Spaces:
Sleeping
Sleeping
all project files
Browse files- all_model.py +23 -0
- app.py +88 -0
- dataset/reliance_30min.csv +0 -0
- helper.py +238 -0
- model/xgb_f_beta_model.sav +0 -0
all_model.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
import numpy as np
|
| 3 |
+
import xgboost
|
| 4 |
+
# from xgboost import XGBClassifier
|
| 5 |
+
# import xgboost as xgb
|
| 6 |
+
|
| 7 |
+
"""Input: NULL
|
| 8 |
+
Output: Model
|
| 9 |
+
"""
|
| 10 |
+
def load_model():
|
| 11 |
+
load_model = pickle.load(open('model/xgb_f_beta_model.sav','rb'))
|
| 12 |
+
|
| 13 |
+
return load_model
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
""" Input: Model, Selected_date Data
|
| 17 |
+
Output: Predicted Score
|
| 18 |
+
"""
|
| 19 |
+
def prediction(model,data):
|
| 20 |
+
pred = model.predict_proba(data)
|
| 21 |
+
score = np.average(pred[:,1:])
|
| 22 |
+
|
| 23 |
+
return score
|
app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import datetime
|
| 4 |
+
import numpy as np
|
| 5 |
+
import datetime
|
| 6 |
+
import helper
|
| 7 |
+
import all_model
|
| 8 |
+
|
| 9 |
+
def show_information():
|
| 10 |
+
# Show Information about the selected Stock
|
| 11 |
+
st.header('🤫Did you know💡')
|
| 12 |
+
st.caption("Analyzing data from 2015 to 2021")
|
| 13 |
+
st.text("1) There is a 60% chance of gap up opening in any random trade in Reliance 😮 ")
|
| 14 |
+
st.text("2) 1% of the gap up is more than Rs:15.00 i.e more quantity == more profit😇")
|
| 15 |
+
st.text("3) Median, Q3 or 75th percentile have increased from 2015(1.8) to 2021(11.55)💰")
|
| 16 |
+
|
| 17 |
+
def select_date():
|
| 18 |
+
# Select the date for Prediction
|
| 19 |
+
selected_date = st.date_input(
|
| 20 |
+
"Which date you want to check",
|
| 21 |
+
datetime.date(2022, 3, 6))
|
| 22 |
+
st.write('Your selected date is:', selected_date)
|
| 23 |
+
|
| 24 |
+
return selected_date
|
| 25 |
+
|
| 26 |
+
@st.cache
|
| 27 |
+
def prepare_data_for_selected_date():
|
| 28 |
+
df = pd.read_csv("dataset/reliance_30min.csv")
|
| 29 |
+
df = helper.format_date(df)
|
| 30 |
+
df = helper.replace_vol(df)
|
| 31 |
+
df = helper.feature_main(df)
|
| 32 |
+
|
| 33 |
+
return df
|
| 34 |
+
|
| 35 |
+
def freature_data(df,date):
|
| 36 |
+
# st.dataframe(df.loc[str(date)])
|
| 37 |
+
df = df.loc[str(date)]
|
| 38 |
+
df = df.drop(columns=['date'],axis=1)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
return df
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def show_prediction_result(prepared_data):
|
| 45 |
+
model = all_model.load_model()
|
| 46 |
+
result = all_model.prediction(model,prepared_data)
|
| 47 |
+
|
| 48 |
+
return result
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def main():
|
| 53 |
+
st.title('PROFIT IN THE MORNING!')
|
| 54 |
+
option = st.selectbox(
|
| 55 |
+
'Which stock would you like to analyze?',
|
| 56 |
+
('None','Reliance', 'Airtel', 'State Bank Of India'))
|
| 57 |
+
|
| 58 |
+
st.write('You selected:', option)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
if option=="Reliance":
|
| 63 |
+
data_link = ("C:/Users/Rajdeep Borgohain.000/Desktop/reliance_30min.csv")
|
| 64 |
+
dateSelect = False
|
| 65 |
+
# About Reliance Stock
|
| 66 |
+
show_information()
|
| 67 |
+
selected_date = select_date()
|
| 68 |
+
prepared_data = prepare_data_for_selected_date()
|
| 69 |
+
prepared_data = freature_data(prepared_data,selected_date)
|
| 70 |
+
score = show_prediction_result(prepared_data)
|
| 71 |
+
st.write('')
|
| 72 |
+
selected_date+=datetime.timedelta(days=1)
|
| 73 |
+
|
| 74 |
+
if score == 'nan':
|
| 75 |
+
text = f'No data avaliable for the selected date {selected_date}'
|
| 76 |
+
st.warning(text)
|
| 77 |
+
elif score >= 0.5:
|
| 78 |
+
score = np.round(score,4)*100
|
| 79 |
+
text = f'The chances of Gap up on: {selected_date} is {score}%'
|
| 80 |
+
st.success(text)
|
| 81 |
+
elif score < 0.5:
|
| 82 |
+
text = f'The chances of Gap up on: {selected_date} is {score}'
|
| 83 |
+
st.error(text)
|
| 84 |
+
else:
|
| 85 |
+
st.text('Data Not Avaliable!')
|
| 86 |
+
|
| 87 |
+
if __name__ == "__main__":
|
| 88 |
+
main()
|
dataset/reliance_30min.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
helper.py
ADDED
|
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import talib as ta
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
def format_date(df):
|
| 6 |
+
format = '%Y-%m-%d %H:%M:%S'
|
| 7 |
+
df['Datetime'] = pd.to_datetime(df['date'] + ' ' + df['time'], format=format)
|
| 8 |
+
df = df.set_index(pd.DatetimeIndex(df['Datetime']))
|
| 9 |
+
df = df.drop('Datetime', axis=1)
|
| 10 |
+
|
| 11 |
+
return df
|
| 12 |
+
|
| 13 |
+
# https://stackoverflow.com/questions/39684548/convert-the-string-2-90k-to-2900-or-5-2m-to-5200000-in-pandas-dataframe
|
| 14 |
+
def replace_vol(df):
|
| 15 |
+
df.volume = (df.volume.replace(r'[KM]+$', '', regex=True).astype(float) * \
|
| 16 |
+
df.volume.str.extract(r'[\d\.]+([KM]+)', expand=False)
|
| 17 |
+
.fillna(1)
|
| 18 |
+
.replace(['K','M'], [10**3, 10**6]).astype(int))
|
| 19 |
+
return df
|
| 20 |
+
|
| 21 |
+
def get_all_features(df):
|
| 22 |
+
#get_overlap_studies
|
| 23 |
+
# BBANDS - Bollinger Bands
|
| 24 |
+
df['bbub'], df['bbmb'], df['bblb'] = ta.BBANDS(df['close'])
|
| 25 |
+
|
| 26 |
+
# DEMA - Double Exponential Moving Average
|
| 27 |
+
df['DEMA_100'] = ta.DEMA(df['close'],timeperiod=100)
|
| 28 |
+
df['DEMA_30'] = ta.DEMA(df['close'],timeperiod=30)
|
| 29 |
+
df['DEMA_5'] = ta.DEMA(df['close'],timeperiod=5)
|
| 30 |
+
|
| 31 |
+
# EMA - Exponential Moving Average
|
| 32 |
+
df['EMA_100'] = ta.EMA(df['close'],timeperiod=100)
|
| 33 |
+
df['EMA_30'] = ta.EMA(df['close'],timeperiod=30)
|
| 34 |
+
df['EMA_5'] = ta.EMA(df['close'],timeperiod=5)
|
| 35 |
+
|
| 36 |
+
# HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
|
| 37 |
+
df['HT_TRENDLINE'] = ta.HT_TRENDLINE(df['close'])
|
| 38 |
+
|
| 39 |
+
# KAMA - Kaufman Adaptive Moving Average
|
| 40 |
+
df['KAMA'] = ta.KAMA(df['close'])
|
| 41 |
+
|
| 42 |
+
# MA - Moving average
|
| 43 |
+
df['MA_100'] = ta.MA(df['close'],timeperiod=100)
|
| 44 |
+
df['MA_30'] = ta.MA(df['close'],timeperiod=30)
|
| 45 |
+
df['MA_5'] = ta.MA(df['close'],timeperiod=5)
|
| 46 |
+
|
| 47 |
+
# MAMA - MESA Adaptive Moving Average
|
| 48 |
+
df['MAMA'], df['FAMA'] = ta.MAMA(df['close'])
|
| 49 |
+
|
| 50 |
+
# MIDPOINT - MidPoint over period
|
| 51 |
+
df['MIDPOINT'] = ta.MIDPOINT(df['close'])
|
| 52 |
+
|
| 53 |
+
# MIDPRICE - Midpoint Price over period
|
| 54 |
+
df['MIDPRICE'] = ta.MIDPRICE(df.high, df.low, timeperiod=14)
|
| 55 |
+
|
| 56 |
+
# SAR - Parabolic SAR
|
| 57 |
+
df['SAR'] = ta.SAR(df.high, df.low, acceleration=0, maximum=0)
|
| 58 |
+
|
| 59 |
+
# SAREXT - Parabolic SAR - Extended
|
| 60 |
+
df['SAREXT'] = ta.SAREXT(df.high, df.low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
|
| 61 |
+
|
| 62 |
+
# SMA - Simple Moving Average
|
| 63 |
+
df['SMA_100'] = ta.SMA(df['close'],timeperiod=100)
|
| 64 |
+
df['SMA_30'] = ta.SMA(df['close'],timeperiod=30)
|
| 65 |
+
df['SMA_5'] = ta.SMA(df['close'],timeperiod=5)
|
| 66 |
+
|
| 67 |
+
# T3 - Triple Exponential Moving Average (T3)
|
| 68 |
+
df['T3'] = ta.T3(df.close, timeperiod=5, vfactor=0)
|
| 69 |
+
|
| 70 |
+
# TEMA - Triple Exponential Moving Average
|
| 71 |
+
df['TEMA_100'] = ta.TEMA(df['close'],timeperiod=100)
|
| 72 |
+
df['TEMA_30'] = ta.TEMA(df['close'],timeperiod=30)
|
| 73 |
+
df['TEMA_5'] = ta.TEMA(df['close'],timeperiod=5)
|
| 74 |
+
|
| 75 |
+
# TRIMA - Triangular Moving Average
|
| 76 |
+
df['TRIMA_100'] = ta.TRIMA(df['close'],timeperiod=100)
|
| 77 |
+
df['TRIMA_30'] = ta.TRIMA(df['close'],timeperiod=30)
|
| 78 |
+
df['TRIMA_5'] = ta.TRIMA(df['close'],timeperiod=5)
|
| 79 |
+
|
| 80 |
+
# WMA - Weighted Moving Average
|
| 81 |
+
df['WMA_100'] = ta.WMA(df['close'],timeperiod=100)
|
| 82 |
+
df['WMA_30'] = ta.WMA(df['close'],timeperiod=30)
|
| 83 |
+
df['WMA_5'] = ta.WMA(df['close'],timeperiod=5)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
#get_momentum_indicator
|
| 87 |
+
# ADX - Average Directional Movement Index
|
| 88 |
+
df['ADX'] = ta.ADX(df.high, df.low, df.close, timeperiod=14)
|
| 89 |
+
|
| 90 |
+
# ADXR - Average Directional Movement Index Rating
|
| 91 |
+
df['ADXR'] = ta.ADXR(df.high, df.low, df.close, timeperiod=14)
|
| 92 |
+
|
| 93 |
+
# APO - Absolute Price Oscillator
|
| 94 |
+
df['APO'] = ta.APO(df.close, fastperiod=12, slowperiod=26, matype=0)
|
| 95 |
+
|
| 96 |
+
# AROON - Aroon
|
| 97 |
+
df['AROON_DWN'],df['AROON_UP'] = ta.AROON(df.high, df.low, timeperiod=14)
|
| 98 |
+
|
| 99 |
+
# AROONOSC - Aroon Oscillator
|
| 100 |
+
df['AROONOSC'] = ta.AROONOSC(df.high, df.low, timeperiod=14)
|
| 101 |
+
|
| 102 |
+
# BOP - Balance Of Power
|
| 103 |
+
df['BOP'] = ta.BOP(df.open, df.high, df.low, df.close)
|
| 104 |
+
|
| 105 |
+
# CCI - Commodity Channel Index
|
| 106 |
+
df['CCI'] = ta.CCI(df.high, df.low, df.close, timeperiod=14)
|
| 107 |
+
|
| 108 |
+
# CMO - Chande Momentum Oscillator
|
| 109 |
+
df['CMO']= ta.CMO(df.close, timeperiod=14)
|
| 110 |
+
|
| 111 |
+
# DX - Directional Movement Index
|
| 112 |
+
df['DX'] = ta.DX(df.high, df.low, df.close, timeperiod=14)
|
| 113 |
+
|
| 114 |
+
# MACD - Moving Average Convergence/Divergence
|
| 115 |
+
df['MACD'], df['MACD_SGNL'], df['MACD_HIST'] = ta.MACD(df.close, fastperiod=12, slowperiod=26, signalperiod=9)
|
| 116 |
+
|
| 117 |
+
# MACDFIX - Moving Average Convergence/Divergence Fix 12/26
|
| 118 |
+
df['MACDF'], df['MACDF_SGNL'], df['MACDF_HIST'] = ta.MACDFIX(df.close)
|
| 119 |
+
|
| 120 |
+
# MFI - Money Flow Index
|
| 121 |
+
df['MFI'] = ta.MFI(df.high, df.low, df.close, df.volume, timeperiod=14)
|
| 122 |
+
|
| 123 |
+
# MINUS_DI - Minus Directional Indicator
|
| 124 |
+
df['MINUS_DI'] = ta.MINUS_DI(df.high, df.low, df.close, timeperiod=14)
|
| 125 |
+
|
| 126 |
+
# MINUS_DM - Minus Directional Movement
|
| 127 |
+
df['MINUS_DM'] = ta.MINUS_DM(df.high, df.low, timeperiod=14)
|
| 128 |
+
|
| 129 |
+
# MOM - Momentum
|
| 130 |
+
df['MOM'] = ta.MOM(df.close, timeperiod=10)
|
| 131 |
+
|
| 132 |
+
# PLUS_DI - Plus Directional Indicator
|
| 133 |
+
df['PLUS_DI'] = ta.PLUS_DI(df.high, df.low, df.close, timeperiod=14)
|
| 134 |
+
|
| 135 |
+
# PLUS_DM - Plus Directional Indicator
|
| 136 |
+
df['PLUS_DM'] = ta.PLUS_DM(df.high, df.low, timeperiod=14)
|
| 137 |
+
|
| 138 |
+
# PPO - Percentage Price Oscillator
|
| 139 |
+
df['PPO'] = ta.PPO(df.close, fastperiod=12, slowperiod=26, matype=0)
|
| 140 |
+
|
| 141 |
+
# ROC - Rate of change : ((price/prevPrice)-1)*100
|
| 142 |
+
df['ROC'] = ta.ROC(df.close, timeperiod=10)
|
| 143 |
+
|
| 144 |
+
# ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
|
| 145 |
+
df['ROCP'] = ta.ROCP(df.close, timeperiod=10)
|
| 146 |
+
|
| 147 |
+
# ROCR - Rate of change Percentage: (price-prevPrice)/prevPrice
|
| 148 |
+
df['ROCR'] = ta.ROCR(df.close, timeperiod=10)
|
| 149 |
+
|
| 150 |
+
# ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
|
| 151 |
+
df['ROCR100'] = ta.ROCR100(df.close, timeperiod=10)
|
| 152 |
+
|
| 153 |
+
# RSI - Relative Strength Index
|
| 154 |
+
df['RSI'] = ta.RSI(df.close, timeperiod=14)
|
| 155 |
+
|
| 156 |
+
# STOCH - Stochastic
|
| 157 |
+
df['STOCH_SLWK'], df['STOCH_SLWD'] = ta.STOCH(df.high, df.low, df.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
|
| 158 |
+
|
| 159 |
+
# STOCHF - Stochastic Fast
|
| 160 |
+
df['STOCH_FSTK'], df['STOCH_FSTD'] = ta.STOCHF(df.high, df.low, df.close, fastk_period=5, fastd_period=3, fastd_matype=0)
|
| 161 |
+
|
| 162 |
+
# STOCHRSI - Stochastic Relative Strength Index
|
| 163 |
+
df['STOCHRSI_FSTK'], df['STOCHRSI_FSTD'] = ta.STOCHRSI(df.close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
|
| 164 |
+
|
| 165 |
+
# TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
|
| 166 |
+
df['TRIX'] = ta.TRIX(df.close, timeperiod=30)
|
| 167 |
+
|
| 168 |
+
# ULTOSC - Ultimate Oscillator
|
| 169 |
+
df['ULTOSC'] = ta.ULTOSC(df.high, df.low, df.close, timeperiod1=7, timeperiod2=14, timeperiod3=28)
|
| 170 |
+
|
| 171 |
+
# WILLR - Williams' %R
|
| 172 |
+
df['WILLR'] = ta.WILLR(df.high, df.low, df.close, timeperiod=14)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# get_volume_indicator
|
| 176 |
+
# AD - Chaikin A/D Line
|
| 177 |
+
df['AD'] = ta.AD(df.high, df.low, df.close, df.volume)
|
| 178 |
+
|
| 179 |
+
# ADOSC - Chaikin A/D Oscillator
|
| 180 |
+
df['ADOSC'] = ta.ADOSC(df.high, df.low, df.close, df.volume, fastperiod=3, slowperiod=10)
|
| 181 |
+
|
| 182 |
+
# OBV - On Balance Volume
|
| 183 |
+
df['OBV'] = ta.OBV(df.close, df.volume)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# get_volatility_indicator
|
| 187 |
+
# ATR - Average True Range
|
| 188 |
+
df['ATR'] = ta.ATR(df.high, df.low, df.close, timeperiod=14)
|
| 189 |
+
|
| 190 |
+
# NATR - Normalized Average True Range
|
| 191 |
+
df['NATR'] = ta.NATR(df.high, df.low, df.close, timeperiod=14)
|
| 192 |
+
|
| 193 |
+
# TRANGE - True Range
|
| 194 |
+
df['TRANGE'] = ta.TRANGE(df.high, df.low, df.close)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
# get_transform_price
|
| 198 |
+
# AVGPRICE - Average Price
|
| 199 |
+
df['AVGPRICE'] = ta.AVGPRICE(df.open, df.high, df.low, df.close)
|
| 200 |
+
|
| 201 |
+
# MEDPRICE - Median Price
|
| 202 |
+
df['MEDPRICE'] = ta.MEDPRICE(df.high, df.low)
|
| 203 |
+
|
| 204 |
+
# TYPPRICE - Typical Price
|
| 205 |
+
df['TYPPRICE'] = ta.TYPPRICE(df.high, df.low, df.close)
|
| 206 |
+
|
| 207 |
+
# WCLPRICE - Weighted Close Price
|
| 208 |
+
df['WCLPRICE'] = ta.WCLPRICE(df.high, df.low, df.close)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
# get_cycle_indicator
|
| 212 |
+
# HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period
|
| 213 |
+
df['HT_DCPERIOD'] = ta.HT_DCPERIOD(df.close)
|
| 214 |
+
|
| 215 |
+
# HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase
|
| 216 |
+
df['HT_DCPHASE'] = ta.HT_DCPHASE(df.close)
|
| 217 |
+
|
| 218 |
+
# HT_PHASOR - Hilbert Transform - Phasor Components
|
| 219 |
+
df['HT_PHASOR_IP'], df['HT_PHASOR_QD'] = ta.HT_PHASOR(df.close)
|
| 220 |
+
|
| 221 |
+
# HT_SINE - Hilbert Transform - SineWave
|
| 222 |
+
df['HT_SINE'], df['HT_SINE_LEADSINE'] = ta.HT_SINE(df.close)
|
| 223 |
+
|
| 224 |
+
# HT_TRENDMODE - Hilbert Transform - Trend vs Cycle Mode
|
| 225 |
+
df['HT_TRENDMODE'] = ta.HT_TRENDMODE(df.close)
|
| 226 |
+
|
| 227 |
+
return df
|
| 228 |
+
|
| 229 |
+
def feature_main(df):
|
| 230 |
+
df['time'] = df['time'].map(lambda x: np.sum(list(map(int, str(x).split(':')))))
|
| 231 |
+
|
| 232 |
+
df = get_all_features(df)
|
| 233 |
+
values = {}
|
| 234 |
+
for col in df.columns:
|
| 235 |
+
idx = df.reset_index()[col].first_valid_index()
|
| 236 |
+
values[col] = df.iloc[idx][col]
|
| 237 |
+
df = df.fillna(value=values)
|
| 238 |
+
return df
|
model/xgb_f_beta_model.sav
ADDED
|
Binary file (143 kB). View file
|
|
|