Spaces:
Build error
Build error
creating app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
import cv2
|
| 7 |
+
|
| 8 |
+
def process_image(image, effect_type="Gaussian Blur", blur_intensity=15):
|
| 9 |
+
"""
|
| 10 |
+
Process the image with selected effect
|
| 11 |
+
"""
|
| 12 |
+
# Resize image to 512x512
|
| 13 |
+
image = Image.fromarray(image).resize((512, 512))
|
| 14 |
+
|
| 15 |
+
if effect_type == "Gaussian Blur":
|
| 16 |
+
# Generate segmentation mask
|
| 17 |
+
segmenter = pipeline("image-segmentation",
|
| 18 |
+
model="openmmlab/upernet-swin-base",
|
| 19 |
+
device=0 if torch.cuda.is_available() else -1)
|
| 20 |
+
|
| 21 |
+
results = segmenter(image)
|
| 22 |
+
mask = np.zeros((512, 512), dtype=np.uint8)
|
| 23 |
+
|
| 24 |
+
for segment in results:
|
| 25 |
+
if segment['label'].lower() == 'person':
|
| 26 |
+
segment_mask = np.array(segment['mask'])
|
| 27 |
+
mask[segment_mask > 0] = 255
|
| 28 |
+
|
| 29 |
+
# Apply gaussian blur
|
| 30 |
+
img_np = np.array(image)
|
| 31 |
+
blurred = cv2.GaussianBlur(img_np, (0, 0), blur_intensity)
|
| 32 |
+
|
| 33 |
+
mask_np = mask / 255.0
|
| 34 |
+
mask_np = np.stack([mask_np] * 3, axis=-1)
|
| 35 |
+
|
| 36 |
+
result = img_np * mask_np + blurred * (1 - mask_np)
|
| 37 |
+
return result.astype(np.uint8)
|
| 38 |
+
|
| 39 |
+
else: # Depth-based blur
|
| 40 |
+
# Generate depth map
|
| 41 |
+
depth_estimator = pipeline("depth-estimation",
|
| 42 |
+
model="Intel/dpt-large",
|
| 43 |
+
device=0 if torch.cuda.is_available() else -1)
|
| 44 |
+
|
| 45 |
+
depth_result = depth_estimator(image)
|
| 46 |
+
depth_map = depth_result['predicted_depth']
|
| 47 |
+
if torch.is_tensor(depth_map):
|
| 48 |
+
depth_map = depth_map.cpu().numpy()
|
| 49 |
+
|
| 50 |
+
# Apply depth-based blur
|
| 51 |
+
img_np = np.array(image)
|
| 52 |
+
depth_norm = blur_intensity * (1 - (depth_map - depth_map.min()) /
|
| 53 |
+
(depth_map.max() - depth_map.min()))
|
| 54 |
+
|
| 55 |
+
result = np.zeros_like(img_np)
|
| 56 |
+
for sigma in range(int(blur_intensity) + 1):
|
| 57 |
+
if sigma == 0:
|
| 58 |
+
continue
|
| 59 |
+
|
| 60 |
+
kernel_size = 2 * int(4 * sigma + 0.5) + 1
|
| 61 |
+
mask = (depth_norm >= sigma - 0.5) & (depth_norm < sigma + 0.5)
|
| 62 |
+
|
| 63 |
+
if not mask.any():
|
| 64 |
+
continue
|
| 65 |
+
|
| 66 |
+
blurred = cv2.GaussianBlur(img_np, (kernel_size, kernel_size), sigma)
|
| 67 |
+
result[mask] = blurred[mask]
|
| 68 |
+
|
| 69 |
+
min_depth_mask = depth_norm > blur_intensity-0.5
|
| 70 |
+
result[min_depth_mask] = img_np[min_depth_mask]
|
| 71 |
+
|
| 72 |
+
return result
|
| 73 |
+
|
| 74 |
+
# Create Gradio interface
|
| 75 |
+
demo = gr.Interface(
|
| 76 |
+
fn=process_image,
|
| 77 |
+
inputs=[
|
| 78 |
+
gr.Image(label="Upload Image", type="numpy"),
|
| 79 |
+
gr.Radio(["Gaussian Blur", "Depth-based Blur"], label="Effect Type", value="Gaussian Blur"),
|
| 80 |
+
gr.Slider(minimum=1, maximum=30, value=15, label="Blur Intensity")
|
| 81 |
+
],
|
| 82 |
+
outputs=gr.Image(label="Result"),
|
| 83 |
+
title="Image Background Effects",
|
| 84 |
+
description="""Upload an image to apply background effects:
|
| 85 |
+
1. Gaussian Blur: Blurs the background while keeping the person sharp
|
| 86 |
+
2. Depth-based Blur: Applies varying blur based on depth (bokeh effect)""",
|
| 87 |
+
examples=[], # You can add example images later
|
| 88 |
+
cache_examples=False
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
demo.launch()
|