 |
+
|
| 143 |
+
with gr.Row():
|
| 144 |
+
with gr.Column():
|
| 145 |
+
with gr.Row():
|
| 146 |
+
search_bar = gr.Textbox(
|
| 147 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 148 |
+
show_label=False,
|
| 149 |
+
elem_id="search-bar",
|
| 150 |
+
)
|
| 151 |
+
with gr.Row():
|
| 152 |
+
shown_columns = gr.CheckboxGroup(
|
| 153 |
+
choices=[
|
| 154 |
+
c.name
|
| 155 |
+
for c in fields(AutoEvalColumn)
|
| 156 |
+
if not c.hidden and not c.never_hidden
|
| 157 |
+
],
|
| 158 |
+
value=[
|
| 159 |
+
c.name
|
| 160 |
+
for c in fields(AutoEvalColumn)
|
| 161 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 162 |
+
],
|
| 163 |
+
label="Select columns to show",
|
| 164 |
+
elem_id="column-select",
|
| 165 |
+
interactive=True,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
print(leaderboard_df)
|
| 169 |
+
print(fields(AutoEvalColumn))
|
| 170 |
+
leaderboard_table = gr.components.Dataframe(
|
| 171 |
+
value=leaderboard_df[
|
| 172 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 173 |
+
+ shown_columns.value
|
| 174 |
+
],
|
| 175 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 176 |
+
datatype=TYPES,
|
| 177 |
+
elem_id="leaderboard-table",
|
| 178 |
+
interactive=False,
|
| 179 |
+
visible=True,
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 183 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 184 |
+
value=original_df[COLS],
|
| 185 |
+
headers=COLS,
|
| 186 |
+
datatype=TYPES,
|
| 187 |
+
visible=False,
|
| 188 |
+
)
|
| 189 |
+
search_bar.submit(
|
| 190 |
+
update_table,
|
| 191 |
+
[
|
| 192 |
+
hidden_leaderboard_table_for_search,
|
| 193 |
+
shown_columns,
|
| 194 |
+
search_bar,
|
| 195 |
+
],
|
| 196 |
+
leaderboard_table,
|
| 197 |
+
)
|
| 198 |
+
for selector in [shown_columns]:
|
| 199 |
+
selector.change(
|
| 200 |
+
update_table,
|
| 201 |
+
[
|
| 202 |
+
hidden_leaderboard_table_for_search,
|
| 203 |
+
shown_columns,
|
| 204 |
+
search_bar,
|
| 205 |
+
],
|
| 206 |
+
leaderboard_table,
|
| 207 |
+
queue=True,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
with gr.TabItem("🏅 Node Regression Leaderboard", elem_id="llm-benchmark-tab-table", id=1):
|
| 211 |
+
COLS = COLS_NR
|
| 212 |
+
AutoEvalColumn = AutoEvalColumn_NodeRegression
|
| 213 |
+
original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Node Regression")
|
| 214 |
+
leaderboard_df = original_df.copy()
|
| 215 |
+
with gr.Row():
|
| 216 |
+
with gr.Column():
|
| 217 |
+
with gr.Row():
|
| 218 |
+
search_bar = gr.Textbox(
|
| 219 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 220 |
+
show_label=False,
|
| 221 |
+
elem_id="search-bar",
|
| 222 |
+
)
|
| 223 |
+
with gr.Row():
|
| 224 |
+
shown_columns = gr.CheckboxGroup(
|
| 225 |
+
choices=[
|
| 226 |
+
c.name
|
| 227 |
+
for c in fields(AutoEvalColumn)
|
| 228 |
+
if not c.hidden and not c.never_hidden
|
| 229 |
+
],
|
| 230 |
+
value=[
|
| 231 |
+
c.name
|
| 232 |
+
for c in fields(AutoEvalColumn)
|
| 233 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 234 |
+
],
|
| 235 |
+
label="Select columns to show",
|
| 236 |
+
elem_id="column-select",
|
| 237 |
+
interactive=True,
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
print(leaderboard_df)
|
| 241 |
+
print(fields(AutoEvalColumn))
|
| 242 |
+
leaderboard_table = gr.components.Dataframe(
|
| 243 |
+
value=leaderboard_df[
|
| 244 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 245 |
+
+ shown_columns.value
|
| 246 |
+
],
|
| 247 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 248 |
+
datatype=TYPES,
|
| 249 |
+
elem_id="leaderboard-table",
|
| 250 |
+
interactive=False,
|
| 251 |
+
visible=True,
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 255 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 256 |
+
value=original_df[COLS],
|
| 257 |
+
headers=COLS,
|
| 258 |
+
datatype=TYPES,
|
| 259 |
+
visible=False,
|
| 260 |
+
)
|
| 261 |
+
search_bar.submit(
|
| 262 |
+
update_table,
|
| 263 |
+
[
|
| 264 |
+
hidden_leaderboard_table_for_search,
|
| 265 |
+
shown_columns,
|
| 266 |
+
search_bar,
|
| 267 |
+
],
|
| 268 |
+
leaderboard_table,
|
| 269 |
+
)
|
| 270 |
+
for selector in [shown_columns]:
|
| 271 |
+
selector.change(
|
| 272 |
+
update_table,
|
| 273 |
+
[
|
| 274 |
+
hidden_leaderboard_table_for_search,
|
| 275 |
+
shown_columns,
|
| 276 |
+
search_bar,
|
| 277 |
+
],
|
| 278 |
+
leaderboard_table,
|
| 279 |
+
queue=True,
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
with gr.TabItem("🏅 Link Prediction Leaderboard", elem_id="llm-benchmark-tab-table", id=2):
|
| 283 |
+
COLS = COLS_LP
|
| 284 |
+
AutoEvalColumn = AutoEvalColumn_LinkPrediction
|
| 285 |
+
original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Link Prediction")
|
| 286 |
+
leaderboard_df = original_df.copy()
|
| 287 |
with gr.Row():
|
| 288 |
with gr.Column():
|
| 289 |
with gr.Row():
|
|
|
|
| 296 |
shown_columns = gr.CheckboxGroup(
|
| 297 |
choices=[
|
| 298 |
c.name
|
| 299 |
+
for c in fields(AutoEvalColumn)
|
| 300 |
if not c.hidden and not c.never_hidden
|
| 301 |
],
|
| 302 |
value=[
|
| 303 |
c.name
|
| 304 |
+
for c in fields(AutoEvalColumn)
|
| 305 |
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 306 |
],
|
| 307 |
label="Select columns to show",
|
|
|
|
| 310 |
)
|
| 311 |
|
| 312 |
print(leaderboard_df)
|
| 313 |
+
print(fields(AutoEvalColumn))
|
| 314 |
leaderboard_table = gr.components.Dataframe(
|
| 315 |
value=leaderboard_df[
|
| 316 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 317 |
+ shown_columns.value
|
| 318 |
],
|
| 319 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 320 |
datatype=TYPES,
|
| 321 |
elem_id="leaderboard-table",
|
| 322 |
interactive=False,
|
|
|
|
| 325 |
|
| 326 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 327 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 328 |
+
value=original_df[COLS],
|
| 329 |
+
headers=COLS,
|
| 330 |
datatype=TYPES,
|
| 331 |
visible=False,
|
| 332 |
)
|
src/about.py
CHANGED
|
@@ -21,17 +21,40 @@ NUM_FEWSHOT = 0 # Change with your few shot
|
|
| 21 |
class nc_tasks(Enum):
|
| 22 |
task0 = Task("rel-amazon/user-churn", "auroc", "user-churn")
|
| 23 |
task1 = Task("rel-amazon/item-churn", "auroc", "item-churn")
|
| 24 |
-
task2 = Task("rel-avito/user-clicks", "auroc", "user-clicks")
|
| 25 |
task3 = Task("rel-avito/user-visits", "auroc", "user-visits")
|
| 26 |
-
|
| 27 |
-
task5 = Task("rel-stack/user-badge", "auroc", "user-badge")
|
| 28 |
-
task6 = Task("rel-stack/user-engagement", "auroc", "user-engagement")
|
| 29 |
task7 = Task("rel-f1/driver-dnf", "auroc", "driver-dnf")
|
| 30 |
task8 = Task("rel-f1/driver-top3", "auroc", "driver-top3")
|
|
|
|
|
|
|
|
|
|
| 31 |
task9 = Task("rel-trial/study-outcome", "auroc", "study-outcome")
|
| 32 |
task10 = Task("rel-event/user-repeat", "auroc", "user-repeat")
|
| 33 |
task11 = Task("rel-event/user-ignore", "auroc", "user-ignore")
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Your leaderboard name
|
| 36 |
TITLE = """<p align="center"><img src="https://relbench.stanford.edu/img/logo.png" alt="logo" width="400px" /></p>"""
|
| 37 |
|
|
|
|
| 21 |
class nc_tasks(Enum):
|
| 22 |
task0 = Task("rel-amazon/user-churn", "auroc", "user-churn")
|
| 23 |
task1 = Task("rel-amazon/item-churn", "auroc", "item-churn")
|
|
|
|
| 24 |
task3 = Task("rel-avito/user-visits", "auroc", "user-visits")
|
| 25 |
+
task2 = Task("rel-avito/user-clicks", "auroc", "user-clicks")
|
|
|
|
|
|
|
| 26 |
task7 = Task("rel-f1/driver-dnf", "auroc", "driver-dnf")
|
| 27 |
task8 = Task("rel-f1/driver-top3", "auroc", "driver-top3")
|
| 28 |
+
task4 = Task("rel-hm/user-churn", "auroc", "hm-user-churn")
|
| 29 |
+
task6 = Task("rel-stack/user-engagement", "auroc", "user-engagement")
|
| 30 |
+
task5 = Task("rel-stack/user-badge", "auroc", "user-badge")
|
| 31 |
task9 = Task("rel-trial/study-outcome", "auroc", "study-outcome")
|
| 32 |
task10 = Task("rel-event/user-repeat", "auroc", "user-repeat")
|
| 33 |
task11 = Task("rel-event/user-ignore", "auroc", "user-ignore")
|
| 34 |
|
| 35 |
+
|
| 36 |
+
class nr_tasks(Enum):
|
| 37 |
+
task0 = Task("rel-amazon/user-ltv", "mae", "user-ltv")
|
| 38 |
+
task1 = Task("rel-amazon/item-ltv", "mae", "item-ltv")
|
| 39 |
+
task3 = Task("rel-avito/ad-ctr", "mae", "ad-ctr")
|
| 40 |
+
task4 = Task("rel-f1/driver-position", "mae", "driver-position")
|
| 41 |
+
task5 = Task("rel-hm/item-sales", "mae", "item-sales")
|
| 42 |
+
task6 = Task("rel-stack/post-votes", "mae", "post-votes")
|
| 43 |
+
task7 = Task("rel-trial/study-adverse", "mae", "study-adverse")
|
| 44 |
+
task8 = Task("rel-trial/site-success", "mae", "site-success")
|
| 45 |
+
task9 = Task("rel-event/user-attendance", "mae", "user-attendance")
|
| 46 |
+
|
| 47 |
+
class lp_tasks(Enum):
|
| 48 |
+
task0 = Task("rel-amazon/user-item-purchase", "map", "user-item-purchase")
|
| 49 |
+
task1 = Task("rel-amazon/user-item-rate", "map", "user-item-rate")
|
| 50 |
+
task2 = Task("rel-amazon/user-item-review", "map", "user-item-review")
|
| 51 |
+
task3 = Task("rel-avito/user-ad-visit", "map", "user-ad-visit")
|
| 52 |
+
task4 = Task("rel-hm/user-item-purchase", "map", "hm-user-item-purchase")
|
| 53 |
+
task5 = Task("rel-stack/user-post-comment", "map", "user-post-comment")
|
| 54 |
+
task6 = Task("rel-stack/post-post-related", "map", "post-post-related")
|
| 55 |
+
task7 = Task("rel-trial/condition-sponsor-run", "map", "condition-sponsor-run")
|
| 56 |
+
task8 = Task("rel-trial/site-sponsor-run", "map", "site-sponsor-run")
|
| 57 |
+
|
| 58 |
# Your leaderboard name
|
| 59 |
TITLE = """<p align="center"><img src="https://relbench.stanford.edu/img/logo.png" alt="logo" width="400px" /></p>"""
|
| 60 |
|
src/display/utils.py
CHANGED
|
@@ -3,7 +3,7 @@ from enum import Enum
|
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
-
from src.about import Tasks, nc_tasks
|
| 7 |
|
| 8 |
def fields(raw_class):
|
| 9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
|
@@ -58,6 +58,37 @@ auto_eval_column_dict_nc.append(["num_of_Params", ColumnContent, ColumnContent("
|
|
| 58 |
|
| 59 |
AutoEvalColumn_NodeClassification = make_dataclass("AutoEvalColumn_NodeClassification", auto_eval_column_dict_nc, frozen=True)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
## For the queue columns in the submission tab
|
| 62 |
@dataclass(frozen=True)
|
| 63 |
class EvalQueueColumn: # Queue column
|
|
@@ -182,6 +213,9 @@ class Precision(Enum):
|
|
| 182 |
# Column selection
|
| 183 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 184 |
COLS_NC = [c.name for c in fields(AutoEvalColumn_NodeClassification) if not c.hidden]
|
|
|
|
|
|
|
|
|
|
| 185 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
| 186 |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 187 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
|
|
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
+
from src.about import Tasks, nc_tasks, nr_tasks, lp_tasks
|
| 7 |
|
| 8 |
def fields(raw_class):
|
| 9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
|
|
|
| 58 |
|
| 59 |
AutoEvalColumn_NodeClassification = make_dataclass("AutoEvalColumn_NodeClassification", auto_eval_column_dict_nc, frozen=True)
|
| 60 |
|
| 61 |
+
|
| 62 |
+
auto_eval_column_dict_nr = []
|
| 63 |
+
auto_eval_column_dict_nr.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 64 |
+
auto_eval_column_dict_nr.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
|
| 65 |
+
for task in nr_tasks:
|
| 66 |
+
auto_eval_column_dict_nr.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 67 |
+
auto_eval_column_dict_nr.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
|
| 68 |
+
auto_eval_column_dict_nr.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
|
| 69 |
+
auto_eval_column_dict_nr.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
|
| 70 |
+
auto_eval_column_dict_nr.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)])
|
| 71 |
+
auto_eval_column_dict_nr.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)])
|
| 72 |
+
auto_eval_column_dict_nr.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)])
|
| 73 |
+
|
| 74 |
+
AutoEvalColumn_NodeRegression = make_dataclass("AutoEvalColumn_NodeRegression", auto_eval_column_dict_nr, frozen=True)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
auto_eval_column_dict_lp = []
|
| 78 |
+
auto_eval_column_dict_lp.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 79 |
+
auto_eval_column_dict_lp.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
|
| 80 |
+
for task in lp_tasks:
|
| 81 |
+
auto_eval_column_dict_lp.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 82 |
+
auto_eval_column_dict_lp.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
|
| 83 |
+
auto_eval_column_dict_lp.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
|
| 84 |
+
auto_eval_column_dict_lp.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
|
| 85 |
+
auto_eval_column_dict_lp.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)])
|
| 86 |
+
auto_eval_column_dict_lp.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)])
|
| 87 |
+
auto_eval_column_dict_lp.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)])
|
| 88 |
+
|
| 89 |
+
AutoEvalColumn_LinkPrediction = make_dataclass("AutoEvalColumn_LinkPrediction", auto_eval_column_dict_lp, frozen=True)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
## For the queue columns in the submission tab
|
| 93 |
@dataclass(frozen=True)
|
| 94 |
class EvalQueueColumn: # Queue column
|
|
|
|
| 213 |
# Column selection
|
| 214 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 215 |
COLS_NC = [c.name for c in fields(AutoEvalColumn_NodeClassification) if not c.hidden]
|
| 216 |
+
COLS_NR = [c.name for c in fields(AutoEvalColumn_NodeRegression) if not c.hidden]
|
| 217 |
+
COLS_LP = [c.name for c in fields(AutoEvalColumn_LinkPrediction) if not c.hidden]
|
| 218 |
+
|
| 219 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
| 220 |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 221 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
src/populate.py
CHANGED
|
@@ -6,7 +6,11 @@ import pandas as pd
|
|
| 6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
| 8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
'''
|
| 12 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
|
@@ -23,7 +27,16 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
| 23 |
return raw_data, df
|
| 24 |
'''
|
| 25 |
|
| 26 |
-
def get_leaderboard_df(EVAL_REQUESTS_PATH,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
model_result_filepaths = []
|
| 29 |
for root,_, files in os.walk(EVAL_REQUESTS_PATH):
|
|
@@ -36,7 +49,9 @@ def get_leaderboard_df(EVAL_REQUESTS_PATH, tasks) -> pd.DataFrame:
|
|
| 36 |
for model in model_result_filepaths:
|
| 37 |
import json
|
| 38 |
with open(model) as f:
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
|
| 41 |
for model in model_res:
|
| 42 |
model["test"] = literal_eval(model["test"])
|
|
@@ -61,7 +76,7 @@ def get_leaderboard_df(EVAL_REQUESTS_PATH, tasks) -> pd.DataFrame:
|
|
| 61 |
|
| 62 |
#df_res = pd.DataFrame([{col: model[col] for col in columns_to_show} for model in model_res])
|
| 63 |
print(df_res)
|
| 64 |
-
ranks = df_res[list(name2short_name.values())].rank(ascending =
|
| 65 |
df_res.rename(columns={'model': 'Model', 'author': 'Author', 'email': 'Email', 'paper_url': 'Paper URL', 'github_url': 'Github URL', 'submitted_time': 'Time', 'params': '# of Params'}, inplace=True)
|
| 66 |
df_res['Average Rank⬆️'] = ranks.mean(axis=1)
|
| 67 |
df_res.sort_values(by='Average Rank⬆️', ascending=True, inplace=True)
|
|
|
|
| 6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
| 8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 9 |
+
from src.about import (
|
| 10 |
+
nc_tasks,
|
| 11 |
+
nr_tasks,
|
| 12 |
+
lp_tasks,
|
| 13 |
+
)
|
| 14 |
|
| 15 |
'''
|
| 16 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
|
|
|
| 27 |
return raw_data, df
|
| 28 |
'''
|
| 29 |
|
| 30 |
+
def get_leaderboard_df(EVAL_REQUESTS_PATH, task_type) -> pd.DataFrame:
|
| 31 |
+
if task_type == 'Node Classification':
|
| 32 |
+
ascending = False
|
| 33 |
+
tasks = nc_tasks
|
| 34 |
+
elif task_type == 'Node Regression':
|
| 35 |
+
ascending = True
|
| 36 |
+
tasks = nr_tasks
|
| 37 |
+
elif task_type == 'Link Prediction':
|
| 38 |
+
ascending = False
|
| 39 |
+
tasks = lp_tasks
|
| 40 |
|
| 41 |
model_result_filepaths = []
|
| 42 |
for root,_, files in os.walk(EVAL_REQUESTS_PATH):
|
|
|
|
| 49 |
for model in model_result_filepaths:
|
| 50 |
import json
|
| 51 |
with open(model) as f:
|
| 52 |
+
out = json.load(f)
|
| 53 |
+
if ('task' in out) and (out['task'] == task_type):
|
| 54 |
+
model_res.append(out)
|
| 55 |
|
| 56 |
for model in model_res:
|
| 57 |
model["test"] = literal_eval(model["test"])
|
|
|
|
| 76 |
|
| 77 |
#df_res = pd.DataFrame([{col: model[col] for col in columns_to_show} for model in model_res])
|
| 78 |
print(df_res)
|
| 79 |
+
ranks = df_res[list(name2short_name.values())].rank(ascending = ascending)
|
| 80 |
df_res.rename(columns={'model': 'Model', 'author': 'Author', 'email': 'Email', 'paper_url': 'Paper URL', 'github_url': 'Github URL', 'submitted_time': 'Time', 'params': '# of Params'}, inplace=True)
|
| 81 |
df_res['Average Rank⬆️'] = ranks.mean(axis=1)
|
| 82 |
df_res.sort_values(by='Average Rank⬆️', ascending=True, inplace=True)
|
src/submission/submit.py
CHANGED
|
@@ -44,7 +44,14 @@ def add_new_eval(
|
|
| 44 |
if not REQUESTED_MODELS:
|
| 45 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
#precision = precision.split(" ")[0]
|
| 50 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
|
|
|
| 44 |
if not REQUESTED_MODELS:
|
| 45 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 46 |
|
| 47 |
+
if task_track == 'Node Classification':
|
| 48 |
+
task_type = 'nc'
|
| 49 |
+
elif task_track == 'Node Regression':
|
| 50 |
+
task_type = 'nr'
|
| 51 |
+
elif task_track == 'Link Prediction':
|
| 52 |
+
task_type = 'lp'
|
| 53 |
+
|
| 54 |
+
model_path = model + '_' + task_type
|
| 55 |
|
| 56 |
#precision = precision.split(" ")[0]
|
| 57 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|