Spaces:
Runtime error
Runtime error
| import subprocess | |
| import gradio as gr | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| nc_tasks, | |
| nr_tasks, | |
| lp_tasks, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| #COLS, | |
| COLS_NC, | |
| COLS_NR, | |
| COLS_LP, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| NUMERIC_INTERVALS, | |
| TYPES, | |
| AutoEvalColumn_NodeClassification, | |
| AutoEvalColumn_NodeRegression, | |
| AutoEvalColumn_LinkPrediction, | |
| #AutoEvalColumn, | |
| ModelType, | |
| TASK_LIST, | |
| OFFICIAL, | |
| HONOR, | |
| fields, | |
| WeightType, | |
| Precision | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| try: | |
| print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(EVAL_RESULTS_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| restart_go = 1 | |
| # Searching and filtering | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| columns: list, | |
| query: str, | |
| ): | |
| #filtered_df = filter_models(hidden_df, size_query, show_deleted) | |
| filtered_df = filter_queries(query, hidden_df) | |
| print(columns) | |
| df = select_columns(filtered_df, columns) | |
| return df | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))] | |
| def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| always_here_cols = [ | |
| "Model" | |
| ] | |
| # We use COLS to maintain sorting | |
| #print(df) | |
| #print(df.columns) | |
| #print([c for c in df.columns if c in columns]) | |
| filtered_df = df[ | |
| always_here_cols + [c for c in df.columns if c in columns] | |
| ] | |
| #print(filtered_df) | |
| return filtered_df | |
| def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| filtered_df = filtered_df.drop_duplicates( | |
| subset=[AutoEvalColumn.model.name] | |
| ) | |
| return filtered_df | |
| def filter_models( | |
| df: pd.DataFrame, size_query: list, show_deleted: bool | |
| ) -> pd.DataFrame: | |
| # Show all models | |
| if show_deleted: | |
| filtered_df = df | |
| else: # Show only still on the hub models | |
| filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
| #type_emoji = [t[0] for t in type_query] | |
| #filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
| #filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
| numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
| params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
| mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
| filtered_df = filtered_df.loc[mask] | |
| return filtered_df | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("🏅 Entity Classification Leaderboard", elem_id="llm-benchmark-tab-table", id=0): | |
| global COLS | |
| COLS = COLS_NC | |
| AutoEvalColumn = AutoEvalColumn_NodeClassification | |
| original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Node Classification") | |
| leaderboard_df = original_df.copy() | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if not c.hidden and not c.never_hidden | |
| ], | |
| value=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| #print(leaderboard_df) | |
| #print(shown_columns.value) | |
| leaderboard_table = gr.components.Dataframe( | |
| value=leaderboard_df[ | |
| [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
| + shown_columns.value | |
| ], | |
| headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=original_df[COLS], | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False, | |
| ) | |
| search_bar.submit( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| for selector in [shown_columns]: | |
| selector.change( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| gr.Markdown("Evaluation metric: AUROC ⬆️") | |
| with gr.TabItem("🏅 Entity Regression Leaderboard", elem_id="llm-benchmark-tab-table", id=1): | |
| COLS = COLS_NR | |
| AutoEvalColumn = AutoEvalColumn_NodeRegression | |
| original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Node Regression") | |
| leaderboard_df = original_df.copy() | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if not c.hidden and not c.never_hidden | |
| ], | |
| value=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| #print(leaderboard_df) | |
| #print(shown_columns) | |
| leaderboard_table = gr.components.Dataframe( | |
| value=leaderboard_df[ | |
| [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
| + shown_columns.value | |
| ], | |
| headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=original_df[COLS], | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False, | |
| ) | |
| search_bar.submit( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| for selector in [shown_columns]: | |
| selector.change( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| gr.Markdown("Evaluation metric: MAE ⬇️") | |
| with gr.TabItem("🏅 Recommendation Leaderboard", elem_id="llm-benchmark-tab-table", id=2): | |
| COLS = COLS_LP | |
| AutoEvalColumn = AutoEvalColumn_LinkPrediction | |
| original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Link Prediction") | |
| leaderboard_df = original_df.copy() | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if not c.hidden and not c.never_hidden | |
| ], | |
| value=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| #print(leaderboard_df) | |
| #print(shown_columns) | |
| leaderboard_table = gr.components.Dataframe( | |
| value=leaderboard_df[ | |
| [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
| + shown_columns.value | |
| ], | |
| headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=original_df[COLS], | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False, | |
| ) | |
| search_bar.submit( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| for selector in [shown_columns]: | |
| selector.change( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| gr.Markdown("Evaluation metric: MAP ⬆️") | |
| with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
| with gr.Column(): | |
| with gr.Row(): | |
| gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| with gr.Row(): | |
| gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Column(): | |
| author_name_textbox = gr.Textbox(label="Your name") | |
| email_textbox = gr.Textbox(label="Your email") | |
| relbench_version_textbox = gr.Textbox(label="RelBench version") | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| ''' | |
| dataset_name_textbox = gr.Dropdown( | |
| choices=[t.value.name for t in TASK_LIST], | |
| label="Task name (e.g. rel-amazon-user-churn)", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| ''' | |
| official_or_not = gr.Dropdown( | |
| choices=[i.value.name for i in OFFICIAL], | |
| label="Is it an official submission?", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| paper_url_textbox = gr.Textbox(label="Paper URL Link") | |
| github_url_textbox = gr.Textbox(label="GitHub URL Link") | |
| #parameters_textbox = gr.Textbox(label="Number of parameters") | |
| task_track = gr.Dropdown( | |
| choices=['Entity Classification', 'Entity Regression', 'Recommendation'], | |
| label="Choose the task track", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| honor_code = gr.Dropdown( | |
| choices=[i.value.name for i in HONOR], | |
| label="Do you agree to the honor code?", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| test_performance = gr.Textbox(lines = 16, label="Test set performance, use {task: [mean,std]} format e.g. {'rel-amazon/user-churn': [0.352,0.023], 'rel-amazon/user-ltv': [0.304,0.022], ...}") | |
| valid_performance = gr.Textbox(lines = 16, label="Validation set performance, use {task: [mean,std]} format e.g. {'rel-amazon/user-churn': [0.352,0.023], 'rel-amazon/user-ltv': [0.304,0.022], ...}") | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| add_new_eval, | |
| [ | |
| author_name_textbox, | |
| email_textbox, | |
| relbench_version_textbox, | |
| model_name_textbox, | |
| official_or_not, | |
| test_performance, | |
| valid_performance, | |
| paper_url_textbox, | |
| github_url_textbox, | |
| #parameters_textbox, | |
| honor_code, | |
| task_track | |
| ], | |
| submission_result, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() |