Spaces:
Runtime error
Runtime error
Update anomaly_detection.py
Browse files- anomaly_detection.py +52 -29
anomaly_detection.py
CHANGED
|
@@ -1,23 +1,30 @@
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.optim as optim
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
from sklearn.preprocessing import MinMaxScaler
|
| 6 |
|
| 7 |
-
class
|
| 8 |
-
def __init__(self, input_size):
|
| 9 |
-
super(
|
|
|
|
|
|
|
| 10 |
self.encoder = nn.Sequential(
|
| 11 |
nn.Linear(input_size, 256),
|
| 12 |
nn.ReLU(),
|
| 13 |
nn.Linear(256, 128),
|
| 14 |
nn.ReLU(),
|
| 15 |
nn.Linear(128, 64),
|
| 16 |
-
nn.ReLU()
|
| 17 |
-
nn.Linear(64, 32)
|
| 18 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
self.decoder = nn.Sequential(
|
| 20 |
-
nn.Linear(
|
| 21 |
nn.ReLU(),
|
| 22 |
nn.Linear(64, 128),
|
| 23 |
nn.ReLU(),
|
|
@@ -25,59 +32,75 @@ class Autoencoder(nn.Module):
|
|
| 25 |
nn.ReLU(),
|
| 26 |
nn.Linear(256, input_size)
|
| 27 |
)
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def forward(self, x):
|
| 30 |
batch_size, seq_len, _ = x.size()
|
| 31 |
x = x.view(batch_size * seq_len, -1)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
|
| 37 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
-
|
| 39 |
# Normalize posture
|
| 40 |
scaler_posture = MinMaxScaler()
|
| 41 |
X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))
|
| 42 |
-
|
| 43 |
# Process facial embeddings
|
| 44 |
X_embeddings = torch.FloatTensor(X_embeddings).to(device)
|
| 45 |
if X_embeddings.dim() == 2:
|
| 46 |
X_embeddings = X_embeddings.unsqueeze(0)
|
| 47 |
-
|
| 48 |
# Process posture
|
| 49 |
X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device)
|
| 50 |
if X_posture_scaled.dim() == 2:
|
| 51 |
X_posture_scaled = X_posture_scaled.unsqueeze(0)
|
| 52 |
-
|
| 53 |
-
model_embeddings =
|
| 54 |
-
model_posture =
|
| 55 |
-
|
| 56 |
-
criterion = nn.MSELoss()
|
| 57 |
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
| 58 |
optimizer_posture = optim.Adam(model_posture.parameters())
|
| 59 |
-
|
| 60 |
# Train models
|
| 61 |
for epoch in range(epochs):
|
| 62 |
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
|
| 63 |
(model_posture, optimizer_posture, X_posture_scaled)]:
|
| 64 |
model.train()
|
| 65 |
optimizer.zero_grad()
|
| 66 |
-
|
| 67 |
-
loss =
|
| 68 |
loss.backward()
|
| 69 |
optimizer.step()
|
| 70 |
-
|
| 71 |
-
# Compute
|
| 72 |
model_embeddings.eval()
|
| 73 |
model_posture.eval()
|
| 74 |
with torch.no_grad():
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
return mse_embeddings, mse_posture
|
| 82 |
|
| 83 |
def determine_anomalies(mse_values, threshold):
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.optim as optim
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
import numpy as np
|
| 6 |
from sklearn.preprocessing import MinMaxScaler
|
| 7 |
|
| 8 |
+
class VAE(nn.Module):
|
| 9 |
+
def __init__(self, input_size, latent_dim=32):
|
| 10 |
+
super(VAE, self).__init__()
|
| 11 |
+
|
| 12 |
+
# Encoder
|
| 13 |
self.encoder = nn.Sequential(
|
| 14 |
nn.Linear(input_size, 256),
|
| 15 |
nn.ReLU(),
|
| 16 |
nn.Linear(256, 128),
|
| 17 |
nn.ReLU(),
|
| 18 |
nn.Linear(128, 64),
|
| 19 |
+
nn.ReLU()
|
|
|
|
| 20 |
)
|
| 21 |
+
|
| 22 |
+
self.fc_mu = nn.Linear(64, latent_dim)
|
| 23 |
+
self.fc_logvar = nn.Linear(64, latent_dim)
|
| 24 |
+
|
| 25 |
+
# Decoder
|
| 26 |
self.decoder = nn.Sequential(
|
| 27 |
+
nn.Linear(latent_dim, 64),
|
| 28 |
nn.ReLU(),
|
| 29 |
nn.Linear(64, 128),
|
| 30 |
nn.ReLU(),
|
|
|
|
| 32 |
nn.ReLU(),
|
| 33 |
nn.Linear(256, input_size)
|
| 34 |
)
|
| 35 |
+
|
| 36 |
+
def encode(self, x):
|
| 37 |
+
h = self.encoder(x)
|
| 38 |
+
return self.fc_mu(h), self.fc_logvar(h)
|
| 39 |
+
|
| 40 |
+
def reparameterize(self, mu, logvar):
|
| 41 |
+
std = torch.exp(0.5 * logvar)
|
| 42 |
+
eps = torch.randn_like(std)
|
| 43 |
+
return mu + eps * std
|
| 44 |
+
|
| 45 |
+
def decode(self, z):
|
| 46 |
+
return self.decoder(z)
|
| 47 |
+
|
| 48 |
def forward(self, x):
|
| 49 |
batch_size, seq_len, _ = x.size()
|
| 50 |
x = x.view(batch_size * seq_len, -1)
|
| 51 |
+
mu, logvar = self.encode(x)
|
| 52 |
+
z = self.reparameterize(mu, logvar)
|
| 53 |
+
decoded = self.decode(z)
|
| 54 |
+
return decoded.view(batch_size, seq_len, -1), mu, logvar
|
| 55 |
+
|
| 56 |
+
def vae_loss(recon_x, x, mu, logvar):
|
| 57 |
+
BCE = F.mse_loss(recon_x, x, reduction='sum')
|
| 58 |
+
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
| 59 |
+
return BCE + KLD
|
| 60 |
|
| 61 |
def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
|
| 62 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 63 |
+
|
| 64 |
# Normalize posture
|
| 65 |
scaler_posture = MinMaxScaler()
|
| 66 |
X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))
|
| 67 |
+
|
| 68 |
# Process facial embeddings
|
| 69 |
X_embeddings = torch.FloatTensor(X_embeddings).to(device)
|
| 70 |
if X_embeddings.dim() == 2:
|
| 71 |
X_embeddings = X_embeddings.unsqueeze(0)
|
| 72 |
+
|
| 73 |
# Process posture
|
| 74 |
X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device)
|
| 75 |
if X_posture_scaled.dim() == 2:
|
| 76 |
X_posture_scaled = X_posture_scaled.unsqueeze(0)
|
| 77 |
+
|
| 78 |
+
model_embeddings = VAE(input_size=X_embeddings.shape[2]).to(device)
|
| 79 |
+
model_posture = VAE(input_size=X_posture_scaled.shape[2]).to(device)
|
| 80 |
+
|
|
|
|
| 81 |
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
| 82 |
optimizer_posture = optim.Adam(model_posture.parameters())
|
| 83 |
+
|
| 84 |
# Train models
|
| 85 |
for epoch in range(epochs):
|
| 86 |
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
|
| 87 |
(model_posture, optimizer_posture, X_posture_scaled)]:
|
| 88 |
model.train()
|
| 89 |
optimizer.zero_grad()
|
| 90 |
+
recon_batch, mu, logvar = model(X)
|
| 91 |
+
loss = vae_loss(recon_batch, X, mu, logvar)
|
| 92 |
loss.backward()
|
| 93 |
optimizer.step()
|
| 94 |
+
|
| 95 |
+
# Compute reconstruction error for embeddings and posture
|
| 96 |
model_embeddings.eval()
|
| 97 |
model_posture.eval()
|
| 98 |
with torch.no_grad():
|
| 99 |
+
recon_embeddings, _, _ = model_embeddings(X_embeddings)
|
| 100 |
+
recon_posture, _, _ = model_posture(X_posture_scaled)
|
| 101 |
+
mse_embeddings = F.mse_loss(recon_embeddings, X_embeddings, reduction='none').mean(dim=2).cpu().numpy().squeeze()
|
| 102 |
+
mse_posture = F.mse_loss(recon_posture, X_posture_scaled, reduction='none').mean(dim=2).cpu().numpy().squeeze()
|
| 103 |
+
|
|
|
|
| 104 |
return mse_embeddings, mse_posture
|
| 105 |
|
| 106 |
def determine_anomalies(mse_values, threshold):
|