Spaces:
Runtime error
Runtime error
Update visualization.py
Browse files- visualization.py +60 -0
visualization.py
CHANGED
|
@@ -199,3 +199,63 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
|
| 199 |
plt.tight_layout()
|
| 200 |
plt.close()
|
| 201 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
plt.tight_layout()
|
| 200 |
plt.close()
|
| 201 |
return fig
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_path):
|
| 205 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
| 206 |
+
# Open the video
|
| 207 |
+
cap = cv2.VideoCapture(video_path)
|
| 208 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 209 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 210 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 211 |
+
|
| 212 |
+
# Create the output video writer
|
| 213 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 214 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height + 200)) # Additional 200 pixels for heatmap
|
| 215 |
+
|
| 216 |
+
# Prepare the heatmap data
|
| 217 |
+
heatmap_data = np.vstack((mse_embeddings, mse_posture, mse_voice))
|
| 218 |
+
|
| 219 |
+
# Create a figure for the heatmap
|
| 220 |
+
fig, ax = plt.subplots(figsize=(width/100, 2))
|
| 221 |
+
im = ax.imshow(heatmap_data, aspect='auto', cmap='YlOrRd')
|
| 222 |
+
ax.set_yticks([])
|
| 223 |
+
ax.set_xticks([])
|
| 224 |
+
plt.tight_layout()
|
| 225 |
+
|
| 226 |
+
frame_count = 0
|
| 227 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 228 |
+
|
| 229 |
+
while True:
|
| 230 |
+
ret, frame = cap.read()
|
| 231 |
+
if not ret:
|
| 232 |
+
break
|
| 233 |
+
|
| 234 |
+
# Update the heatmap with the current frame position
|
| 235 |
+
ax.axvline(x=frame_count, color='r', linewidth=2)
|
| 236 |
+
|
| 237 |
+
# Convert the matplotlib figure to an image
|
| 238 |
+
canvas = FigureCanvasAgg(fig)
|
| 239 |
+
canvas.draw()
|
| 240 |
+
heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
|
| 241 |
+
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
| 242 |
+
heatmap_img = cv2.resize(heatmap_img, (width, 200))
|
| 243 |
+
|
| 244 |
+
# Combine the video frame and the heatmap
|
| 245 |
+
combined_frame = np.vstack((frame, heatmap_img))
|
| 246 |
+
|
| 247 |
+
# Add timecode to the frame
|
| 248 |
+
timecode = df['Timecode'][frame_count] if frame_count < len(df) else "End"
|
| 249 |
+
cv2.putText(combined_frame, f"Time: {timecode}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
| 250 |
+
|
| 251 |
+
out.write(combined_frame)
|
| 252 |
+
frame_count += 1
|
| 253 |
+
|
| 254 |
+
# Remove the vertical line for the next iteration
|
| 255 |
+
ax.lines.pop()
|
| 256 |
+
|
| 257 |
+
cap.release()
|
| 258 |
+
out.release()
|
| 259 |
+
plt.close(fig)
|
| 260 |
+
|
| 261 |
+
return output_path
|