Spaces:
Runtime error
Runtime error
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| from facenet_pytorch import InceptionResnetV1, MTCNN | |
| import mediapipe as mp | |
| from fer import FER | |
| from sklearn.cluster import KMeans | |
| from sklearn.preprocessing import StandardScaler, MinMaxScaler | |
| from sklearn.metrics import silhouette_score | |
| from scipy.spatial.distance import cdist | |
| import umap | |
| import pandas as pd | |
| import matplotlib.pyplot as plt | |
| from matplotlib.ticker import MaxNLocator | |
| import gradio as gr | |
| import tempfile | |
| # Initialize models and other global variables | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.999, 0.999, 0.999], min_face_size=100, selection_method='largest') | |
| model = InceptionResnetV1(pretrained='vggface2').eval().to(device) | |
| mp_face_mesh = mp.solutions.face_mesh | |
| face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5) | |
| emotion_detector = FER(mtcnn=False) | |
| def frame_to_timecode(frame_num, original_fps, desired_fps): | |
| total_seconds = frame_num / original_fps | |
| hours = int(total_seconds // 3600) | |
| minutes = int((total_seconds % 3600) // 60) | |
| seconds = int(total_seconds % 60) | |
| milliseconds = int((total_seconds - int(total_seconds)) * 1000) | |
| return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" | |
| def get_face_embedding_and_emotion(face_img): | |
| face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 | |
| face_tensor = (face_tensor - 0.5) / 0.5 | |
| face_tensor = face_tensor.to(device) | |
| with torch.no_grad(): | |
| embedding = model(face_tensor) | |
| emotions = emotion_detector.detect_emotions(face_img) | |
| if emotions: | |
| emotion_dict = emotions[0]['emotions'] | |
| else: | |
| emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']} | |
| return embedding.cpu().numpy().flatten(), emotion_dict | |
| def alignFace(img): | |
| img_raw = img.copy() | |
| results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
| if not results.multi_face_landmarks: | |
| return None | |
| landmarks = results.multi_face_landmarks[0].landmark | |
| left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y], | |
| [landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y], | |
| [landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]]) | |
| right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y], | |
| [landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y], | |
| [landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]]) | |
| left_eye_center = left_eye.mean(axis=0).astype(np.int32) | |
| right_eye_center = right_eye.mean(axis=0).astype(np.int32) | |
| dY = right_eye_center[1] - left_eye_center[1] | |
| dX = right_eye_center[0] - left_eye_center[0] | |
| angle = np.degrees(np.arctan2(dY, dX)) | |
| desired_angle = 0 | |
| angle_diff = desired_angle - angle | |
| height, width = img_raw.shape[:2] | |
| center = (width // 2, height // 2) | |
| rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1) | |
| new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height)) | |
| return new_img | |
| def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps): | |
| video = cv2.VideoCapture(video_path) | |
| if not video.isOpened(): | |
| print(f"Error: Could not open video file at {video_path}") | |
| return {}, {}, desired_fps, 0 | |
| frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| original_fps = video.get(cv2.CAP_PROP_FPS) | |
| if frame_count == 0: | |
| print(f"Error: Video file at {video_path} appears to be empty") | |
| return {}, {}, desired_fps, 0 | |
| embeddings_by_frame = {} | |
| emotions_by_frame = {} | |
| for frame_num in range(0, frame_count, int(original_fps / desired_fps)): | |
| video.set(cv2.CAP_PROP_POS_FRAMES, frame_num) | |
| ret, frame = video.read() | |
| if not ret or frame is None: | |
| print(f"Error: Could not read frame {frame_num}") | |
| continue | |
| try: | |
| boxes, probs = mtcnn.detect(frame) | |
| if boxes is not None and len(boxes) > 0: | |
| box = boxes[0] | |
| if probs[0] >= 0.99: | |
| x1, y1, x2, y2 = [int(b) for b in box] | |
| face = frame[y1:y2, x1:x2] | |
| aligned_face = alignFace(face) | |
| if aligned_face is not None: | |
| aligned_face_resized = cv2.resize(aligned_face, (160, 160)) | |
| output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") | |
| cv2.imwrite(output_path, aligned_face_resized) | |
| embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized) | |
| embeddings_by_frame[frame_num] = embedding | |
| emotions_by_frame[frame_num] = emotion | |
| except Exception as e: | |
| print(f"Error processing frame {frame_num}: {str(e)}") | |
| continue | |
| video.release() | |
| return embeddings_by_frame, emotions_by_frame, desired_fps, original_fps | |
| def cluster_embeddings(embeddings): | |
| if len(embeddings) < 2: | |
| print("Not enough embeddings for clustering. Assigning all to one cluster.") | |
| return np.zeros(len(embeddings), dtype=int) | |
| n_clusters = min(3, len(embeddings)) # Use at most 3 clusters | |
| scaler = StandardScaler() | |
| embeddings_scaled = scaler.fit_transform(embeddings) | |
| kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10) | |
| clusters = kmeans.fit_predict(embeddings_scaled) | |
| return clusters | |
| def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): | |
| for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): | |
| person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") | |
| os.makedirs(person_folder, exist_ok=True) | |
| src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") | |
| dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") | |
| shutil.copy(src, dst) | |
| def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, num_components): | |
| emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'neutral'] | |
| person_data = {} | |
| for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), | |
| emotions_by_frame.items(), clusters): | |
| if cluster not in person_data: | |
| person_data[cluster] = [] | |
| person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions})) | |
| largest_cluster = max(person_data, key=lambda k: len(person_data[k])) | |
| data = person_data[largest_cluster] | |
| data.sort(key=lambda x: x[0]) | |
| frames, embeddings, emotions_data = zip(*data) | |
| embeddings_array = np.array(embeddings) | |
| np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) | |
| reducer = umap.UMAP(n_components=num_components, random_state=1) | |
| embeddings_reduced = reducer.fit_transform(embeddings) | |
| scaler = MinMaxScaler(feature_range=(0, 1)) | |
| embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced) | |
| timecodes = [frame_to_timecode(frame, original_fps, desired_fps) for frame in frames] | |
| times_in_minutes = [frame / (original_fps * 60) for frame in frames] | |
| df_data = { | |
| 'Frame': frames, | |
| 'Timecode': timecodes, | |
| 'Time (Minutes)': times_in_minutes, | |
| 'Embedding_Index': range(len(embeddings)) | |
| } | |
| for i in range(num_components): | |
| df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i] | |
| for emotion in emotions: | |
| df_data[emotion] = [e[emotion] for e in emotions_data] | |
| df = pd.DataFrame(df_data) | |
| return df, largest_cluster | |
| class LSTMAutoencoder(nn.Module): | |
| def __init__(self, input_size, hidden_size=64, num_layers=2): | |
| super(LSTMAutoencoder, self).__init__() | |
| self.input_size = input_size | |
| self.hidden_size = hidden_size | |
| self.num_layers = num_layers | |
| self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) | |
| self.fc = nn.Linear(hidden_size, input_size) | |
| def forward(self, x): | |
| _, (hidden, _) = self.lstm(x) | |
| out = self.fc(hidden[-1]) | |
| return out | |
| def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64): | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| X = torch.FloatTensor(X).to(device) | |
| train_size = int(0.85 * len(X)) | |
| X_train, X_val = X[:train_size], X[train_size:] | |
| model = LSTMAutoencoder(input_size=len(feature_columns)).to(device) | |
| criterion = nn.MSELoss() | |
| optimizer = optim.Adam(model.parameters()) | |
| for epoch in range(epochs): | |
| model.train() | |
| optimizer.zero_grad() | |
| output_train = model(X_train.unsqueeze(0)) | |
| loss_train = criterion(output_train, X_train) | |
| loss_train.backward() | |
| optimizer.step() | |
| model.eval() | |
| with torch.no_grad(): | |
| output_val = model(X_val.unsqueeze(0)) | |
| loss_val = criterion(output_val, X_val) | |
| model.eval() | |
| with torch.no_grad(): | |
| reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy() | |
| mse = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1) | |
| top_indices = mse.argsort()[-num_anomalies:][::-1] | |
| anomalies = np.zeros(len(mse), dtype=bool) | |
| anomalies[top_indices] = True | |
| return anomalies, mse, top_indices, model | |
| def plot_anomaly_scores(df, anomaly_scores, top_indices, title): | |
| fig, ax = plt.subplots(figsize=(16, 8)) | |
| bars = ax.bar(range(len(df)), anomaly_scores, width=0.8) | |
| for i in top_indices: | |
| bars[i].set_color('red') | |
| ax.set_xlabel('Timecode') | |
| ax.set_ylabel('Anomaly Score') | |
| ax.set_title(f'Anomaly Scores Over Time ({title})') | |
| ax.xaxis.set_major_locator(MaxNLocator(nbins=100)) | |
| ticks = ax.get_xticks() | |
| ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right') | |
| plt.tight_layout() | |
| return fig | |
| def plot_emotion(df, emotion): | |
| fig, ax = plt.subplots(figsize=(16, 8)) | |
| values = df[emotion].values | |
| bars = ax.bar(range(len(df)), values, width=0.8) | |
| top_10_indices = np.argsort(values)[-10:] | |
| for i, bar in enumerate(bars): | |
| if i in top_10_indices: | |
| bar.set_color('red') | |
| ax.set_xlabel('Timecode') | |
| ax.set_ylabel(f'{emotion.capitalize()} Score') | |
| ax.set_title(f'{emotion.capitalize()} Scores Over Time') | |
| ax.xaxis.set_major_locator(MaxNLocator(nbins=100)) | |
| ticks = ax.get_xticks() | |
| ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right') | |
| plt.tight_layout() | |
| return fig | |
| def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()): | |
| with tempfile.TemporaryDirectory() as temp_dir: | |
| aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') | |
| organized_faces_folder = os.path.join(temp_dir, 'organized_faces') | |
| os.makedirs(aligned_faces_folder, exist_ok=True) | |
| os.makedirs(organized_faces_folder, exist_ok=True) | |
| progress(0.1, "Extracting and aligning faces") | |
| embeddings_by_frame, emotions_by_frame, _, original_fps = extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps) | |
| if not embeddings_by_frame: | |
| return "No faces were extracted from the video.", None, None, None, None | |
| progress(0.3, "Clustering embeddings") | |
| embeddings = list(embeddings_by_frame.values()) | |
| clusters = cluster_embeddings(embeddings) | |
| progress(0.4, "Organizing faces") | |
| organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) | |
| progress(0.5, "Saving person data") | |
| df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components) | |
| progress(0.6, "Performing anomaly detection") | |
| feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']] | |
| anomalies_all, anomaly_scores_all, top_indices_all, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size) | |
| progress(0.8, "Generating plots") | |
| anomaly_plot = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features") | |
| emotion_plots = [plot_emotion(df, emotion) for emotion in ['fear', 'sad', 'angry']] | |
| progress(0.9, "Preparing results") | |
| results = f"Top {num_anomalies} anomalies (All Features):\n" | |
| results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in | |
| zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)]) | |
| progress(1.0, "Complete") | |
| return results, anomaly_plot, *emotion_plots | |
| # Gradio interface | |
| iface = gr.Interface( | |
| fn=process_video, | |
| inputs=[ | |
| gr.Video(), | |
| gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Anomalies"), | |
| gr.Slider(minimum=2, maximum=5, step=1, value=3, label="Number of Components"), | |
| gr.Slider(minimum=1, maximum=30, step=1, value=20, label="Desired FPS"), | |
| gr.Slider(minimum=1, maximum=64, step=1, value=16, label="Batch Size") | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="Anomaly Detection Results"), | |
| gr.Plot(label="Anomaly Scores"), | |
| gr.Plot(label="Fear Scores"), | |
| gr.Plot(label="Sad Scores"), | |
| gr.Plot(label="Angry Scores") | |
| ], | |
| title="Video Anomaly Detection", | |
| description="Upload a video to detect anomalies in facial expressions and emotions. Adjust parameters as needed." | |
| ) | |
| iface.launch() |